Как происходит свертывание крови при ранении сосуда. Какой фермент способствует коагуляции? Механизм образования тромбов



Свёртывание крови свёртывание кро́ви

превращение жидкой крови в эластичный сгусток в результате перехода растворённого в плазме крови белка фибриногена в нерастворимый фибрин при истечении крови из повреждённого сосуда. Фибрин, полимеризуясь, образует тонкие нити, удерживающие кровяные тельца; таким образом формируется сгусток, закупоривающий поражённое место сосуда. Время свёртывания крови у разных организмов сильно варьирует (у человека 5-12 мин).

СВЕРТЫВАНИЕ КРОВИ

СВЕ́РТЫВАНИЕ КРО́ВИ, превращение жидкой крови в эластичный сгусток в результате перехода растворенного в плазме крови белка фибриногена в нерастворимый фибрин (см. ФИБРИН) при истечении крови из поврежденного сосуда. Сгусток препятствует дальнейшей потере крови и проникновению в организм болезнетворных микроорганизмов, что имеет большое значение для выживания животного или человека. Не менее важно, что процесс свертывания крови не затрагивает неповрежденные сосуды.
Процесс свертывания крови находится под контролем нервной и гуморальной системы, и непосредственно зависит от согласованного взаимодействия по меньшей мере 12 специальных факторов (белков крови).
Механизм свертывания крови
Уже через доли секунды после повреждения стенки сосуда в зоне травмы наблюдается спазм сосудов, и развивается цепь тромбоцитарных реакций, в результате которых образуется тромбоцитарная пробка. Прежде всего, происходит активация тромбоцитов факторами, выделяющимися из поврежденных тканей сосуда, а также малыми количествами тромбина (см. ТРОМБИН) - фермента, образующегося в ответ на повреждение. Затем происходит склеивание (агрегация) тромбоцитов друг с другом и с фибриногеном , содержащимся в плазме крови (см. ПЛАЗМА КРОВИ) , и одновременное прилипание (адгезия) тромбоцитов к коллагеновым волокнам, находящимся в стенке сосуда, и поверхностным адгезивным белкам клеток эндотелия (см. ЭНДОТЕЛИЙ) . В процесс вовлекается все большее и большее число тромбоцитов, поступающих в зону повреждения. Первая стадия адгезии и агрегации обратима, но позже эти процессы становятся необратимыми. Агрегаты тромбоцитов уплотняются, образуя пробку, плотно закрывающую дефект в сосудах малого и среднего размера. Из адгезированных тромбоцитов высвобождаются факторы, активирующие все клетки крови и некоторые факторы свертывания, находящиеся в крови, в результате чего на основе тромбоцитарной пробки формируется фибриновый сгусток. В сети фибрина задерживаются форменные элементы крови и в результате образуется кровяной сгусток. Позднее из сгустка вытесняется жидкость, и он превращается в тромб, который препятствует дальнейшей потере крови, он же является барьером для проникновения патогенных агентов. Такая тромбоцитарно-фибриновая гемостатическая пробка может противостоять повышенному кровяному давлению после восстановления тока крови в поврежденных сосудах среднего размера. Механизм прилипания тромбоцитов к эндотелию сосудов в зонах с малой и большой скоростью тока крови различается набором так называемых адгезивных рецепторов - белков, расположенных на клетках кровеносных сосудов. Генетически обусловленное отсутствие или снижение числа таких рецепторов (например, довольно часто встречающаяся болезнь Виллебранда) приводит к развитию геморрагического диатеза (см. ГЕМОРРАГИЧЕСКИЙ ДИАТЕЗ) (кровоточивости).
Факторы свертывания крови
В процессе свертывания крови принимают участие особые плазменные белки - так называемые факторы свертывания крови, обозначаемые римскими цифрами. Эти факторы в норме циркулируют в крови в неактивной форме. Повреждение сосудистой стенки запускает каскадную цепь реакций, в которых факторы свертывания переходят в активную форму. Так, сперва освобождается активатор протромбина, затем под его влиянием протромбин превращается в тромбин. Тромбин, в свою очередь, расщепляет крупную молекулу растворимого глобулярного белка фибриногена на более мелкие фрагменты, которые затем вновь соединяются в длинные нити фибрина - нерастворимого фибриллярного белка. Установлено, что при свертывании 1 мл крови образуется тромбин в количестве, достаточном для коагуляции всего фибриногена в 3 литрах крови, однако в нормальных физиологических условиях тромбин генерируется только в месте повреждения сосудистой стенки.
В зависимости от пусковых механизмов различают внешний и внутренний пути свертывания крови. Как при внешнем, так и при внутреннем пути активация факторов свертывания крови происходит на мембранах поврежденных клеток, но в первом случае запускающий сигнал, так называемый тканевой фактор - тромбопластин - поступает в кровь из поврежденных тканей сосуда. Поскольку он поступает в кровь извне, данный путь свертывания крови называют внешним путем. Во втором случае сигнал поступает от активированных тромбоцитов, а, поскольку они являются составными элементами крови, этот путь свертывания называют внутренним. Такое разделение достаточно условно, поскольку в организме оба процесса тесно взаимосвязаны. Однако подобное разделение значительно упрощает интерпретацию тестов, используемых для оценки состояния системы свертывания крови.
Цепь превращений неактивных факторов свертывания крови в активные происходит при обязательном участии ионов кальция, в частности, превращение протромбина в тромбин. Кроме кальция и тканевого фактора, в процессе участвуют факторы свертывания YII и X (ферменты плазмы крови).
Отсутствие или снижение концентрации любого из необходимых факторов свертывания крови может вызвать продолжительную и обильную кровопотерю. Нарушения в системе свертывания крови могут быть как наследственными (гемофилия (см. ГЕМОФИЛИЯ) , тромбоцитопатии), так и приобретенными (тромбоцитопения (см. ТРОМБОЦИТОПЕНИЯ) ). У людей после 50-60 лет содержание фибриногена в крови увеличивается, возрастает число активированных тромбоцитов, происходит ряд других изменений, ведущих к повышению свертываемости крови и опасности возникновения тромбоза (см. ТРОМБОЗ) .


Энциклопедический словарь . 2009 .

Смотреть что такое "свёртывание крови" в других словарях:

    Свертывание крови – это важнейший этап работы системы гемостаза, отвечающей за остановку кровотечения при повреждении сосудистой системы организма. Свертыванию крови предшествует стадия первичного сосудисто тромбоцитарного гемостаза. Этот… … Википедия

    Превращение жидкой крови в эластичный сгусток; защитная реакция организма человека и животных, предотвращающая потерю крови. С. к. протекает как последовательность биохимических реакций, совершающихся при участии факторов свёртывания… … Большая советская энциклопедия

    Свёртывание крови - Свертывание крови СВЁРТЫВАНИЕ КРОВИ, превращение жидкой крови в эластичный сгусток в результате перехода растворенного в плазме крови белка фибриногена в нерастворимый фибрин; защитная реакция организма, препятствующая потере крови при… … Иллюстрированный энциклопедический словарь

    СВЁРТЫВАНИЕ КРОВИ, превращение жидкой крови в эластичный сгусток в результате перехода растворенного в плазме крови белка фибриногена в нерастворимый фибрин; защитная реакция организма, препятствующая потере крови при повреждении сосудов. Время… … Современная энциклопедия

    Превращение жидкой крови в эластичный сгусток в результате перехода растворённого в плазме крови фибриногена в нерастворимый фибрин; защитная реакция животных и человека, предотвращающая потерю крови при нарушении целостности кровеносных сосудов … Биологический энциклопедический словарь

    свёртывание крови - — Тематики биотехнологии EN blood clotting … Справочник технического переводчика

    СВЁРТЫВАНИЕ КРОВИ - свёртывание крови, переход крови из жидкого состояния в студенистый сгусток. Это свойство крови (свёртываемость) является защитней реакцией, предотвращающей организм от потери крови. С. к. протекает как последовательность биохимических реакций,… … Ветеринарный энциклопедический словарь

    Превращение жидкой крови в эластичный сгусток в результате перехода растворённого в плазме крови белка фибриногена в нерастворимый фибрин при истечении крови из повреждённого сосуда. Фибрин, полимеризуясь, образует тонкие нити, удерживающие… … Естествознание. Энциклопедический словарь

    Схема взаимодействия факторов свёртывания при активации гемокоагуляции Факторы свёртывания крови группа веществ, содержащихся в плазме крови и тромбоцитах и обеспечива … Википедия

    Свёртывание крови (гемокоагуляция, часть гемостаза) сложный биологический процесс образования в крови нитей белка фибрина, образующих тромбы, в результате чего кровь теряет текучесть, приобретая творожистую консистенцию. В нормальном состоянии… … Википедия

Конспект из книги «Основы клинической гирудотерапии» Н.И. Сулим

Под термином «гемостаз» понимают комплекс реакций, направленный на остановку кровотечения при травме сосудов. В действительности, значение систем гемостаза намного сложнее и далеко выходит за рамки борьбы с кровотечениями. Основными задачами системы гемостаза являются сохранение жидкого состояния циркулирующей и депонированной крови, регуляция транскапиллярного обмена, резистентности сосудистой стенки, влияние на интенсивность репаративных процессов.

Принято различать: сосудисто-тромбоцитарный гемостаз и процесс свертывания крови. В первом случае речь идет об остановке кровотечения из мелких кровеносных сосудов с низким кровяным давлением, диаметр которых не превышает 100 мкм, во втором - о борьбе с кровопотерей при повреждении артерий и вен. Такое деление носит условный характер, ибо как при повреждении мелких, так и крупных кровеносных сосудов всегда наряду с образованием тромбоцитарной пробки осуществляется свертывание крови.

Вместе с тем, подобное разделение чрезвычайно удобно для клиницистов, ибо при нарушениях сосудисто-тромбоцитарного гемостаза прокол кожи пальца или мочки уха сопровождается длительным кровотечением, тогда как время свертывания крови остается в норме. При патологии свертывающей системы крови время кровотечения значительно не изменяется, хотя образование фибринового сгустка может не наступать часами, что, в частности, наблюдается при гемофилиях А и В.

Сосудисто-тромбоцитарный гемостаз

Сосудисто-тромбоцитарный гемостаз сводится к образованию тромбоцитарной пробки, или тромбоцитарного тромба.

Три стадии сосудисто-тромбоцитарного гемостаза

  1. временный (первичный и вторичный) спазм сосудов;
  2. образование тромбоцитарной пробки за счет адгезии (прикрепления к поврежденной поверхности) и агрегации (склеивания между собой) кровяных пластинок;
  3. ретракция (сокращение и уплотнение) тромбоцитарной пробки.

