Что такое клеточная структура. Клетки живых организмов

Строение клетки

Человеческий организм, как и любой другой живой организм, состоит из клеток. Они играют одну из основных ролей в нашем организме. С помощью клеток происходит рост, развитие и размножение.

Теперь давайте вспомним определение, о том, что в биологии принято называть клеткой.

Клетка – это такая элементарная единица, которая участвует в строении и функционировании всех живых организмов, за исключением вирусов. Она имеет свой собственный обмен веществ и способна не только самостоятельно существовать, но и развиваться, а также самовоспроизводиться. Вкратце можно сделать вывод, что клетка является для любого организма самым главным и необходимым строительным материалом.

Конечно же, невооруженным глазом вам вряд ли удастся разглядеть клетку. Но с помощью современных технологий у человека появилась прекрасная возможность не только под световым или электронным микроскопом рассмотреть саму клетку, но и изучить ее строение, выделить и культивировать отдельные ее тканы и даже раскодировать генетическую клеточную информацию.

А теперь, с помощью данного рисунка, давайте наглядно рассмотрим строение клетки:


Строение клетки

Но что интересно, оказывается, не все клетки имеют одинаковое строение. Между клетками живого организма и клетками растений существует некоторая разница. Ведь в клетках растений есть пластиды, оболочка и вакуоли с клеточным соком. На изображении вы можете посмотреть клеточное строение животных и растений и увидеть разницу между ними:



Более подробную информацию о строении растительных и животных клеток, вы узнаете, посмотрев видео

Как видите, клетки, хотя и имеют микроскопические размеры, но их строение довольно таки сложное. Поэтому мы с вами сейчас перейдем к более подробному изучению строения клетки.

Плазматическая мембрана клетки

Для придания формы и для того, чтобы отделить клетку от ей подобных, вокруг клетки человека находится мембрана.

Так как мембрана имеет свойство частично пропускать через себя вещества, то за счет этого в клетку поступают нужные вещества, а отходы из нее выводятся.

Условно можно сказать, что клеточная мембрана представляет собой ультрамикроскопическую плёнку, которая состоит из двух мономолекулярных слоев белка и бимолекулярного слоя липидов, который расположен между этими слоями.

Из этого мы можем сделать вывод, что мембрана клетки играет важную роль в ее строении, так как выполняет ряд определенных функций. Она играет защитную, барьерную и связующую функцию между другими клетками и для связи с окружающей средой.

А теперь давайте на рисунке рассмотрим более подробное строение мембраны:



Цитоплазма

Следующей составляющей внутренней среды клетки является цитоплазма. Она представляет собой полужидкое вещество, в котором перемещаются и растворяются другие вещества. Состоит цитоплазма из белков и воды.

Внутри клетки происходит постоянное движение цитоплазмы, которое называют циклозом. Циклоз бывает круговым или сетчатым.

Кроме этого, цитоплазма соединяет разные части клетки. В этой среде располагаются органоиды клетки.

Органоиды представляют собой постоянные клеточные структуры с определенными функциями.

К таким органоидам относятся такие структуры, как цитоплазматический матрикс, эндоплазматическая сеть, рибосомы, митохондрии и т.д.

Сейчас мы попробуем более подробно рассмотреть эти органоиды и узнать, какие функции они выполняют.


Цитоплазма

Цитоплазматический матрикс

Оной из основных частей клетки представляет цитоплазматический матрикс. Благодаря ему в клетке происходят процессы биосинтеза, а его компоненты содержат ферменты, с помощью которых вырабатывается энергия.


Цитоплазматический матрикс

Эндоплазматическая сеть

Внутри, зона цитоплазмы состоит из мелких каналов и различных полостей. Эти каналы, соединяясь друг с другом, образуют эндоплазматическую сеть. Такая сеть неоднородна по своему строению и может быть гранулярной либо гладкой.


Эндоплазматическая сеть

Клеточное ядро

Самой важной частью, которая присутствует практически во всех клетках, является клеточное ядро. Такие клетки, в которых есть ядро, называют эукариотами. В каждом клеточном ядре находится ДНК. Оно является веществом наследственности и в нем зашифрованы все свойства клетки.


Клеточное ядро

Хромосомы

Если под микроскопом рассматривать строение хромосомы, то можно увидеть, что она состоит из двух хроматид. Как правило, после деления ядра, хромосома становится однохроматидной. Но уже к началу следующего деления у хромосомы появляется еще одна хроматида.



Хромосомы

Клеточный центр

При рассмотрении клеточного центра можно увидеть, что он состоит из материнской и дочерней центриолей. Каждая такая центриоль представляет собой объект, имеющий цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество.

С помощью такого клеточного центра происходит деление клеток животных и низших растений.



Клеточный центр

Рибосомы

Рибосомы являются универсальными органеллами, как в клетках животных, так и в клетках растений. Их главной функцией является синтез белка в функциональном центре.


Рибосомы

Митохондрии

Митохондрии также являются микроскопическими органеллами, но в отличие от рибосом имеют двухмембранное строение, в которых внешняя мембрана гладкая, а внутренняя имеет различной формы выросты, которые называют кристы. Митохондрии играют роль дыхательного и энергетического центра



Митохондрии

Аппарат Гольджи

А вот с помощью аппарата Гольджи происходит накопление и транспортировка веществ. Также, благодаря этому аппарату, происходит образование лизосом и синтез липидов и углеводов.