Временный спазм сосудов

Буквально через доли секунды после травмы наблюдается первичный спазм к ровеносных сосудов, благодаря чему кровотечение в первый момент может не возникнуть или носит ограниченный характер. Первичный спазм сосудов обусловлен выбросом в кровь в ответ на болевое раздражение адреналина и норадреналина и длится не более 10-15 сек. В дальнейшем наступает вторичный спазм, обусловленный активацией тромбоцитов и отдачей в кровь сосудосуживающих агентов - серотонина, ТхА 2 , адреналина и др.

Первичная (обратимая) агрегация тромбоцитов

Повреждение сосудов сопровождается немедленной активацией тромбоцитов, что связано с появлением высоких концентраций АДФ (из разрушающихся эритроцитов и травмированных сосудов), а также обнажением субэндотелия, коллагеновых и фибриллярных структур. Начинается адгезия тромбоцитов к коллагену и другим адгезивным белкам субэндотелия.

При повреждении крупных артерий и вен, тромбоциты адгезируют непосредственно к обнаженным волокнам коллагена через коллагеновые рецепторы - GP-Ib-IIa.

При травме мелких артерий и артериол, прилипание тромбоцитов обусловлено наличием в плазме и кровяных пластинках, а также высвобождением из эндотелия особого белка - фактора фон Виллебранда (vWF), имеющего 3 активных центра, два из которых связываются с рецепторами тромбоцитов (GPIb), а один - с субэндотелием или коллагеновыми волокнами. Таким образом, тромбоцит с помощью vWF оказывается «подвешенным» к травмированной поверхности сосуда.

Из адгезирующих тромбоцитов, как и из поврежденного эндотелия, высвобождается АДФ, являющаяся важнейшим индуктором агрегации. Под влиянием АДФ тромбоциты прилипают к присоединившимся к эндотелию кровяным пластинкам, а также склеиваются между собой, образуя агрегаты, являющиеся основой тромбоцитарной пробки. Усилению агрегации способствуют фактор активации тромбоцитов (PAF), а также тромбин, всегда появляющийся в результате свертывания крови в зоне травмы.

Под воздействием слабых агонистов (АДФ, PAF, адреналин, серотонин, витронектин, фибронектин и др.) на мембране тромбоцитов начинается экспрессия рецепторов к фибриногену (GPIIb-IIIa). Благодаря им в присутствии ионов Са 2+ фибриноген связывает между собой 2 близлежащие кровяные пластинки.

На этом этапе агрегация носит обратимый характер, ибо вслед за агрегацией может наступить частичный или полный распад агрегатов - дезагрегация. Более того, так как связь между тромбоцитами непрочна, то часть агрегатов может отрываться и уноситься током крови. Такая агрегация носит наименование первичной, или обратимой. Разумеется, первичная агрегация не способна остановить кровотечение даже из очень мелких кровеносных сосудов (капилляров, венул, артериол).

Ретракция сгустка

Более сложен механизм вторичной агрегации, сопровождающийся тромбоцитарной секрецией. Для завершения гемостаза требуется присоединение ряда дополнительных механизмов активации с включением обратных связей (обратной афферентации в пределах тромбоцита). Слабые агонисты приводят к поступлению сигнала внутрь кровяных пластинок, в результате чего в них увеличивается содержание цитоплазматического Са 2+ и наступает активация фосфолипазы А2. Последняя приводит к освобождению из мембраны тромбоцита арахидоновой кислоты, которая в результате цикла последовательных реакций превращается в чрезвычайно активные соединения PgG 2 , PgH 2 и тромбоксан А 2 (ТхА 2), являющиеся одновременно сильным агонистом агрегации и вазоконстриктором.

Выделяясь из тромбоцитов, PgG 2 , PgH 2 и особенно ТхА 2 осуществляют так называемую первую положительную связь, заключающуюся в усилении экспрессии фибриногеновых рецепторов, а также усиливают сигнал, передаваемый внутрь тромбоцита. При этом ТхА 2 , вызывает выделение ионов Са 2+ из плотной тубулярной системы в цитоплазму, что способствует развитию финальных ферментных реакций систем гемостаза в самом тромбоците. К таким реакциям, прежде всего, относится активация актомиозиновой системы, а также фосфорилирование белков. Этот путь, начавшийся с активизации фосфолипазы С, завершается активацией протеинкиназы С с образованием инозилтрифосфата, способного, как и ТхА 2 , повышать уровень Са 2+ .

Комплекс перечисленных реакций ведет, в конечном счете, к сокращению актомиозина (тромбостенина) тромбоцитов, что сопровождается повышением внутриклеточного давления, приводящего к секреторным реакциям (реакция высвобождения) и сокращению тромбоцитарной пробки. При этом кровяные пластинки подтягиваются друг к другу, тромбоцитарная пробка не только сокращается, но и уплотняется, т.е. наступает ее ретракция.

Из тромбоцитов, подвергшихся адгезии и агрегации, усиленно секретируются гранулы и содержащиеся в них биологически активные продукты - АДФ, PAF, адреналин, норадреналин, фактор Р4, ТхА 2 , фибриноген, vWF, тромбоспондин, фибронектин, витронектин и многие другие. Все это значительно укрепляет тромбоцитарный тромб (рис. 1).

Рис. 1. Состав гранул тромбоцитов и их высвобождение под влиянием стимуляторов агрегации.

Следует обратить внимание на то, что из кровяных пластинок в процессе реакции высвобождения выделяется фактор роста, или иначе митогенный фактор, играющий важную роль в процессе репарации поврежденных стенок сосудов, а в условиях патологии способствующий развитию атеросклероза. Реканализации (восстановлению проходимости) сосуда способствуют лизосомальные энзимы, выделяемые из g-rpaнул (лизосом) (рис. 2).

Рис. 2. Продукты тромбоцитарной секреции в физиологических и патологических реакциях организма (по А.С. Шитиковой)

Одновременно с высвобождением тромбоцитарных факторов происходит образование тромбина, резко усиливающего агрегацию и приводящего к появлению сети фибрина в которой застревают отдельные эритроциты и лейкоциты.

Важно!!! В условиях нормы остановка кровотечения из мелких сосудов занимает от 2-х до 4-х минут.

Общая схема сосудисто-тромбоцитарного гемостаза

Рис. 3. Схема сосудисто-тромбоцитарного гемостаза. Условные обозначения: АДФ - аденозиндифосфат, ГП - гликопротеины, КА - катехоламины vWF - фактор Виллибранда


Роль простагландинов в сосудисто-тромбоцитарном гемостазе

Чрезвычайно важную роль в регуляции сосудисто-тромбоцитарного гемостаза играют производные арахидоновой кислоты - простагландин I 2 (PgI 2), или простациклин и ТхА 2 .

PgI 2 образуется эндотелиальными клетками под влиянием фермента простациклинсинтетазы. В физиологических условиях действие PgI 2 преобладает над ТхА 2 - мощным агрегирующим агентом тромбоцитов. Вот почему в циркуляции у здорового человека агрегация тромбоцитов носит ограниченный характер.

При повреждении эндотелия в месте травмы образование PgI 2 нарушается, в результате чего начинает преобладать действие ТхА 2 и создаются благоприятные условия для агрегации тромбоцитов.

Аналогичная картина наблюдается при заболеваниях, сопровождающихся повреждением сосудистой стенки (эндотелиозы). В этих случаях в местах повреждения сосудов образуются так называемые белые тромбы, состоящие преимущественно из тромбоцитов. Наличие локальных повреждений коронарных сосудов является одной из ведущих причин возникновения стенокардии, инфаркта миокарда в результате обратимой (стенокардия) и необратимой (инфаркт) агрегации тромбоцитов с последующим цементированием тромбоцитарной пробки нитями фибрина.

Рис. 4. Схема, отражающая участие простагландинов в регуляции функции тромбоцитов


Процесс свертывания крови

При повреждении крупных кровеносных сосудов (артерий, вен) также происходит образование тромбоцитарной пробки, но она не способна остановить кровотечение, ибо легко вымывается током крови. Основное значение в этом процессе принадлежит свертыванию крови, сопровождающемуся в конечном итоге образованием плотного фибринового сгустка.

В настоящее время установлено, что свертывание крови является ферментативным процессом. Следует, однако, заметить, что основоположником ферментативной теории свертывания крови является отечественный ученый, профессор Дерптского университета А. А. Шмидт, опубликовавший с 1861 по 1895 год ряд работ, посвященных механизмам формирования фибринового сгустка. Эта теория лишь в начале XX века была поддержана немецким ученым Р. Моравитцем и получила общее признание.

В свертывании крови принимает участие комплекс белков, находящихся в плазме (плазменные факторы гемокоагуляции), большинство из которых являются проферментами. В отличие от тромбоцитарных факторов, они обозначаются римскими цифрами (фактор I, II и т.д.).

Активация плазменных факторов происходит главным образом за счет протеолиза и сопровождается отщеплением пептидных ингибиторов. Для обозначения этого процесса к номеру фактора присоединяется буква «а» (фактор IIа, Va, VIIa и т.д.).

Плазменные факторы разделяются на две группы: витамин-К-зависимые, которые образуются преимущественно в печени при участии витамина К, и витамин-К-независимые, для синтеза которых витамин К не требуется. Такое разделение чрезвычайно удобно для клиники, ибо при угрозах внутрисосудистого тромбообразования врач может с помощью лекарственных препаратов нарушить синтез витамин-К-зависимых факторов и значительно снизить риск тромбоза (табл. 1).