По строению аппарат Гольджи напоминает отдельные тельца, которые имеют серповидную или палочковидную формы.


Аппарат Гольджи

Пластиды

А вот пластиды для растительной клетки играют роль энергетической станции. Им свойственно превращение из одного вида в другой. Пластиды делятся на такие разновидности, как хлоропласты, хромопласты, лейкопласты.


Пластиды

Лизосомы

Пищеварительная вакуоль, способная растворять ферменты носит название лизосомы. Они представляют собой микроскопические одномембранные органеллы, имеющие округлую форму. Их количество напрямую зависит от того, насколько клетка жизнедеятельна и какое у нее физическое состояние.

В том случае, когда происходит разрушение мембраны лизосомы, то в этом случае клетка способна переваривает сама себя..



Лизосомы

Способы питания клетки

А теперь давайте рассмотрим способы питания клеток:



Способ питания клетки

Здесь следовало бы отметить, что белки и полисахариды имеют свойство проникать в клетку, путем фагоцитоза, а вот капли жидкости – методом пиноцитоза.

Способ питания животных клеток, при котором в нее попадают питательные вещества, называют фагоцитозом. А такой универсальный способ питания любых клеток, при котором питательные вещества попадают в клетку уже в растверенном виде, называют пиноцитоз.

Цитология - наука о клетке. Наука о клетке называется цитологией (греч. "цитос"-клетка, "логос"-наука). Предмет цитологии - клетки многоклеточных животных и растений, а также одноклеточных организмов, к числу которых относятся бактерии, простейшие и одноклеточные водоросли. Цитология изучает строение и химический состав клеток, функции внутриклеточных структур, функции клеток в организме животных и растений, размножение и развитие клеток, приспособления клеток к условиям окружающей среды. Современная цитология - наука комплексная. Она имеет самые тесные связи с другими биологическими науками, например с ботаникой, зоологией, физиологией, учением об эволюции органического мира, а также с молекулярной биологией, химией, физикой, математикой. Цитология - одна из относительно молодых биологических наук, ее возраст около 100 лет. Возраст же термина "клетка" насчитывает свыше 300 лет. Впервые название "клетка" в середине XVII в. применил Р.Гук. Рассматривая тонкий срез пробки с помощью микроскопа, Гук увидел, что пробка состоит из ячеек - клеток.

Клетка – элементарная единица всего живого, поэтому ей присущи свойства живых организмов: высокоупорядоченное строение, обмен веществ, раздражимость, рост, развитие, размножение, регенерация и другие свойства.

Снаружи клетка покрыта клеточной мембраной, отделяющей клетку от внешней среды. Она выполняет следующие функции: защитную, разграничительную, рецепторную (восприятие сигналов внешней среды), транспортную.

Цитоплазма образует ряд специфических структур. Это межклеточные соединения, микроворсинки, реснички, клеточные отростки. Межклеточные соединения (контакты) подразделяются на простые и сложные. При простом соединении цитоплазмы соседних клеток формируют выросты, которые соединяют клетки. Между цитоплазмами всегда сохраняется межклеточная щель. При сложных соединениях клетки соединяются с помощью волокон, а расстояния между клетками почти нет. Микроворсинки – это лишенные органоидов пальцевидные выросты клетки. Реснички и жгутики выполняют функцию движения.

Митохондрии содержат вещества, богатые энергией, участвуют в процессах клеточного дыхания и преобразования энергии в форму, доступную для использования клеткой. Количество, размеры и расположение митохондрий зависит от функции клетки, ее потребности в энергии. Митохондрии содержат собственную ДНК. Около 2% ДНК клетки содержится в митохондриях. В рибосомах образуются клеточные белки. Рибосомы участвуют в синтезе белка, присутствуют во всех клетках человека, за исключением зрелых эритроцитов. Рибосомы могут свободно располагаться в цитоплазме. Они синтезируют белок, необходимый для жизнедеятельности самой клетки. Синтез белка связан с процессом транскрипции – переписывания информации, хранящейся в ДНК.

Ядро – важнейший органоид клетки: в нем содержится особое вещество хроматин, из которого перед делением клетки образуются нитевидные хромосомы – носители наследственных признаков и свойств человека. В состав хроматина входят ДНК и небольшое количество РНК. В делящемся ядре хроматин спирализуется, в результате чего становятся видимыми хромосомы. Ядрышко (одно или несколько) – плотное округлое тельце, размеры которого тем больше, чем интенсивнее протекает белковый синтез. В ядрышке образуются рибосомы.

Клетка любого организма представляет собой целостную живую систему. Она состоит из трех неразрывно связанных между собой частей: оболочки, цитоплазмы и ядра. Оболочка клетка осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах).

Биофизические процессы в клетках обеспечивают реализацию механизмов нервной регуляции, регуляцию физико-химических показателей внутренней среды (осмотическое давление, рН), создание электрических зарядов клеток, возникновение и распространение возбуждения, выделение секретов (гормонов, ферментов и других биологически активных веществ), реализацию действия фармакологических препаратов. Данные процессы возможны благодаря функционированию транспортной системы . С переносом веществ через мембраны также связаны процессы метаболизма клетки, в том числе биоэнергетические и многие другие. Фармакологическое действие практически любого лекарственного препарата также обусловлено его проникновением через клеточные мембраны, а эффективность в значительной степени зависит от ее проницаемости.

Функции клеток

Тело человека имеет клеточное строение. Клетки находятся в межклеточном веществе, которое обеспечивает им механическую прочность, питание и дыхание. Клетки разнообразны по размерам, форме, функциям. Изучением строения и функций клеток занимается цитология (греч. "цитос" - клетка).

Клетка покрыта мембраной, состоящей из нескольких слоев молекул, обеспечивающей избирательную проницаемость веществ. Пространство между мембранами соседних клеток заполнено жидким межклеточным веществом. Главная функция мембраны: осуществляется обмен веществ между клеткой и межклеточным веществом.

Цитоплазма - вязкое полужидкое вещество. Цитоплазма содержит ряд мельчайших структур клетки - органоидов, которые выполняют различные функции: эндоплазматическая сеть, рибосомы, митохондрии, лизосомы, комплекс Гольджи, клеточный центр, ядро.

Эндоплазматическая сеть - система канальцев и полостей, пронизывающая всю цитоплазму. Основная функция - участие в синтезе, накопление и передвижение основных органических веществ, вырабатываемых клеткой, синтез белка.

Рибосомы - плотные тельца, содержащие белок и рибо-нуклеиновую - (РНК) кислоту. Они являются местом синтеза белка. Комплекс Гольджиограниченные мембранами полости с отходящими от них трубочками и расположенными на их концах пузырьками. Основная функция - накопление органических веществ, образование лизосом.

Клеточный центр образован двумя тельцами, которые участвуют в делении клетки. Эти тельца расположены возле ядра.

Ядро - важнейшая структура клетки. Полость ядра заполнена ядерным соком. В нем находятся ядрышко, нуклеиновые кислоты, белки, жиры, углеводы, хромосомы. В хромосомах заключена наследственная информация. Для клеток характерно постоянное количество хромосом. В клетках тела человека содержится по 46 хромосом, а в половых клетках - по 23.

Лизосомы - округлые тельца с комплексом ферментов внутри. Их основная функция - переваривание пищевых частиц и удаление отмерших органоидов.

В состав клеток входят неорганические и органические соединения.

Неорганические вещества - вода и соли. Вода составляет до 80% массы клетки. Она растворяет вещества, участвующие в химических реакциях: переносит питательные вещества, выводит из клетки отработанные и вредные соединения.

Минеральные соли - хлорид натрия, хлорид калия и др., играют важную роль в распределении воды между клетками и межклеточным веществом. Отдельные химические элементы: кислород, водород, азот, сера, железо, магний, цинк, йод, фосфор участвуют в создании жизненно важных органических соединений.

Органические соединения образуют до 20-30% массы каждой клетки. Среди них наибольшее значение имеют белки, жиры, углеводы и нуклеиновые кислоты.

Белки - основные и самые сложные из встречающихся в природе органических веществ. Молекула белка имеет большие размеры, состоит из аминокислот. Белки служат строительным материалом клетки. Они участвуют в формировании мембран клетки, ядра, цитоплазмы, органоидов. Белки-ферменты являются ускорителями течения химических реакций. Только в одной клетке насчитывается до 1000 разных белков. Состоят из углерода, водорода, азота, кислорода, серы, фосфора.

Углеводы - состоят из углерода, водорода, кислорода. К углеводам относятся глюкоза, животный крахмал гликоген. При распаде 1 г освобождается 17,2 кДж энергии.

Жиры образованы теми же химическими элементами, что и углеводы. Жиры нерастворимы в воде. Входят они в состав клеточных мембран, служат запасным источником энергии в организме. При расщеплении 1 г жира освобождается 39,1 кДж энергии.

Нуклеиновые кислоты бывают двух типов - ДНК и РНК.

ДНК находится в ядре, входит в состав хромосом, определяет состав белков клетки и передачу наследственных признаков и свойств от родителей к потомству. Функции РНК связаны с образованием характерных для этой клетки белков.

Основное жизненное свойство клетки - обмен веществ. Из межклеточного вещества в клетки постоянно поступают питательные вещества и кислород и выделяются продукты распада.

Вещества, поступившие в клетку, участвуют в процессах биосинтеза.

Биосинтез - это образование белков, жиров, углеводов и их соединений из более простых веществ. Одновременно с биосинтезом в клетках происходит распад органических соединений. Большинство реакций распада идет с участием кислорода и освобождением энергии. В результате обмена веществ состав клеток постоянно обновляется: одни вещества образуются, а другие разрушаются.

Свойство живых клеток, тканей, целого организма реагировать на внешние или внутренние воздействия - раздражители называется раздражимостью. В ответ на химические и физические раздражения в клетках возникают специфические изменения их жизнедеятельности.

Клеткам свойственны рост и размножение. Каждая из образовавшихся дочерних клеток растет и достигает размеров материнской. Новые клетки выполняют функцию материнской клетки. Продолжительность жизни клеток различна: от нескольких часов до десятков лет.

Живая клетка обладает рядом жизненных свойств: обменом веществ, раздражимостью, ростом и размножением, подвижностью, на основе которых осуществляются функции целого организма.

Оболочка клеток.

Оболочка клеток имеет сложное строение. Она состоит из наружного слоя и расположенной под ним плазматической мембраны. Клетки животных и растений различаются по строению их наружного слоя. У растений, а также у бактерий, сине-зеленых водорослей и грибов на поверхности клеток расположена плотная оболочка, или клеточная стенка. У большинства растений она состоит из клетчатки. Клеточная стенка играет исключительно важную роль: она представляет собой внешний каркас, защитную оболочку, обеспечивает тургор растительных клеток: через клеточную стенку проходит вода, соли, молекулы многих органических веществ.