Таблица 1. Плазменные факторы свертывания крови

Фактор

Название фактора

Свойства и функции

I Фибриноген Белок-гликопротеин. Образуется в печени. Под влиянием тромбина переходит в фибрин. Принимает участие в агрегации тромбоцитов. Необходим для репарации тканей.
II Протромбин Белок-гликопротеин. Неактивная форма фермента тромбина. Под влиянием протромбиназы переходит в тромбин (фактор IIa). Синтезируется в печени при участии витамина К.
III Тромбопластин Состоит из белка апопротеина III и комплекса фосфолипидов. Входит в состав мембран многих тканей. Является матрицей для развертывания реакций, направленных на образование протромбиназы по внешнему механизму.
IV Кальций Участвует в образовании комплексов, входящих в состав теназы и протромбиназы. Необходим для агрегации тромбоцитов, реакции высвобождения, ретракции.
V Проакцелерин,
Ас-глобулин
Образуется в печени. Витамин-К-независим. Активируется тромбином. Входит в состав протромбиназного комплекса.
VI Акцелерин Потенцирует превращение протромбина в тромбин.
VII Проконвертин Синтезируется в печени при участии витамина К. Принимает участие в формировании протромбиназы по внешнему механизму. Активируется при взаимодействии с тромбопластином и факторами XIIa, Xa, IXa, IIa.
VIIIC Антигемофильный глобулин А (АГГ) Сложный гликопротеид. Место синтеза точно не установлено. В плазме образует комплекс с vWF и специфическим антигеном. Активируется тромбином. Входит в состав геназного комплекса. При его отсутствии или резком снижении возникает заболевание гемофилия А.
IX Антигемофильный глобулин В,
фактор Кристмаса
Бета-глобулин, образуется в печени при участии витамина К. Активируется тромбином и фактором VIIa. Переводит фактор X в Xa. При его отсутствии или резком снижении возникает заболевание гемофилия В.
X Тромботропин,
фактор Стюарта-Прауэра
Гликопротеид, вырабатывается в печени при участии витамина К. Фактор Xa является основной частью протромбиназного комплекса. Активируется факторами VIIа и IXа. Переводит фактор II в IIa.
XI Предшественник плазменного тромбопластина,
фактор Розенталя
Гликопротеид. Активируется фактором XIIa, калликреином совместно с высокомоллекулярным кининогеном (ВМК).
XII Фактор контактной активации,
фактор Хагемана
Белок. Активируется отрицательно заряженными поверхностями, адреналином, калликреином. Запускает внешний и внутренний механизм образования протромбиназы и фибринолиза, активирует фактор XI и прекалликреин.
XIII Фибринстабилизирующий фактор (ФСФ),
фибриназа
Глобулин. Синтезируется фибробластами и мегакариоцитами. Стабилизирует фибрин. Необходим для нормального течения репаративных процессов.
Фактор Флетчер,
плазменный прекалликреин
Белок. Активирует факторы XII, плазминоген и ВМК.
Фактор Фитцжеральда,
высокомолекулярный кининоген (ВМК)
Активируется калликреином, принимает участие в активации фактора XII, XI и фибринолизе.
Фактор Виллебранда Компонент фактора VIII, вырабатывается в эндотелии, в кровотоке, соединяясь с коагуляционной частью, образует полиоценный фактор VIII (антигемофильный глобулин А).

Эритроцитарные факторы свертывания крови

В эритроцитах обнаружен ряд соединений, аналогичных тромбоцитарным факторам. Наиважнейшим из них является частичный тромбопластин, или фосфолипидный фактор (напоминает фактор Р 3), который входит в состав мембраны. Кроме того, эритроциты содержат антигепариновый фактор, большое количество АДФ, фибриназу и другие соединения, имеющие отношение к гемостазу. При травме сосуда около 1% наименее стойких эритроцитов вытекающей крови разрушается, что способствует образованию тромбоцитарной пробки и фибринового сгустка.

Особенно велика роль эритроцитов в свертывании крови при их массовом разрушении, что наблюдается при переливании несовместимой крови, резус-конфликте матери и плода и гемолитических анемиях.

Лейкоцитарные факторы свертывания крови

Лейкоциты содержат факторы свертывания, получившие наименование лейкоцитарных. В частности, моноциты и макрофаги при стимуляции Аг синтезируют белковую часть тромбопластина - апопротеин III (тканевой фактор), что значительно ускоряет свертывание крови. Эти же клетки являются продуцентами витамин-К-зависимых факторов свертывания - IX, VII и X. Приведенные факты являются одной из основных причин возникновения диссеминированного (распространенного) внутрисосудистого свертывания крови (или ДВС-синдрома) при многих воспалительных и инфекционных заболеваниях, что значительно отягощает течение патологического процесса, а иногда служит причиной смерти больных.

Тканевые факторы свертывания крови

Важная роль в процессе свертывания крови отводится тканевым факторам, к которым в первую очередь относится тромбопластин (фактор III, тканевой фактор - TF). TF состоит из белковой части - апопротеина III и комплекса фосфолипидов - и нередко представляет собой отломок клеточных мембран. Большая часть TF экспонирована наружу и включает 2 структурных домена. При разрушении тканей или стимуляции эндотелия эндотоксином и провоспалительными цитокинами TF способен поступать в кровоток и вызывать развитие ДВС-синдрома.

Механизм свертывания крови

Процесс свертывания крови представляет собой ферментный каскад, в котором проферменты, переходя в активное состояние (сериновые протеиназы), способны активировать другие факторы свертывания крови. Подобная активация может носить последовательный и ретроградный характер. При этом активация факторов свертывания осуществляется за счет протеолиза, приводящего к перестройке молекул и отщеплению пептидов, обладающих слабым антикоагулянтным действием.

Процесс свертывания крови может быть разделен на 3 фазы

  1. комплекс последовательных реакций, приводящих к образованию протромбиназы;
  2. переход протромбина в тромбин (фактора II в фактор IIа);
  3. из фибриногена образуется фибриновый сгусток.

Образование протромбиназы

Образование протромбиназы может осуществляться по внешнему и внутреннему механизму. Внешний механизм предполагает обязательное присутствие тромбопластина (TF, или F-III), внутренний же связан с участием тромбоцитов (парциальный тромбопластин, или фактор Р 3). Вместе с тем, внутренний и внешний пути образования протромбиназы имеют много общего, ибо активируются одними и теми же факторами (фактор ХIIа, калликреин, ВМК и др.), а также приводят в конечном итоге к появлению одного и того же активного фермента - фактора Ха, выполняющего в комплексе с фактором Va функции протромбиназы. При этом как полный, так и парциальный тромбопластин служат матрицами, на которых развертывается цикл ферментативных реакций.

Важная роль в процессе свертывания крови отводится глицерофосфолипидам и, в частности, фосфатидилсерину и фосфатидилэтаноламину в бислое мембраны. Одной из особенностей бислоя является его асимметрия. В наружном листке бислойной мембра­ны, контрактирующей с кровью, преобладают в ос­новном фосфатидилхолин и сфингомиелин. Как изве­стно, эти фосфолипиды содержат фосфохолин, обес­печивающий атромбогенность мембран. Молекула этих фосфолипидов электронейтральна - в ней нет преоб­ладания одного из зарядов.

Фосфатидилсерин и фосфатидилэтаноламин распо­ложены преимущественно во внутреннем слое мемб­раны. Головка указанных фосфолипидов несет два отрицательных заряда и один положительный, т.е. на ней преобладает отрицательный заряд. Инициация свертывания крови может наступить лишь тогда, когда эти фосфолипиды появятся на наружной поверхности мембраны.

Из сказанного вытекает, что для инициа­ции свертывания крови необходимо нарушить исход­ную асимметрию фосфолипидов мембраны, что может произойти только за счет обмена фосфолипидов меж­ду слоями, или, иначе, флип-флопа. Как это происходит при повреждении кровеносного сосуда?

Мы уже отмечали, что по обе стороны мембраны существует ионная асимметрия. Для процесса свер­тывания крови очень важна асимметрия в содержа­нии ионов Са 2+ , концентрация которого в плазме и интерстициальной жидкости в десять тысяч раз больше, чем в цитоплазме клетки и тромбоците. Как только травмируется стенка сосуда, в цитоплазму из внеклеточной жидкости или из внутриклеточного депо переходит значительное количество ионов Са 2+ . Поступление Са 2+ в тромбоцит или клетки (травмированный эндотелий и т.п.) разрыхляет мембрану и включает механизмы поддержания асимметрии фосфолипидного бислоя. При этом молекулы фосфатидилсерина и фосфатидилэтаноламина, несущие суммарные отрицательные заряды, переходят на поверхность мембраны.

Почему же нарушается асимметрия в содержании отдельных фосфолипидов в наружном и внутреннем слоях мембраны? Недавно появился ряд сообщений о том, что зависимый от энергии процесс концентрации аминофосфолипидов преимущественно во внутреннем листке мембраны связан с функционированием специфичных синергично действующих трансмембранных белков-переносчиков — транслоказ.

Аминофосфолипидные транслоказы осуществляют однонаправленное передвижение фосфатидилсерина и фосфатиднлэтаноламина во внутренний листок мембраны. При активации клеток, в том числе кровяных пластинок, при повышении уровня цитоплазматического Са 2+ , при уменьшении концентрации АТФ и при ряде других сдвигов происходит ингибиция транслоказ. При этом наступает двунаправленное трансмембранное перемещение всех мембранных фосфолипидов, приводящее к значительному выравниванию их концентрации в обоих листках мембраны.

Но как только на поверхности клеточной мембраны увеличивается концентрация отрицательно заряженных фосфолипидов и они входят в соприкосновение с кровью, содержащей громадную концентрацию ионов Са 2 , то образуются кластеры — активные зоны, к которым прикрепляются факторы свертывания. При этом ионы Са 2+ выполняют следующие функции:

1. Они необходимы для конформации факторов свертывания, после чего последние способны принимать участие в ферментативных реакциях гемостаза.

2. Они являются связующими мостиками между белковыми компонентами и клеточными мембранами. Эти реакции осуществляются следующим образом: ионы Са 2+ , с одной стороны, присоединяются к головкам фосфатидилсерина, а с другой — соединяются с остатками g-карбоксиглутаминовой кислоты, которая входит в состав ряда факторов свертывания крови (V, VIII, IX и др.). За счет таких кальциевых мостиков происходит первоначальное ориентирование на фосфолипидной поверхности факторов свертывания крови, и в результате конформации белковых молекул открываются активные центры.

Без ионов Са 2+ не может происходить образование кластеров и не осуществляется взаимодействие друг с другом ферментов, участвующих в свертывании крови.

Формирование протромбиназы по внешнему пути начинается с активации фактора VII при его взаимодействия с тромбопластином‚ а также с факторами XIIа, IXа, Ха и калликреином. В свою очередь, фактор VIIa активирует не только фактор Х, но и IX. B процессе образования протромбиназы по внешнему механизму могут также принимать участие факторы IХа и VIIIa, образующие активный комплекс на фосфолипидной матрице. Однако эта реакция протекает относительно медленно.

Формирование протромбиназы по внешнему пути происходит чрезвычайно быстро (занимает секунды) и ведет к появлению фактора Ха и небольших порций тромбина (IIa), который способствует необратимой агрегации тромбоцитов, активации факторов VIII и V и значительно о ускоряет образование протромбиназы по внутреннему и внешнему механизмам.

Инициатором внутреннего пути образования протромбиназы является фактор XII, который активируется травмированной поверхностью, кожей, коллагеном, адреналином, после чего переводит фактор XI в XIа.