Наружный слой поверхности клеток животных в отличие от клеточных стенок растений очень тонкий, эластичный. Он не виден в световой микроскоп и состоит из разнообразных полисахаридов и белков. Поверхностный слой животных клеток получил название гликокаликс.

Гликокаликс выполняет прежде всего функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами. Имея незначительную толщину (меньше 1 мкм), наружный слой клетки животных не выполняет опорной роли, какая свойственна клеточным стенкам растений. Образование гликокаликса, так же как и клеточных стенок растений, происходит благодаря жизнедеятельности самих клеток.

Плазматическая мембрана.

Под гликокаликсом и клеточной стенкой растений расположена плазматическая мембрана (лат. "мембрана"-кожица, пленка), граничащая непосредственно с цитоплазмой. Толщина плазматической мембраны около 10 нм, изучение ее строения и функций возможно только с помощью электронного микроскопа.

В состав плазматической мембраны входят белки и липиды. Они упорядочено расположены и соединены друг с другом химическими взаимодействиями. По современным представлениям молекулы липидов в плазматической мембране расположены в два ряда и образуют сплошной слой. Молекулы белков не образуют сплошного слоя, они располагаются в слое липидов, погружаясь в него на разную глубину.

Молекулы белка и липидов подвижны, что обеспечивает динамичность плазматической мембраны.

Плазматическая мембрана выполняет много важных функций, от которых завидят жизнедеятельность клеток. Одна из таких функций заключается в том, что она образует барьер, отграничивающий внутреннее содержимое клетки от внешней среды. Но между клетками и внешней средой постоянно происходит обмен веществ. Из внешней среды в клетку поступает вода, разнообразные соли в форме отдельных ионов, неорганические и органические молекулы. Они проникают в клетку через очень тонкие каналы плазматической мембраны. Во внешнюю среду выводятся продукты, образованные в клетке. Транспорт веществодна из главных функций плазматической мембраны. Через плазматическую мембрану из клети выводятся продукты обмена, а также вещества, синтезированные в клетке. К числу их относятся разнообразные белки, углеводы, гормоны, которые вырабатываются в клетках различных желез и выводятся во внеклеточную среду в форме мелких капель.

Клетки, образующие у многоклеточных животных разнообразные ткани (эпителиальную, мышечную и др.), соединяются друг с другом плазматической мембраной. В местах соединения двух клеток мембрана каждой из них может образовывать складки или выросты, которые придают соединениям особую прочность.

Соединение клеток растений обеспечивается путем образования тонких каналов, которые заполнены цитоплазмой и ограничены плазматической мембраной. По таким каналам, проходящим через клеточные оболочки, из одной клетки в другую поступают питательные вещества, ионы, углеводы и другие соединения.

На поверхности многих клеток животных, например различных эпителиев, находятся очень мелкие тонкие выросты цитоплазмы, покрытые плазматической мембраной, - микроворсинки. Наибольшее количество микроворсинок находится на поверхности клеток кишечника, где происходит интенсивное переваривание и всасывание переваренной пищи.

Фагоцитоз.

Крупные молекулы органических веществ, например белков и полисахаридов, частицы пищи, бактерии поступают в клетку путем фагоцита (греч. "фагео" - пожирать). В фагоците непосредственное участие принимает плазматическая мембрана. В том месте, где поверхность клетки соприкасается с частицей какого-либо плотного вещества, мембрана прогибается, образует углубление и окружает частицу, которая в "мембранной упаковке" погружается внутрь клетки. Образуется пищеварительная вакуоль и в ней перевариваются поступившие в клетку органические вещества.

Цитоплазма.

Отграниченная от внешней среды плазматической мембраной, цитоплазма представляет собой внутреннюю полужидкую среду клеток. В цитоплазму эукариотических клеток располагаются ядро и различные органоиды. Ядро располагается в центральной части цитоплазмы. В ней сосредоточены и разнообразные включения - продукты клеточной деятельности, вакуоли, а также мельчайшие трубочки и нити, образующие скелет клетки. В составе основного вещества цитоплазмы преобладают белки. В цитоплазме протекают основные процессы обмена веществ, она объединяет в одно целое ядро и все органоиды, обеспечивает их взаимодействие, деятельность клетки как единой целостной живой системы.

Эндоплазматическая сеть.

Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети.

Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа - гранулярная и гладкая. На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец - рибосом, которые придают мембранам шероховатый вид. Мембраны гладкой эндоплазматической сети не несут рибосом на своей поверхности.

Эндоплазматическая сеть выполняет много разнообразных функций. Основная функция гранулярной эндоплазматической сети - участие в синтезе белка, который осуществляется в рибосомах.

На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Все эти продукты синтеза накапливаются н каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений. Эндоплазматическая сеть связывает между собой основные органоиды клетки.

Рибосомы.

Рибосомы обнаружены в клетках всех организмов. Это микроскопические тельца округлой формы диаметром 15-20 нм. Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой.

В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме. В состав рибосом входят белки и РНК. Функция рибосом - это синтез белка. Синтез белка - сложный процесс, который осуществляется не одной рибосомой, а целой группой, включающей до нескольких десятков объединенных рибосом. Такую группу рибосом называют полисомой. Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки, где они потребляютя. Эндоплазматическая сеть и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков.

Митохондрии.

В цитоплазме большинства клеток животных и растений содержатся мелкие тельца (0,2-7 мкм) - митохондрии (греч. "митос" - нить, "хондрион" - зерно, гранула).

Митохондрии хорошо видны в световой микроскоп, с помощью которого можно рассмотреть их форму, расположение, сосчитать количество. Внутреннее строение митохондрий изучено с помощью электронного микроскопа. Оболочка митохондрии состоит из двух мембран - наружной и внутренней. Наружная мембрана гладкая, она не образует никаких складок и выростов. Внутренняя мембрана, напротив, образует многочисленные складки, которые направлены в полость митохондрии. Складки внутренней мембраны называют кристами (лат. "криста" - гребень, вырост) Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен, причем особенно много крист в митохондриях активно функционирующих клеток, например мышечных.

Митохондрии называют "силовыми станциями" клеток" так как их основная функция - синтез аденозинтрифосфорной кислоты (АТФ). Эта кислота синтезируется в митохондриях клеток всех организмов и представляет собой универсальный источник энергии, необходимый для осуществления процессов жизнедеятельности клетки и целого организма.

Новые митохондрии образуются делением уже существующих в клетке митохондрий.

Пластиды.

В цитоплазме клеток всех растений находятся пластиды. В клетках животных пластиды отсутствуют. Различают три основных типа пластид: зеленые - хлоропласты; красные, оранжевые и желтые - хромопласты; бесцветные - лейкопласты.

Хлоропласт.

Эти органоиды содержатся в клетках листьев и других зеленых органов растений, а также у разнообразных водорослей. Размеры хлоропластов 4-6 мкм, наиболее часто они имеют овальную форму. У высших растений в одной клетке обычно бывает несколько десятков хлоропластов. Зеленый цвет хлоропластов зависит от содержания в них пигмента хлорофилла. Xлоропласт - основной органоид клеток растений, в котором происходит фотосинтез, т. е. образование органических веществ (углеводов) из неорганических (СО2 и Н2О) при использовании энергии солнечного света.

По строению хлоропласты сходны с митохондриями. От цитоплазмы хлоропласт отграничен двумя мембранами - наружной и внутренней. Наружная мембрана гладкая, без складок и выростов, а внутренняя образует много складчатых выростов, направленных внутрь хлоропласта. Поэтому внутри хлоропласта сосредоточено большое количество мембран, образующих особые структуры - граны. Они сложены наподобие стопки монет.

В мембранах гран располагаются молекулы хлорофилла, потому именно здесь происходит фотосинтез. В хлоропластах синтезируется и АТФ. Между внутренними мембранами хлоропласта содержатся ДНК, РНК. и рибосомы. Следовательно, в хлоропластах, так же как и в митохондриях, происходит синтез белка, необходимого для деятельности этих органоидов. Хлоропласты размножаются делением.

Хромопласты находятся в цитоплазме клеток разных частей растений: в цветках, плодах, стеблях, листьях. Присутствием хромопластов объясняется желтая, оранжевая и красная окраска венчиков цветков, плодов, осенних листьев.

Лейкопласты.

Они находятся в цитоплазме клеток неокрашенных частей растений, например в стеблях, корнях, клубнях. Форма лейкопластов разнообразна.

Хлоропласты, хромопласты и лейкопласты способны клетка взаимному переходу. Так при созревании плодов или изменении окраски листьев осенью хлоропласты превращаются в хромопласты, а лейкопласты могут превращаться в хлоропласты, например, при позеленении клубней картофеля.

Аппарат Гольджи.

Во многих клетках животных, например в нервных, он имеет форму сложной сети, расположенной вокруг ядра. В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы.

В состав аппарата Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5-10); крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс.

Аппарат Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки - белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Например, в клетках поджелудочной железы млекопитающих синтезируются пищеварительные ферменты, которые накапливаются в полостях органоида. Затем образуются пузырьки, наполненные ферментами. Они выводятся из клеток в проток поджелудочной железы, откуда перетекают в полость кишечника. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности аппарата Гольджи происходят обновление и рост плазматической мембраны.

Лизосомы.

Представляют собой небольшие округлые тельца. От Цитоплазмы каждая лизосома отграничена мембраной. Внутри лизосомы находятся ферменты, расщепляющие белки, жиры, углеводы, нуклеиновые кислоты.

К пищевой частице, поступившей в цитоплазму, подходят лизосомы, сливаются с ней, и образуется одна пищеварительная вакуоль, внутри которой находится пищевая частица, окруженная ферментами лизосом. Вещества, образовавшиеся в результате переваривания пищевой частицы, поступают в цитоплазму и используются клеткой.

Обладая способностью к активному перевариванию пищевых веществ, лизосомы участвуют в удалении отмирающих в процессе жизнедеятельности частей клеток, целых клеток и органов. Образование новых лизосом происходит в клетке постоянно. Ферменты, содержащиеся в лизосомах, как и всякие другие белки синтезируются на рибосомах цитоплазмы. Затем эти ферменты поступают по каналам эндоплазматической сети к аппарату Гольджи, в полостях которого формируются лизосомы. В таком виде лизосомы поступают в цитоплазму.

Клеточный центр.