В этой реакции принимает участие калликреин (активируется фактором ХIIа) и ВМК (активируется калликреином).

Фактор ХIа оказывает непосредственное влияние на фактор IX, переводя его в фактор IXa. Специфическая деятельность последнего направлена на протеолиз фактора X (перевод его в фактор Ха) и протекает на поверхности фосфолипидов тромбоцита при обязательном участии фактора VIII (или VIIIa). Комплекс факторов IXa, VIIIa на фосфолипидной поверхности тромбоцитов получил наименование теназы, или теназного комплекса.

Как уже отмечалось, в процессе свертывания крови принимают участие прекалликреин и ВМК, благодаря которым (как и фактору XII) происходит объединение внешнего и внутреннего путей свертывания крови. В настоящее время установлено, что при травме сосуда всегда происходит освобождение металлопротеидов, переводящих прекалликреин в калликреин. Под воздействием калликреина ВМК переходит в ВМКа. Кроме того, калликреин способствует активации факторов VII и XII, что также сопровождается запуском каскадного механизма свертывания крови.

Переход протромбина в тромбин

Вторая фаза процесса свертывания крови (переход фактора II в фактор IIа) осуществляется под влиянием протромбиназы (комплекса Xa+Va+Са 2+) и сводится к протеолитическому расщеплению протромбина, благодаря чему появляется фермент тромбин, обладающий свертывающей активностью.

Переход фибриногена в фибрин

Третья стадия процесса свертывания крови - переход фибриногена в фибрин - включает 3 этапа. На первом из них под влиянием фактора IIа от фибриногена отщепляются 2 фибринпептида А и 2 фибринпептида В, в результате чего образуются фибрин-мономеры. На втором этапе, благодаря процессу полимеризации, формируются вначале димеры и олигомеры фибрина, трансформирующиеся в дальнейшем в волокна фибрина - протофибриллы легкорастворимого фибрина, или фибрина s (soluble), быстро лизирующегося под влиянием протеаз (плазмина, трипсина). В процесс образования фибрина вмешивается фактор XIII (фибриназа, фибринстабилизирующий фактор), который после активации тромбином в присутствии Са 2+ прошивает фибринполимеры дополнительными перекрестными связями, благодаря чему появляется труднорастворимый фибрин, или фибрин i (insoluble). В результате этой реакции сгусток становится резистентным к мочевине и фибринолитическим (протеолитическим) агентам и плохо поддается разрушению.

Рис. 5. Схема свертывания крови. Условные обозначения: тонкие стрелки — активация, толстые стрелки — переход фактора в активное состояние, ВМК — высокомолекулярный кининоген, I — фибриноген, Im — фибринмономер, Is — легкорастворимый фибрин, Ii — труднорастворимый фибрин.


Образовавшийся фибриновый сгусток, благодаря тромбоцитам, входящим в его структуру, сокращается и уплотняется (наступает ретракция) и прочно закупоривает поврежденный сосуд.

Естественные антикоагулянты

Несмотря на то что в циркуляции имеются все факторы, необходимые для образования тромба, в естественных условиях при наличии целых сосудов кровь остается жидкой. Это обусловлено наличием в кровотоке противосвертывающих веществ, получивших название естественные антикоагулянты, и фибринолитического звена системы гемостаза.

Естественные антикоагулянты делятся на первичные и вторичные. Первичные антикоагулянты всегда присутствуют в циркуляции, вторичные - образуются в результате протеолитического расщепления факторов свертывания крови в процессе формирования и растворения фибринового сгустка.

Первичные антикоагулянты можно разделить на 3 основные группы: 1) обладающие антитромбопластическим и антипротромбиназным действием (антитромбопластины); 2) связывающие тромбин (антитромбины); 3) предупреждающие переход фибриногена в фибрин (ингибиторы самосборки фибрина).

К антитромбопластинам, в первую очередь, относится ингибитор внешнего пути свертывания (TFPI). Установлено, что он способен блокировать комплекс факторов III+VII+Ха, благодаря чему предотвращается образование протромбиназы по внешнему манизму. Недавно обнаружен еще один ингибятФ внешнего пути образования протромбиназы, получивший наименование TFPI-2 (анексин V), однако он обладает меньшей активностью, чем TFPI.
К ингибиторам, блокирующим образование протромбиназы, относятся витамин-К-зависимые протеины С, S (РrС, PrS) и особый белок, синтезируемый эндотелием, - тромбомодулин. Под воздействием тромбомодулина и связанного с ним тромбина РrС переходит в активное состояние (Рrа), чему способствует кофактор PrS, РrСа разрезает пополам факторы V и VIII и тем самым препятствует образованию протромбиназы внутреннему пути и переходу протромбина в тромбин.

Недавно появились сообщения, что PrS способен связывать фактор Ха. Эта реакция не зависит от фосфолипидной поверхности и усиливается в присутствии РrС.

Одним из ведущих антикоагулянтов является белок антитромбин III (A-III), имеющий молекулярную массу (ММ) 58 кД. Самостоятельно А-III обладает слабым антикоагулянтным действием. В то же время он способен образовывать комплекс с сульфатированным полисахаридом гликозамингликаном гепарином (Г) - А-III+Г. Этот комплекс связывает факторы IIа, IXa, Ха, ХIа, ХIIа, калликреин и плазмин. Существует высокомолекулярный гепарин (нефракдионированный) с ММ от 25 до 35 кД и низкомолекулярный гепарин с ММ менее 5 кД. Последний в меньшей степени нуждается во взаимодействии с А-III и нейтрализует преимущественно фактор Ха, ибо его цепочка мала и «не дотягивается» до тромбина. Низкомолекулярный Г в большей степени, чем высокомолекулярный, способствует высвобождению из эндотелия TFPI, благодаря чему его антикоагулянтная активность возрастает. Следует также заметить, что низкомолекулярные гепарины ингибируют прокоагулянтную активность поврежденного эндотелия и некоторых протеаз, выделяемых гранулоцитами и макрофагами (рис. 6).


За последнее время появились сообщения о наличии еще одного антикоагулянта - белка антитромбина II, однако его активность уступает А-III. Важным ингибитором свертывания является кофактор гепарина II, связывающего тромбин. Его действие усиливается во много раз при взаимодействии с гепарином.

Ингибитором тромбина, факторов IXa, XIa, ХIIа и плазмина является a1-антитрипсин. Слабым ингибитором тромбина, калликреина и плазмина служит а2-макроглобулин.

К первичным антикоагулянтам следует также отнести аутоантитела к активным факторам свертывания крови (IIа, Ха и др.), которые всегда присутствуют в кровотоке, а также покинувшие клетку рецепторы (так называемые «плавающие» рецепторы) к активированным факторам свертывания крови. Однако их роль в условиях нормы и патологии пока еще далека от окончательного выяснения.

Следует заметить, что при снижении концентрации первичных естественных антикоагулянтов создаются благоприятные условия для развития тромбофилий и диссеминированного внутрисосудистого свертывания крови - ДВС-синдрома.

Таблица 2. Основные естественные антикоагулянты (первичные)

Антитромбин III Альфа2-глобулин. Синтезируется в печени. Прогрессивно действующий ингибитор тромбина, факторов IXа, Xа, XIа, XIIа, калликреина и в меньшей степени — плазмина и трипсина. Плазменный кофактор гепарина.
Гепарин Сульфатированный полисахарид. Трансформирует антитромбин III из прогрессивного в антикоагулянт немедленного действия, значительно повышая его активность. Образует комплексы с тромбогенными белками и гормонами, обладающие антикоагулянтным и фибринолитическим действием.
Кофактор гепарина II Слабый антикоагулянт, действующий в присутствии гепарина.
Альфа2-антиплазмин Белок. Ингибирует действие плазмина, трипсина, хемотрипсина, калликреина, фактора Xа, урокиназы.
Альфа2-макроглобулин Слабый прогрессивный ингибитор тромбина, калликреина, плазмина и трипсина.
Альфа1-антитрипсин Ингибитор тромбина, факторов IXа, XIа, XIIа, трипсина и плазмина.
С1-эстеразный ингибитор, или ингибитор комплимента I Альфа1-нейроаминогликопротеид. Инактивирует калликреин, предотвращая его действие на кининоген, факторы XIIа, IXа, XIа и плазмин.
TFPI Ингибирует комплекс TF+VII+Xа.
TFPI-2 или анексин V Образуется в плаценте. Ингибирует комплекс TF+VII+Xа.
Протеин С Витамин-К-зависимый белок. Образуется в печени и эндотелии. Обладает свойствами сериновой протеазы. Инактивирует факторы Va и VIIIа и стимулирует фибринолиз.
Протеин S Витамин-К-зависимый белок. Образуется эндотелиальными клетками. Усиливает действие протеина С.
Тромбомодулин Гликопротеин, фиксированный на цитоплазматической мембране эндотелия. Кофактор протеина С, связывается с фактором IIa и инактивирует его.
Ингибитор самосборки фибрина Полипептид, образуется в различных тканях. Действует на фибрин мономер и полимер.
Плавающие рецепторы Гликопротеиды, связывающие факторы IIa и Ха, а возможно, и другие сериновые протеазы
Аутоантитела к активным факторам свертывания Находятся в плазме, ингибируют факторы и др.

К вторичным антикоагулянтам относятся «отработанные» факторы свертывания крови (принявшие участие в свертывании) и продукты деградации фибриногена и фибрина (ПДФ), обладающие антиагрегационным и противосвертывающим действием, а также стимулирующие фибринолиз. Роль вторичных антикоагулянтов сводится к ограничению внутрисосудистого свертывания крови и распространения тромба по сосудам.

Фибринолиз

Фибринолиз является неотъемлемой частью системы гемостаза, всегда сопровождает процесс свертывания крови и даже активируется теми же самыми факторами (ХIIа, калликреином, ВМК и др.). Являясь важной защитной реакцией, фибринолиз предотвращает закупорку кровеносных сосудов фибриновыми сгустками, а также приводит к реканализации сосудов после остановки кровотечения. Компоненты фибринолиза играют важную роль в удалении внеклеточного матрикса и, кроме того, регулируют рост и деление клеток, заживление ран, регенерацию мышц, рост и метастазирование опухолей и т.д.

Ферментом, разрушающим фибрин, является плазмин (иногда его называют фибринолизин), который в циркуляции находится в неактивном состоянии в виде профермента плазминогена. Под воздействием его активаторов происходит расщепление пептидной связи Arg561-Val562 плазминогена, в результате чего образуется плазмин. Активный центр плазмина находится в легкой цепи, представляющей малоспецифичную протеазу, способную расщеплять практически все белки плазмы.