В клетках животных вблизи ядра находится органоид, который называют клеточным центром. Основную часть клеточного центра составляют два маленьких тельца - центриоли, расположенные в небольшом участке уплотненной цитоплазмы. Каждая центриоль имеет форму цилиндра длиной до 1 мкм. Центриоли играют важную роль при делении клетки; они участвуют в образовании веретена деления.

Клеточные включения.

К клеточным включениям относятся углеводы, жиры и белки. Все эти вещества накапливаются в цитоплазме клетки в виде капель и зерен различной величины и формы. Они периодически синтезируются в клетке и используются в процессе обмена веществ.

Ядро.

Каждая клетка одноклеточных и многоклеточных животных, а также растений содержит ядро. Форма и размеры ядра зависят от формы и размера клеток. В большинстве клеток имеется одно ядро, и такие клетки называют одноядерными. Существуют также клетки с двумя, тремя, с несколькими десятками и даже сотнями ядер. Это - многоядерные клетки.

Ядерный сок - полужидкое вещество , которое находится под ядерной оболочкой и представляет внутреннюю среду ядра.

Клетка является основной элементарной единицей всего живого, поэтому ей присущи все свойства живых организмов: высокоупорядоченное строение, получение энергии извне и ее использование для выполнения работы и поддержания упорядоченности, обмен веществ, активная реакция на раздражения, рост, развитие, размножение, удвоение и передача биологической информации потомкам, регенерация (восстановление поврежденных структур), адаптация к окружающей среде.

Немецкий ученый Т. Шванн в середине XIX века создал клеточную теорию, основные положения которой свидетельствовали о том, что все ткани и органы состоят из клеток; клетки растений и животных принципиально сходны между собой, все они возникают одинаково; деятельность организмов - сумма жизнедеятельности отдельных клеток. Большое влияние на дальнейшее развитие клеточной теории и вообще на учение о клетке оказал великий немецкий ученый Р. Вирхов. Он не только свел воедино все многочисленные разрозненные факты, но и убедительно показал, что клетки являются постоянной структурой и возникают только путем размножения.

Клеточная теория в современной интерпретации включает в себя следующие главные положения: клетка является универсальной элементарной единицей живого; клетки всех организмов принципиально сходны по своему строению, функции и химическому составу; клетки размножаются только путем деления исходной клетки; многоклеточные организмы являются сложными клеточными ансамблями, образующими целостные системы.

Благодаря современным методам исследования были выявлены два основных типа клеток : более сложно организованные, высокодифференцированные эукариотические клетки (растения, животные и некоторые простейшие, водоросли, грибы и лишайники) и менее сложно организованные прокариотические клетки (сине-зеленые водоросли, актиномицеты, бактерии, спирохеты, микоплазмы, риккетсии, хламидии).

В отличие от прокариотической эукариотическая клетка имеет ядро, ограниченное двойной ядерной мембраной, и большое количество мембранных органелл.

ВНИМАНИЕ!

Клетка является основной структурной и функциональной единицей живых организмов, осуществляющей рост, развитие, обмен веществ и энергии, хранящей, перерабатывающей и реализующей генетическую информацию. С точки зрения морфологии клетка представляет собой сложную систему биополимеров, отделенную от внешней среды плазматической мембраной (плазмолеммой) и состоящую из ядра и цитоплазмы, в которой располагаются органеллы и включения (гранулы).

Какие бывают клетки?

Клетки разнообразны по своей форме, строению, химическому составу и характеру обмена веществ.

Все клетки гомологичны, т.е. имеют ряд общих структурных признаков, от которых зависит выполнение основных функций. Клеткам присуще единство строения, метаболизма (обмена веществ) и химического состава.

Вместе с тем различные клетки имеют и специфические структуры. Это связано с выполнением ими специальных функций.

Строение клетки

Ультрамикроскопическое строение клетки:


1 - цитолемма (плазматическая мембрана); 2 - пиноцитозные пузырьки; 3 - центросома клеточный центр (цитоцентр); 4 - гиалоплазма; 5 - эндоплазматическая сеть: а - мембрана зернистой сети; б - рибосомы; 6 - связь перинуклеарного пространства с полостями эндоплазматической сети; 7 - ядро; 8 - ядерные поры; 9 - незернистая (гладкая) эндоплазматическая сеть; 10 - ядрышко; 11 - внутренний сетчатый аппарат (комплекс Гольджи); 12 - секреторные вакуоли; 13 - митохондрия; 14 - липосомы; 15 - три последовательные стадии фагоцитоза; 16 - связь клеточной оболочки (цитолеммы) с мембранами эндоплазматической сети.

Химический состав клетки

В состав клетки входит более 100 химических элементов, на долю четырех из них приходится около 98% массы, это органогены: кислород (65–75%), углерод (15–18%), водород (8–10%) и азот (1,5–3,0%). Остальные элементы подразделяются на три группы: макроэлементы - их содержание в организме превышает 0,01%); микроэлементы (0,00001–0,01%) и ультрамикроэлементы (менее 0,00001).

К макроэлементам относятся сера, фосфор, хлор, калий, натрий, магний, кальций.

К микроэлемен-там - железо, цинк, медь, йод, фтор, алюминий, медь, марганец, кобальт и др.

К ультрамикроэлементам - селен, ванадий, кремний, никель, литий, серебро и до. Несмотря на очень малое содержание, микроэлементы и ультрамикроэлементы играют очень важную роль. Они влияют, главным образом, на обмен веществ. Без них невозможна нормальная жизнедеятельность каждой клетки и организма как целого.