В кровотоке плазминоген встречается в двух основных формах: в виде нативного профермента с NH2-терминальной глутаминовой кислотой - глу-плазминогена, и в виде частично подвергшегося протеолизу - лиз-плазминогена. Последний приблизительно в 20 раз быстрее трансформируется физиологическими активаторами в плазмин, а также имеет большее сродство к фибрину.

Фибринолиз, как и процесс свертывания крови, может протекать по внешнему и внутреннему путям.

Внешний путь активации плазминогена

Внешний путь активации плазминогена осуществляется при участии тканевых активаторов, которые синтезируются главным образом в эндотелии. К ним, в первую очередь, относится тканевой активатор плазминогена (TPА).

Кроме того, активатором плазминогена является урокиназа, образуемая в почках (в юкстагломерулярном аппарате), а также фибробластами, эпителиальными клетками, пневмоцитами, децедуальными клетками плаценты и эндотелиоцитами. Многие клетки содержат рецепторы к урокиназе, что послужило основанием считать ее основным активатором фибринолиза в межклеточном пространстве, обеспечивающем протеолиз в процессе клеточного роста, деления и миграции клеток.

По мнению З.С. Баркагана, во внешнем пути активации фибринолиза принимают также участие активаторы форменных элементов крови - лейкоцитов, тромбоцитов и эритроцитов.

Внутренний путь активации фибринолиза

Внутренний путь активации фибринолиза, осуществляемый плазменными активаторами, разделяется на Хагеманзависимый и Хагеманнезависимый.

Хагеманзависимый фибринолиз осуществляется наиболее быстро и носит срочный характер. Его основное назначение сводится к очищению сосудистого русла от фибриновых сгустков, образующихся в процессе внутрисосудистого свертывания крови. Хагеманзависимый фибринолиз протекает под влиянием факторов ХIIа, калликреина и ВМК, которые переводят плазминоген в плазмин.

Хагеманнезависимый фибринолиз может осуществляться под влиянием протеинов С и S (рис. 7).

Рис. 7. Схема фибринолиза.


Образовавшийся в результате активации плазмин вызывает расщепление фибрина. При этом появляются ранние (крупномолекулярные) и поздние (низкомолекулярные) продукты деградации фибрина, или ПДФ.

Ингибиторы фибринолиза

До 90% всей антифибринолитической активности сосредоточено в а-гранулах тромбоцитов, которые выбрасываются в кровоток при их активации. В плазме находятся и ингибиторы фибринолиза. В настоящее время выявлено 4 типа ингибитора активатора плазминогена и урокиназы.

Важнейшим из них является ингибитор первого типа (PAI-1), который нередко называют эндотелиальным. Вместе с тем, он синтезируется не только эндотелием, но и гепатоцитами, моноцитами, макрофагами, фибробластами и мышечными клетками. Скапливаясь в местах повреждения эндотелия, тромбоциты также высвобождают PAI-1. PAI-1 является ингибитором сериновых протеаз. Его особенность заключается в том, что переход из неактивной в активную форму осуществляется без частичного протеолиза (за счет кон-формации молекулы) и является обратимым процессом. Хотя концентрация PAI-1 примерно в 1000 раз ниже, чем других ингибиторов протеаз, ему принадлежит основная роль в регуляции начальных стадий фибринолиза.

Важнейшим ингибитором фибринолиза является а2-антиплазмин, связывающий не только плазмин, но и трипсин, калликреин, урокиназу, ТАР и, следовательно, вмешивающийся как на ранних, так и на поздних стадиях фибринолиза.

Сильным ингибитором плазмина служит a1-протеазный ингибитор (a1-антитрипсин).

Кроме того, фибринолиз тормозится а2-макроглобулином, C1-эстеразным ингибитором, а также целым рядом ингибиторов активатора плазминогена, синтезируемых эндотелием, макрофагами, моноцитами и фибробластами.

Фибринолитическая активность крови во многом определяется соотношением активаторов и ингибиторов фибринолиза.

При ускорении свертывания крови и одновременном торможении фибринолиза создаются благоприятные условия для развития тромбозов, эмболии и ДВС-синдрома.

Наряду с ферментативным фибринолизом, по мнению профессора Б.А. Кудряшова и его учеников, существует так называемый неферментативный фибринолиз, который обусловлен комплексными соединениями естественного антикоагулянта гепарина с ферментами и гормонами. Неферментативный фибринолиз приводит к расщеплению нестабилизированного фибрина, очищая сосудистое русло от фибринмономеров и фибрина s.

Четыре уровня регуляции сосудисто-тромбоцитарного гемостаза, свертывания крови и фибринолиза

Свертывание крови, контактирующей со стеклом, травмированной поверхностью или кожей, осуществляется за 5-10 минут. Основное время в этом процессе уходит на образование протромбиназы, тогда как переход протромбина в тромбин и фибриногена в фибрин осуществляется довольно быстро. В естественных условиях время свертывания крови может уменьшаться (развивается гиперкоагуляция) или удлиняться (возникает гипокоагуляция).

Между тем образование тромбоцитарной пробки и остановка кровотечения из мелких сосудов осуществляется в течение 2-4 минут.

Млекулярный уровень регуляции

Молекулярный - предполагает поддержание гомеостатического баланса отдельных факторов, влияющих на сосудисто-тромбоцитарный гемостаз, свертывание крови и фибринолиз. При этом избыток фактора, возникающий по той или иной причине в организме, должен быть в кратчайшие сроки ликвидирован. Такой баланс постоянно поддерживается между простациклином (Pgl2) и ТхА2, прокоагулянтами и антикоагулянтами, активаторами и ингибиторами плазминогена.

Наличие клеточных рецепторов ко многим факторам свертывания крови и фибринолиза лежит в основе гомеостатического баланса в системе гемостаза на молекулярном уровне. Отрывающиеся от клетки рецепторы к факторам свертывания и фибринолиза («плавающие» рецепторы) приобретают новые свойства, становясь естественными антикоагулянтами, ингибиторами плазмина и активатора плазминогена.

Молекулярный уровень регуляции может осуществлять иммунная система с помощью образования Ат к активированными факторам свертывания крови и фибринолиза - IIа, Ха, ТАП и другим.

Необходимо также помнить, что существует генетический контроль над продукцией факторов, обеспечивающих образование и растворение кровяного сгустка.

Клеточный уровень регуляции

В кровотоке происходит постоянное потребление факторов свертывания и фибринолиза, что неминуемо должно приводить к восстановлению их концентрации. Этот процесс должен быть обусловлен или активированными факторами, или (что более вероятно) продуктами их распада. Если это так, то клетки, продуцирующие факторы свертывания и фибринолиза, должны нести на себе рецепторы к указанным соединениям или их депозитам. Такие рецепторы обнаружены на многих клетках к тромбину, калликреину, активатору плазминогена, плазмину, стрептокиназе, ПДФ и многим другим. Клеточная регуляция должна осуществляться по механизму обратной связи (обратной афферентации). Клеточный уровень регуляции систем гемостаза частично обеспечивается за счет «пристеночного» фибринолиза, возникающего при отложении фибрина на эндотелии сосудистой стенки.

Органный уровень регуляции

Органный уровень регуляции - обеспечивает оптимальные условия функционирования системы гемостаза в различных участках сосудистого русла. Благодаря этому уровню проявляется мозаичность сосудисто-тромбоцитарного гемостаза, свертывания крови и фибринолиза.

Нервно-гуморальная регуляция

Нервно-гуморальная регуляция контролирует состояние системы гемостаза от молекулярного до органного уровня, обеспечивая целостность реакции на уровне организма, главным образом, через симпатический и парасимпатический отделы вегетативной нервной системы, а также гормоны и различные биологически активные соединения.

Установлено, что при острой кровопотере, гипоксии, интенсивной мышечной работе, болевом раздражении, стрессе свертывание крови значительно ускоряется, что может привести к появлению фибрин-мономеров и даже фибрина s в сосудистом русле. Однако, благодаря одновременной активации фибринолиза, носящего защитный характер, появляющиеся сгустки фибрина быстро растворяются и не наносят вреда здоровому организму.

Ускорение свертывания крови и усиление фибринолиза при всех перечисленных состояниях связано с повышением тонуса симпатического отдела вегетативной нервной системы и поступлением в кровоток адреналина и норадреналина. При этом активируется фактор Хагемана, что приводит к запуску внешнего и внутреннего механизма образования протромбиназы, а также стимуляции Хагеман-зависимого фибринолиза. Кроме того, под влиянием адреналина усиливается образование апопротеина III - составной части тромбопластина - и наблюдается отрыв от эндотелия клеточных мембран, обладающих свойствами тромбопластина, что способствует резкому ускорению свертывания крови. Из эндотелия также выделяются ТАР и урокиназа, приводящие к стимуляции фибринолиза.

При повышении тонуса парасимпатического отдела вегетативной нервной систем (раздражение блуждающего нерва, введение ацетилхолина, пилокарпина) также наблюдается ускорение свертывания крови и стимуляция фибринолиза. Как это ни покажется на первый взгляд странным, но и в этих условиях происходит выброс тромбопластина и активаторов плазминогена из эндотелия сердца и сосудов.

Оказалось, что как сосудосуживающие, так и сосудорасширяющие воздействия вызывают со стороны свертывания крови и фибринолиза однотипный эффект - освобождение тканевого фактора и ТАР. Следовательно, основным эфферентным регулятором свертывания крови и фибринолиза является сосудистая стенка. Напомним также, что в эндотелии сосудов синтезируется Pgl2, препятствующий в кровотоке адгезии и агрегации тромбоцитов.

Вместе с тем, развивающаяся гиперкоагуляция может смениться гипокоагуляцией, которая носит в естественных условиях вторичный характер и обусловлена расходом (потреблением) тромбоцитов и плазменных факторов свертывания крови, образованием вторичных антикоагулянтов, а также рефлекторным выбросом в сосудистое русло гепарина и А-III в ответ на появление тромбина.

Важно!!! Следует отметить, что существует корковая регуляция системы гемостаза, что было блестяще доказано школами профессора Е.С. Иваницкого-Василенко и академика А.А. Маркосяна. В этих лабораториях были выработаны условные рефлексы как на ускорение, так и на замедление свертывания крови.

Свёртываемость крови – это процесс, происходящий в человеческом организме и подразумевающий изменение структуры кровяных клеток, то есть преобразование из жидкого состояния в желеобразное. В случае возникновения незначительного пореза или других ран, возникшие повреждения кожи быстро заживают. Этот факт приятен каждому человеку. При этом никто из нас никогда не задумывался над самым важным вопросом. Нужно знать подробности процесса заживления ран, а точнее с чего начинается процесс свертывания крови, в чем его сущность и какое место занимает в жизни каждого человека?