Клетка состоит из неорганических и органических веществ. Среди неорганических наибольшее количество воды. Относительное количество воды в клетке составляет от 70 до 80%. Вода - универсальный растворитель, в ней происходит все биохимические реакции в клетке. При участии воды осуществляется теплорегуляция. Вещества, растворяющиеся в воде (соли, основания, кислоты, белки, углеводы, спирты и др.), называются гидрофильными. Гидрофобные вещества (жиры и жироподобные) не растворяются в воде. Другие неорганические вещества (соли, кислоты, основания, положительные и отрицательные ионы) составляют от 1,0 до 1,5%.

Среди органических веществ преобладают белки (10–20%), жиры, или липиды (1–5%), углеводы (0,2–2,0%), нуклеиновые кислоты (1–2%). Содержание низкомолекулярных веществ не превышает 0,5%.

Молекула белка является полимером, который состоит из большого количества повторяющихся единиц мономеров. Мономеры белка аминокислоты (их 20) соединены между собой пептидными связями, образуя полипептидную цепь (первичную структуру белка). Она закручивается в спираль, образуя, в свою очередь, вторичную структуру белка. Благодаря определенной пространственной ориентации полипептидной цепи возникает третичная структура белка, которая определяет специфичность и биологическую активность молекулы белка. Несколько третичных структур, объединяясь между собой, образуют четвертичную структуру.

Белки выполняют важнейшие функции. Ферменты - биологические катализаторы, увеличивающие скорость химических реакций в клетке в сотни тысяч миллионы раз, являются белками. Белки, входя в состав всех клеточных структур, выполняют пластическую (строительную) функцию. Движения клеток также осуществляют белки. Они обеспечивают транспорт веществ в клетку, из клетки и внутри клетки. Важной является защитная функция белков (антитела). Белки являются одним из источников энергии.Углеводы подразделяются на моносахариды и полисахариды. Последние построены из моносахаридов, являющихся, подобно аминокислотам, мономерами. Среди моносахаридов в клетке наиболее важны глюкоза, фруктоза (содержит шесть атомов углерода) и пентоза (пять атомов углерода). Пентозы входят в состав нуклеиновых кислот. Моносахариды хорошо растворяются в воде. Полисахариды плохо растворяются в воде (в животных клетках гликоген, в растительных - крахмал и целлюлоза. Углеводы являются источником энергии, сложные углеводы, соединенные с белками (гликопротеиды), жирами (гликолипиды), участвуют в образовании клеточных поверхностей и взаимодействиях клеток.

К липидам относятся жиры и жироподобные вещества. Молекулы жиров построены из глицерина и жирных кислот. К жироподобным веществам относятся холестерин, некоторые гормоны, лецитин. Липиды, являющиеся основным компонентом клеточных мембран, выполняют тем самым строительную функцию. Липиды - важнейшие источники энергии. Так, если при полном окислении 1 г белка или углеводов освобождается 17,6 кДж энергии, то при полном окислении 1 г жира - 38,9 кДж. Липиды осуществляют терморегуляцию, защищают органы (жировые капсулы).

ДНК и РНК

Нуклеиновые кислоты являются полимерными молекулами, образованными мономерами нуклеотидами. Нуклеотид состоит из пуринового или пиримидинового основания, сахара (пентозы) и остатка фосфорной кислоты. Во всех клетках существует два типа нуклеиновых кислот: дезоксирибонулеиновая (ДНК) и рибонуклеиновая (РНК), которые отличаются по составу оснований и сахаров.

Пространственная структура нуклеиновых кислот:


(по Б. Албертсу и соавт., с изм.).I - РНК; II - ДНК; ленты - сахарофосфатные остовы; A, C, G, T, U - азотистые основания, решетки между ними - водородные связи.

Молекула ДНК

Молекула ДНК состоит из двух полинуклеотидных цепей, закрученных одна вокруг другой в виде двойной спирали. Азотистые основания обеих цепей соединены между собой комплементарно водородными связями. Аденин соединяется только с тимином, а цитозин - с гуанином (А - Т, Г - Ц). В ДНК записана генетическая информация, которая определяет специфичность синтезируемых клеткой белков, т. е. последовательность аминокислот в полипептидной цепи. ДНК передает по наследству все свойства клетки. ДНК содержится в ядре и митохондриях.

Молекула РНК

Молекула РНК образована одной полинуклеотидной цепью. В клетках существует три типа РНК. Информационная, или мессенджер РНК тРНК (от англ. messenger - «посредник»), которая переносит информацию о нуклеотидной последовательности ДНК в рибосомы (см. ниже). Транспортная РНК (тРНК), которая переносит аминокислоты в рибосомы. Рибосомальная РНК (рРНК), которая участвует в образовании рибосом. РНК содержится в ядре, рибосомах, цитоплазме, митохондриях, хлоропластах.

Состав нуклеиновых кислот:

Элементарной и функциональной единицей всего живого на нашей планете является клетка. В данной статье Вы подробно узнаете об её строении, функциях органоидов, а также найдёте ответ на вопрос: «Чем отличается строение клеток растений и животных?».

Строение клетки

Наука, которая изучает строение клетки и её функции, называется цитологией. Несмотря на свои незначительные размеры, данные части организма имеют сложную структуру. Внутри находится полужидкое вещество, именуемое цитоплазмой. Здесь проходят все жизненно важные процессы и располагаются составляющие части - органоиды. Узнать об их особенностях Вы сможете далее.