В медицине также существует другое понятие , а именно речь идет о гемостазе. Можно сказать, что гемостаз – это процесс, который отвечает за жидкое состояние крови в сосудах человеческого организма . Также он препятствует развитию обширной кровопотери. Во многих медицинских источниках можно найти информацию о том, что во всех сосудах в организме движется 5 литров кровяных клеток. Следовательно, при повреждении кожи или сосудов кровь может проливаться, и если не система коагуляции, тогда каждый человек мог бы умереть от кровопотери. Таким образом осуществляется регуляция свертывания крови.

Сама система гемостаза крови является уникальной, так как она обеспечивает жидкое состояние крови на протяжении многочисленных артерий и вен в организме человека. Если произошло повреждение даже самого маленького сосуда, сразу же начинается активная работа специальных ферментов, осуществляющих постепенное стягивание отверстия, предотвращая излив клеток крови. Проще можно описать этот процесс как образование тромбов, то есть кровяные клетки начинают склеиваться.

Как правило, сворачивается кровь благодаря существованию в человеческом организме определенной системы, под ней понимается образование ингибиторов сворачиваемости. Фермент же, способствующий процессу коагуляции, образуется в организме всегда. А ингибиторы непрерывно работают. Работу ингибиторов можно разделить на 2 основные фазы:

  • начинается действие гепарина и антипротромбиназа;
  • начинается работа ингибиторов тромбина (фибрина, фибриногена, претромбина I и II).

Если человек заболевает, то в организме могут образовываться и другие ингибиторы. Так как при высокой температуре начинается интенсивное свертывание.



Помимо существует еще и антисвертывающая система. Антисвертывающая система начинает функционировать, когда тромбин начинает раздражать хеморецепторы кровеносных сосудов. Таким образом разрушается фибриноген, который является главным фактором образования тромбов. Антисвертывающая система является очень важной для полноценной жизнедеятельности организма.

Какой фермент способствует коагуляции?

Если механизм свертывания крови понятен, то теперь нужно узнать, какой же фермент способствует свертываемости крови? Основным ферментом, который участвует в процессе коагуляции, является тромбин. В период протекания химических реакций в организме это вещество воздействует на фибриноген, преобразовывая его в фибрин. Это вещество также регулирует фибринолиз и процесс образования тромбов, поддерживает тонус сосудов.

Данный фермент образуется при воспалительных процессах, происходящих в организме, при высокой температуре.

Далее начинается следующий этап свертываемости, образуется тромбин из протромбина. В свою очередь тромбин активирует V, VIII, XIII факторы коагуляции. Гормональные свойства рассматриваемого вещества проявляются при тесном контакте с эндотелием и тромбоцитами. А вот в процессе стыковки с тромбомодулином действие по сворачиванию крови заканчивается.

Роль тромбина в коагуляции

Ключевая функция гемостаза состоит в блокировании разрыва в сосуде. При этом фибриновые нити образуют тромб, после чего кровяные клетки приобретают характерное вяжущее свойство. Итак, какой же фермент участвует в коагуляции? Это тромбин, происходит от слова «тромб». Тромбин находится в постоянной готовности, и как только возникает повреждение стенки сосуда, начинается активная его работа.

Существуют следующие фазы свертывания крови:

  1. Этап I – начало, появление протромбиназы. На первой стадии происходит образование тканевого и кровяного ферментов, при этом процесс их образования проходит с разной скоростью. Важным здесь является то, что тканевый фермент активирует работу кровяного фермента.
  2. Этап II — образуется тромбин. Протромбин начинает распадаться на частицы, после распада образуется вещество, которое активирует тромбин.
  3. Этап III — образование фибрина. На данной стадии фермент, участвующий в коагуляции начинает действовать на фибриноген, при этом отщепляются аминокислоты.
  4. Этап IV. Является одним из особенных, потому что начинается полимеризация фибрина и образуется сгусток крови.
  5. Этап V — происходит фибринолиз. Это завершающая стадия гемостаза, так как происходит полное свертывание крови.

Перечисленные этапы системы гемостаза говорят о тесном и взаимосвязанном процессе. Нормой свертываемости считается промежуток от 7до12 минут, анализы оцениваются при комнатной температуре. Все описанные этапы можно изобразить схематично с определенной последовательностью.



Следует отметить, что деление коагуляции по видам, то есть на внешнюю и на внутреннюю, считается условным, при этом может использоваться только в круге ученых для простоты и удобства, так как обе разновидности свертываемости крови взаимосвязаны между собой.

Что влияет на свертывание

Процесс коагуляции происходит благодаря определенным веществам, которые называются факторами. Иначе их можно назвать «плазменные белки». Агентами, которые принимают активное участие в процессе гемостаза, являются:

  • фибрин и фибриноген;
  • протромбин и тромбин;
  • тромбопластин;
  • ионизированный кальций (Ca++);
  • проакцелерин и акцелерин;
  • фактор Коллера;
  • фактор Хагеман;
  • стабилизатор фибрина Лаки-Лоранда.

Действие всего перечисленного заключается в правильной коагуляции, при том что данный процесс проходит достаточно быстро. Они способствуют предотвращению развития обширной кровопотери при нарушении сосудистой стенки.

Как происходит процесс гемостаза крови

Важно знать, что поврежденный сосуд не восстанавливается каким-либо случайным образом. В процессе коагуляции участвуют многочисленные ферменты, выполняющие каждый свою возложенную функцию. Сама же суть этого процесса заключается в том, что начинается активное сворачивание белков и эритроцитов. При этом тромбы присоединяются к стенке поврежденной артерии и дальнейшее отсоединение их невозможно.



В случае повреждения сосудов из них начинают выделяться вещества, которые тормозят весь процесс коагуляции. Тромбоциты начинают изменяться и разрушаться, а далее происходит попадание в кровь тромбопластина и тромбина. Затем под влиянием тромбина фибриноген превращается в фибрин (представляет собой ниточную сетку). Именно сетка из нитей фибрина располагается в поврежденной зоне и в течение некоторого времени становится более плотной. Следовательно, процесс коагуляции завершен, и кровь из поврежденного сосуда останавливается.

Еще важно знать, в течение которого времени должна проходить коагуляция при нормальной температуре тела. , начиная от повреждения сосудистой стенки и до полной остановки крови, является обычно промежуток в 2-4 минуты при нормальной температуре тела. Однако тромбин сворачивает кровь в течение 10 минут. Именно это время считается нормой для коагуляции. Процесс коагуляции может замедлиться или вовсе не закончиться. Кровь может не свернуться, если имеются заболевания: гемофилией или диабетом. Схема свертывания крови является не простой и для правильной коагуляции важно следить за своим здоровьем, регулярно сдавать кровь на анализ, чтобы в экстренных случаях избежать большого кровотечения.

Одним из проявлений защитной функции крови является ее способность к свертыванию. Свертывание крови (гемокоагуляция) является защитным механизмом Организма, направленным на сохранение крови в сосудистой системе. При нарушении этого механизма даже незначительное повреждение сосуда может привести к значительным кровопотерям.

Первая теория свертывания крови была предложена А. Шмидтом (1863-1864). Ее принципиальные положения лежат в основе современного существенно расширенного представления о механизме свертывания крови.

В гемостатической реакции принимают участие: ткань, окружающая сосуд; стенка сосуда; .плазменные факторы свертывания крови; все клетки крови, но особенно тромбоциты. Важная роль в свертывании крови принадлежит физиологически активным веществам, которые можно разделить на три группы:

Способствующие свертыванию крови;

Препятствующие свертыванию крови;

Способствующие рассасыванию образовавшегося тромба.

Все эти вещества содержатся в плазме и форменных элементах, а также в тканях организма и, особенно, в сосудистой стенке.

По современным представлениям процесс свертывания крови протекает в 5 фаз, из которых 3 являются основными, а 2 - дополнительными. В процессе свертывания крови принимают участие много факторов, из них 13 находятся в плазме крови и называются плазменными факторами. Они обозначаются римскими цифрами (I-XIII). Другие 12 факторов находятся в форменных элементах крови (особенно, тромбоцитах, поэтому их называют тромбоцитарными) и в тканях. Их обозначают арабскими цифрами (1-12). Величина повреждения сосуда и степень участия отдельных факторов определяют два основных механизма гемостаза сосудистотромбоцитарный и коагуляционный.

Сосудисто-тромбоцитарный механизм гемостаза . Этот механизм обеспечивает гомеостаз в наиболее часто травмируемых мелких сосудах (микроциркуляторных) с низким артериальным давлением. Он состоит из ряда последовательных этапов.

1. Кратковременный спазм поврежденных сосудов, возникающий под влиянием сосудосуживающих веществ, высвобождающихся из тромбоцитов (адреналин, норадреналин, серотонин).

2. Адгезия (прилипание) тромбоцитов к раневой поверхности, происходящая в результате изменения в месте повреждения отрицательного электрического заряда внутренней стенки сосуда на положительный. Тромбоциты, несущие на своей поверхности отрицательный заряд, прилипают к травмированному участку. Адгезия тромбоцитов завершается за 3-10 секунд.

3. Обратимая агрегация (скучивание) тромбоцитов у места повреждения. Она начинается почти одновременно с адгезией и обусловлена выделением поврежденной стенкой сосуда, из тромбоцитов и эритроцитов биологически активных веществ (АТФ, АДФ). В результате образуется рыхлая тромбоцитарная пробка, через которую проходит плазма крови.

4. Необратимая агрегация тромбоцитов, при которой тромбоциты теряют свою структурность и сливаются в гомогенную массу, образуя пробку, непроницаемую для плазмы крови. Эта реакция: происходит под действием тромбина, разрушающего мембрану тромбоцитов, что ведет к выходу из них физиологически активных веществ: серотонина, гистамина, ферментов и факторов свертывания крови. Их выделение способствует вторичному спазму сосудов. Освобождение фактора 3 дает начало образованию тромбоцитарной протромбиназы, т. е. включению механизма коагуляционного гемостаза. На агрегатах тромбоцитов образуется небольшое количество нитей фибрина, в сетях которого задерживаются форменные элементы крови.

5. Ретракция тромбоцитарного тромба, т. е. уплотнение и закрепление тромбоцитарной пробки в поврежденном сосуде за счет фибриновых нитей и гемостаз на этом заканчивается. Но в крупных сосудах тромбоцитарный тромб, будучи непрочным, не выдерживает высокого кровяного давления и вымывается. Поэтому в крупных сосудах на основе тромбоцитарного тромба образуется более прочный фибриновый тромб, для формирования которого включается ферментативный коагуляционный механизм.

Коагуляционный механизм гемостаза . Этот механизм имеет место при травме крупных сосудов и протекает через ряд последовательных фаз.

Первая фаза. Самой сложной и продолжительной фазой является формирование протромбиназы. Формируются тканевая и кровяная протромбиназы.

Образование тканевой протромбиназы запускается тканевым тромбопластином (фосфолипиды), представляющего собой фрагменты клеточных мембран и образующегося при повреждении стенок сосуда и окружающих тканей. В формировании тканевой протромбиназы участвуют плазменные факторы IV, V, VII, X. Эта фаза длится 5-10 с.

Кровяная протромбиназа образуется медленнее, чем тканевая Тромбоцитарный и эритроцитарный тромбопластин высвобождаются при разрушении тромбоцитов и эритроцитов. Начальной реакцией является активация XII фактора, которая осуществляется при его контакте с обнажающимися при повреждении сосуда волокнами коллагена. Затем фактор XII с помощью активированного им калликреина и кинина активирует фактор XI, образуя с ним комплекс. На фосфолипидах разрушенных тромбоцитов и эритроцитов завершается образование комплекса фактор XII + фактор XI. В дальнейшем реакции образования кровяной протромбиназы протекают на матрице фосфолипидов. Под влиянием фактора XI активируется фактор IX, который реагирует с фактором IV (ионы кальция) и VIII, образуя кальциевый комплекс. Он адсорбируется на фосфолипидах и затем активирует фактор X. Этот фактор на фосфолипидах же образует комплекс фактор Х + фактор V + фактор IV и завершает образование кровяной протромбиназы. Образование кровяной протромбиназы длится 5-10 минут.

Вторая фаза. Образование протромбиназы знаменует начало второй фазы свертывания крови - образование тромбина из протромбина. Протромбиназа адсорбирует протромбин и на своей поверхности превращает его в тромбин. Этот процесс протекает с участием факторов IV, V, X, а также факторов 1 и 2 тромбоцитов. Вторая фаза длится 2-5 с.

Третья фаза. В третьей фазе происходит образование (превращение) нерастворимого фибрина из фибриногена. Эта фаза протекает в три этапа. На первом этапе под влиянием тромбина происходит отщепление пептидов, что приводит к образованию желеобразного фибрин-мономера. Затем с участием ионов кальция из него образуется растворимый фибрин-полимер. На третьем этапе при участии фактора XIII и фибриназы тканей, тромбоцитов и эритроцитов происходит образование окончательного (нерастворимого) фибрина-полимера. Фибриназа при этом образует прочные пептидные связи между соседними молекулами фибрина-полимера, что в целом увеличивает его прочность и устойчивость к фибринолизу. В этой фибриновой сети задерживаются форменные элементы крови, формируется кровяной сгусток (тромб), который уменьшает или полностью прекращает кровопотерю.

Спустя некоторое время после образования сгустка тромб начинает уплотняться, и из него выдавливается сыворотка. Этот процесс называется ретракцией сгустка. Он протекает при участии сократительного белка тромбоцитов (тромбостенина) и ионов кальция. В результате ретракции тромб плотнее закрывает поврежденный сосуд и сближает края раны.

Одновременно с ретракцией сгустка начинается постепенное ферментативное растворение образовавшегося фибрина - фибринолиз, в результате которого восстанавливается просвет закупоренного сгустком сосуда. Расщепление фибрина происходит под влиянием плазмина (фибринолизина), который находится в плазме крови в виде профермента плазминогена, активирование которого происходит под влиянием активаторов плазминогена плазмы и тканей. Он разрывает пептидные связи фибрина, в результате чего фибрин растворяется.

Ретракцию кровяного сгустка и фибринолиз выделяют как дополнительные фазы свертывания крови.

Нарушение процесса свертывания крови происходит при недостатке или отсутствии какого-либо фактора, участвующего в гомеостазе. Так, например, известно наследственное заболевание гемофилия, которое встречается только у мужчин и характеризуется частыми и длительным кровотечением. Это заболевание обусловлено дефицитом факторов VIII и IX, которые называются антигемофильными.

Свертывание крови может протекать под влиянием факторов, ускоряющих и замедляющих этот процесс.

Факторы, ускоряющие процесс свертывания крови:

Разрушение форменных элементов крови и клеток тканей (увеличивается выход факторов, участвующих в свертывании крови):

Ионы кальция (участвуют во всех основных фазах свертывания крови);

Тромбин;

Витамин К (участвует в синтезе протромбина);

Тепло (свертывание крови является ферментативным процессом);

Адреналин.

Факторы, замедляющие свертывание крови:

Устранение механических повреждений форменных элементов крови (парафинирование канюль и емкостей для взятия донорской крови);

Цитрат натрия (осаждает ионы кальция);

Гепарин;

Гирудин;

Понижение температуры;

Плазмин.

Противосвертывающие механизмы . В нормальных условиях кровь в сосудах всегда находится в жидком состоянии, хотя условия для образования внутрисосудистых тромбов существуют постоянно. Поддержание жидкого состояния крови обеспечивается по принципу саморегуляции с формированием соответствующий функциональной системы. Главными аппаратами реакций этой функциональной системы являются свертывающая я противосвертывающая системы. В настоящее время принято выделять две Противосвертывающие системы - первую и вторую.

Первая противосвертывающая система (ППС) осуществляет нейтрализацию тромбина в циркулирующей крови при условии его медленного образования и в небольших количествах. Нейтрализация тромбина осуществляется теми антикоагулянтами, которые постоянно находятся в крови и поэтому ППС функционирует постоянно. К таким веществам относятся:

фибрин, который адсорбирует часть тромбина;

антитромбины (известно 4 вида антитромбинов), они препятствуют превращению протромбина в тромбин;

гепарин - блокирует фазу перехода протромбина в тромбин и фибриногена в фибрин, а также тормозит первую фазу свертывания крови;

продукты лизиса (разрушения фибрина), которые обладают антитромбиновой активностью, тормозят образование протромбиназы;

клетки ретикуло-эндотелиальной системы поглощают тромбин плазмы крови.

При быстром лавинообразном нарастании количества тромбина в крови ППС не может предотвратить образование внутрисосудистых тромбов. В этом случае в действие вступает вторая противосвертывающая система (ВПС), которая обеспечивает поддержание жидкого состояния крови в сосудах рефлекторно-гуморальным путем по следующей схеме. Резкое повышение концентрации тромбина в циркулирующей крови приводит к раздражению сосудистых хеморецепторов. Импульсы от них поступают в гигантоклеточное ядро ретикулярной формации продолговатого мозга, а затем по эфферентным путям к ретикуло-эндотелиальной системе (печень, легкие и др.). В кровь выделяются в больших количествах гепарин и вещества, которые осуществляют и стимулируют фибринолиз (например, активаторы плазминогена).

Гепарин ингибирует первые три фазы свертывания крови, вступает в связь с веществами, которые принимают участие в свертывании крови. Образующиеся при этом комплексы с тромбином, фибриногеном, адреналином, серотонином, фактором XIII и др. обладают антикоагулянтной активностью и литическим действием на нестабилизированный фибрин.

Следовательно, поддержание крови в жидком состоянии осуществляется благодаря действию ППС и ВПС.

Регуляция свертывания крови . Регуляция свертывания крови осуществляется с помощью нейро-гуморальных механизмов. Возбуждение симпатического отдела вегетативной нервной системы, возникающее при страхе, боли, при стрессовых состояниях, приводит к значительному ускорению свертывания крови, что называется гиперкоагуляцией. Основная роль в этом механизме принадлежит адреналину и норадреналину. Адреналин запускает ряд плазменных и тканевых реакций.

Во-первых, высвобождение из сосудистой стенки тромбопластина, который быстро превращается в тканевую протромбиназу.

Во-вторых, адреналин активирует фактор XII, который является инициатором образования кровяной протромбиназы.

В-третьих, адреналин активирует тканевые липазы, которые расщепляют жиры и тем самым увеличивается содержание жирных кислот в крови, обладающих тромбопластической активностью.

В-четвертых, адреналин усиливает высвобождение фосфолипидов из форменных элементов крови, особенно из эритроцитов.

Раздражение блуждающего нерва или введение ацетилхолина приводит к выделению из стенок сосудов веществ, аналогичных тем, которые выделяются при действии адреналина. Следовательно, в процессе эволюции в системе гемокоагуляции сформировалась лишь одна защитно-приспособительная реакция - гиперкоагулемия, направленная на срочную остановку кровотечения. Идентичность сдвигов гемокоагуляции при раздражении симпатического и парасимпатического отделов вегетативной нервной системы свидетельствует о том, что первичной гипокоагуляции не существует, она всегда вторична и развивается после первичной гиперкоагуляции как результат (следствие) расходования части факторов свертывания крови.

Ускорение гемокоауляции вызывает усиление фибринолиза, что обеспечивает расщепление избытка фибрина. Активация фибринолиза наблюдается при физической работе, эмоциях, болевом раздражении.

На свертывание крови оказывают влияние высшие отделы ЦНС, в том числе и кора больших полушарий головного мозга, что подтверждается возможностью изменения гемокоауляции условно-рефлекторно. Она реализует свои влияния через вегетативную нервную систему и эндокринные железы, .гормоны которых обладают вазоактивным действием. Импульсы из ЦНС поступают к кроветворным органам, к органам, депонирующим кровь и вызывают увеличение выхода крови из печени, селезенки, активацию плазменных факторов. Это приводит к быстрому образованию протромбиназы. Затем включаются гуморальные механизмы, которые поддерживают и продолжают активацию свертывающей системы и одновременно снижают действия противосвертывающей. Значение условно-рефлекторной гиперкоагуляции состоит, видимо, в подготовке организма к защите от кровопотери.

Система свертывания крови входит в состав более обширной системы - системы регуляции агрегатного состояния крови и коллоидов (PACK), которая поддерживает постоянство внутренней среды организма и ее агрегатное состояние на таком уровне, который необходим для нормальной жизнедеятельности путем обеспечения поддержания жидкого состояния крови, восстановления свойств стенок сосудов, которые изменяются даже при нормальном их функционировании.

Кровь – это компонент, который позволяет организму функционировать как единой системе. Она содержит и передает информацию о функционировании органов и тканей, так происходит их адаптация к изменениям условий внутренней и окружающей среды.

Большое значение в обеспечении полноценности подобного взаимодействия имеет свертываемость крови.

Свертывание определяет возможность крови снабжать органы необходимыми питательными веществами, а также передавать информацию о текущем состоянии организма.

Факторы и значение свертываемости крови

С одной стороны, слишком густая кровь не будет способна циркулировать по организму. С другой – кровь должна быть достаточно густой, чтобы не проходить сквозь стенки сосудов под воздействием давления.

Поэтому должен соблюдаться баланс, контролируемый системой коагуляции (свертывания) и антикоагуляции (противосвертывания). Вместе это носит название коагуляционного гомеостаза, и при гармоничном взаимодействии обеих систем наблюдается нормальное функционирование организма.

Важно! Нарушенная сворачиваемость крови может стать причиной возникновения различных заболеваний, в первую очередь сердечно-сосудистой системы. Однако изменение свертываемости также может служить симптомом тяжелой патологии.

От чего зависит свертывание крови:

  • Состояние стенок сосудов . Нарушение внутреннего слоя артерий усиливает свертываемость;
  • Функциональная полноценность и количество тромбоцитов. Они первыми увеличивают скорость свертывания, являясь главными контролерами целостности сосудистого русла;
  • Состояние и концентрация плазменных факторов свертывания , большинство из которых синтезируется печенью. Уменьшение или увеличение их количества вызывает снижение либо повышение свертывания крови;
  • Концентрация плазменных факторов антикоагуляционной системы (гепарин, антиплазмин, антитромбин и другие).

Анализы и нормальные показатели (таблица)

Определить свертываемость крови можно посредством лабораторных тестов. Их выполнение возможно с использованием как венозной, так и капиллярной крови. Каждый анализ определяет состояние какого-либо из звеньев системы свертывания (гемостаза).

Информация о том, какая должна быть свертываемость, и описания основных анализов крови приведены в таблице:

Название анализа Норма показателя Какой вид крови используется
Определение уровня тромбоцитов У детей: от 150 до 350 г/л Из пальца (капиллярная)
У женщин и мужчин: от 150 до 400 г/л
Время свертывания По Ли-Уайту: от 5 до 10 минут Венозная
По Сухареву: Из пальца
начало – от 30 до 120 секунд
окончание – от 3 до 5 минут
Тромбиновое время От 12 до 20 секунд Из вены
До 4 минут Капиллярная
Протромбиновый индекс Венозной крови: от 90 до 105% Венозная
Капиллярной крови 93-107% Капиллярная
Фибриноген У взрослых: от 2 до 4 г/л Из вены
У новорожденного ребенка: от 1,25 до 3,0 г/л
АЧТВ - активированное частичное тромбопластиновое время От 35 до 50 секунд Венозная

На результат анализов на свертываемость могут закономерно повлиять следующие факторы:

  • Беременность приводит к повышению свертываемости;
  • Прием антикоагулянтов;
  • Прием гормональных контрацептивов повышает свертывание крови;
  • Пребывание под воздействием высоких температур и обезвоживание организма повышают свертывание крови;
  • Перенесенные травмы, переливание крови, операции.

Важно! Норма у женщин в большей степени подвержена колебаниям. Нормальные показатели могут быть существенно снижены на фоне употребления гормональных препаратов или в период менструаций.

Сущность анализов

Сущность и возможности показателей свертываемости крови:

Показатель свертываемости Значение исследования
Уровень тромбоцитов Отражает число клеток, ответственных за запуск свертывания в случае нарушения целостности стенок сосудов.
Тромбиновое время Показывает состояние завершающей фазы свертывания. Является косвенным признаком концентрации введенных препаратов, а также природных факторов коагуляционного гомеостаза.
Время свертывания по Ли-Уайту Отражает способность венозной крови образовывать сгусток.
Время свертывания по Сухареву Отражает способность крови из пальца образовывать сгусток.
Длительность кровотечения по Дюке Отражает способность организма к остановке кровопотери. Проверяется посредством регистрации времени, необходимого для того прекращения выделения крови после прокола пальца.
Протромбиновый индекс Указывает на способность плазменных факторов образовывать сгусток в случае добавлении тканевых факторов, вырабатываемых тромбоцитами.
Фибриноген Определение концентрации белка крови, ответственного за укрепление сгустка крови.
АЧТВ От протромбинового индекса отличается тем, что отражает активность только плазменных факторов без тромбоцитов.

Свертываемость крови у новорожденных детей

В течение первой недели свертываемость крови новорожденного происходит очень медленно, однако в течение уже второй недели наблюдается приближение показателей факторов свертывания и уровня протромбина к норме взрослого человека.

Уже через две недели после рождения сильно возрастает содержание фибриногена и достигает показателей взрослого человека.

Непосредственно нормы они достигают к возрасту в 12 лет.

Причины повышенной сворачиваемости

Синдром гиперкоагуляции может быть самостоятельным патологическим процессом, вызванным наследственными факторами, которые предопределили дефект системы сворачивания крови.

Подобные состояния носят названия тромбофилий, приведенная таблица описывает их причины:

Поведение факторов свертываемости Факторы свертываемости
Повышенное образование и/или чрезмерная активность факторов свертываемости: проконвертина;
фактора Виллебранда;
фактора Хагемана;
антигемофильного глобулина;
плазменного предшественника тромбопластина.
Недостаточное образование и/или сниженная активность факторов свертываемости: антикоагулянтов С, S;
антитромбина III;
кофактора гепарина II;
плазминогена и активаторов.

Вторичный гиперкоагуляционный синдром – следствие какой-либо патологии или специфического состояния.

Повышением свертываемости крови проявляются следующие патологические состояния:

  • Злокачественные или доброкачественные опухоли системы крови . Течение таких опухолей часто сопровождается пониженной либо повышенной свертываемостью. Это различные лейкозы, миеломная болезнь, эритремия и другие заболевания.
  • Аутоиммунные заболевания. Это заболевания, при которых организм образует антитела к своим клеткам. Антитела – агрессивные белки, которые вызывают повреждение клеток организма, оседая на их компонентах, что вызывает повышенное тромбообразование. Перечень подобных заболеваний включает антифосфолипидный синдром, системную красную волчанку и прочие патологии.
  • Наследственные заболевания. Это генетические заболевания, не оказывающие прямого влияния на свертываемость крови, но действующие опосредованно, не являясь тромбофилиями (наследственная гиперлипопротеидемия, серповидно-клеточная анемия и другие).
  • Атеросклероз распространенный, обширный атеросклероз, особенно на последних стадиях. При этом заболевании повреждаются стенки сосудов, в результате чего образуются пристеночные тромбы с риском последующих инфарктов разных органов.
  • Почечная и/или печеночная недостаточность снижают образование антитромбина III, что приводит к повышению свертываемости крови.
  • Превышение нормы гормонов надпочечников – продолжительная повышенная активность коры надпочечников при опухоли или патологическом стрессе приводит к увеличению образования фибриногена, важной составляющей системы свертывания.
  • Септические состояния кровь человека в нормальном состоянии стерильна, в случае наличия в ней микроорганизмов (вирусов, бактерий, грибков) развивается состояние, называемое «сепсис» , который проявляется в том числе повышенной свертываемостью.
  • Гемоконцентрация – состояние крови, при котором нарушается правильное соотношение клеточных элементов и жидкой части крови в сторону клеточной составляющей, вследствие чего происходит сгущение крови. Такое состояние развивается как результат некоторых патологических состояний: понос, рвота, обезвоживание, мочеизнурение (диабет сахарный/не сахарный), ожоги.
  • Вынужденное малоподвижное либо лежачее положение тела. По причине патологии, травмы или операции. Замедляет кровоток, что повышает риск тромбообразования.
  • Особенности образа жизни и конституции тела вредные привычки (употребление алкоголя, наркотиков, курение) и ожирение приводят к повреждению сосудистых стенок, повышению свертываемости и сгущению крови.
  • Чужеродный объект в сосудистом русле протез сосуда, искусственный клапан сердца, длительное пребывание катетера в просвете сосуда.
  • Побочные эффекты приема препаратов например, это могут быть гормональные контрацептивы, которые содержат гормоны эстрогены (они и сами повышают свертываемость).
  • Травмы вещества, которые повышают свертываемость крови, могут попасть в кровь в результате повреждений мягких тканей.
  • Продолжительное взаимодействие крови с инородным телом. При гемодиализе (очищении крови пациента «искусственной» почкой), при операциях с использованием устройств, которые заменяют работу легких и сердца, и других медицинских вмешательствах с контактом крови больного с инородным объектом.
  • Идиопатическая гиперкоагуляция. Это состояние, когда комплекс диагностических манипуляций уже был проведен, но не удалось достоверно определить причину повышенной свертываемости крови.

Видео: Система свертывания крови

Симптомы повышенной свертываемости

Течение этого состояния до сосудистой катастрофы часто протекает скрытно и имеет только общие, не специфические клинические симптомы.

Высокая свертываемость приводит к:

  • Слабости;
  • Сонливости;
  • Апатии;
  • Рассеянности;
  • Повышенной утомляемости;
  • Постоянной усталости;
  • Головным болям;
  • Ощущению онемения;
  • Покалывания на кончике носа;
  • В кончиках пальцев;
  • В ушных раковинах;
  • А также к другим неприятным клиническим проявлениям.

Одним из главных признаков, который позволит определить гиперкоагуляционный синдром еще до возникновения тяжелых проявлений, считается сворачивание «на игле» – это ситуация, когда затруднительно произвести забор венозной крови , поскольку практически сразу после прокола (пункции) кровь сворачивание внутри иглы, из-за чего она прекращает поступать в шприц, что делает необходимыми повторные пункции.

Кровь, оказавшаяся в пробирке после забора, также быстро сворачивается, образуя рыхлый сверток.

Вследствие отсутствия диагностики высокой свертываемости крови и своевременного начала лечения, может произойти развитие сосудистых катастроф (закупорок венозных и артериальных сосудов) с самыми серьезными последствиями для организма человека:

  • Инфаркт миокарда;
  • Инфаркт кишечника;
  • Инсульт (ишемический инфаркт головного мозга);
  • Инфаркт легкого;
  • Гангрена конечностей;
  • Инфаркт почки;
  • Тромбоэмболия легочной артерии;
  • Тромбозы вен конечностей.

В случае подозрения на превышение нормы свертываемости крови следует в самые короткие сроки обратиться к врачу, который выполнит все необходимые диагностические процедуры и назначит курс лечения.

Невнимательное отношение к этой патологии поможет привести к развитию тяжелых последствий.



Похожие публикации