Ядро

Самой важной частью является ядро. От цитоплазмы его отделяет оболочка, которая состоит из двух мембран. В них имеются поры, чтобы вещества могли попадать из ядра в цитоплазму и наоборот. Внутри находится ядерный сок (кариоплазма), в котором располагается ядрышко и хроматин.

Рис. 1. Строение ядра.

Именно ядро управляет жизнедеятельностью клетки и хранит генетическую информацию.

Функциями внутреннего содержимого ядра являются синтезирование белка и РНК. Из них образуются особые органеллы - рибосомы.

Рибосомы

Располагаются вокруг эндоплазматической сети, при этом делая её поверхность шероховатой. Иногда рибосомы свободно располагаются в цитоплазме. К их функциям относится биосинтез белка.

ТОП-4 статьи которые читают вместе с этой

Эндоплазматическая сеть

ЭПС может иметь шероховатую либо гладкую поверхность. Шероховатая поверхность образуется за счёт наличия рибосом на ней.

К функциям ЭПС относится синтез белка и внутренняя транспортировка веществ. Часть образованных белков, углеводов и жиров по каналам эндоплазматической сети поступает в особые ёмкости для хранения. Называются эти полости аппаратом Гольджи, представлены они в виде стопок «цистерн», которые отделены от цитоплазмы мембраной.

Аппарат Гольджи

Чаще всего располагается вблизи ядра. В его функции входит преобразование белка и образование лизосом. В данном комплексе хранятся вещества, которые были синтезированы самой клеткой для потребностей всего организма, и позднее выведутся из неё.

Лизосомы представлены в виде пищеварительных ферментов, которые заключены с помощью мембраны в пузырьки и разносятся по цитоплазме.

Митохондрии

Эти органоиды покрыты двойной мембраной:

  • гладкая - наружная оболочка;
  • кристы - внутренний слой, имеющий складки и выступы.

Рис. 2. Строение митохондрий.

Функциями митохондрий является дыхание и преобразование питательных веществ в энергию. В кристах находится фермент, который синтезирует из питательных веществ молекулы АТФ. Это вещество является универсальным источником энергии для всевозможных процессов.

Клеточная стенка отделяет и защищает внутреннее содержимое от внешней среды. Она поддерживает форму, обеспечивает взаимосвязь с другими клетками, обеспечивает процесс обмена веществ. Состоит мембрана из двойного слоя липидов, между которыми находятся белки.

Сравнительная характеристика

Растительная и животная клетка отличаются друг от друга своим строением, размерами и формами. А именно:

  • клеточная стенка у растительного организма имеет плотное строение за счёт наличия целлюлозы;
  • у растительной клетки есть пластиды и вакуоли;
  • животная клетка имеет центриоли, которые имеют значение в процессе деления;
  • наружная мембрана животного организма гибкая и может приобретать различные формы.

Рис. 3. Схема строения растительной и животной клетки.

Подытожить знания про основные части клеточного организма поможет следующая таблица:

Таблица «Строение клетки»

Органоид

Характеристика

Функции

Имеет ядерную оболочку, внутри которой содержится ядерный сок с ядрышком и хроматином.

Транскрипция и хранение ДНК.

Плазматическая мембрана

Состоит из двух слоёв липидов, которые пронизаны белками.

Защищает содержимое, обеспечивает межклеточные обменные процессы, реагирует на раздражитель.

Цитоплазма

Полужидкая масса, содержащая липиды, белки, полисахариды и пр.

Объединение и взаимодействие органелл.

Мембранные мешочки двух типов (гладкие и шероховатые)

Синтез и транспортировка белков, липидов, стероидов.

Аппарат Гольджи

Располагается возле ядра в виде пузырьков или мембранных мешочков.

Образует лизосомы, выводит секреции.

Рибосомы

Имеют белок и РНК.

Образуют белок.

Лизосомы

В виде мешочка, внутри которого находятся ферменты.

Переваривание питательных веществ и отмерших частей.

Митохондрии

Снаружи покрыты мембраной, содержат кристы и многочисленные ферменты.

Образование АТФ и белка.

Пластиды

Покрыты мембраной. Представлены тремя видами: хлоропласты, лейкопласты, хромопласты.

Фотосинтез и запас веществ.

Мешочки с клеточным соком.

Регулируют давление и сохраняют питательные вещества.

Центриоли

Имеет ДНК, РНК, белки, липиды, углеводы.

Участвует в процессе деления, образуя веретено деления.

Что мы узнали?

Живой организм состоит из клеток, которые имеют достаточно сложное строение. Снаружи она покрыта плотной оболочкой, которая защищает внутреннее содержимое от воздействия внешней среды. Внутри находится ядро, регулирующее все происходящие процессы и хранящее генетический код. Вокруг ядра расположена цитоплазма с органоидами, каждый из которых имеет свои особенности и характеристику.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 1227.

Делит все клетки (или живые организмы ) на два типа: прокариоты и эукариоты . Прокариоты - это безъядерные клетки или организмы, к которым относятся вирусы, прокариот-бактерии и сине-зеленые водоросли, у которых клетка состоит непосредственно из цитоплазмы, в которой расположена одна хромосома - молекула ДНК (иногда РНК).

Эукариотические клетки имеют ядро , в котором находятся нуклеопротеиды (белок гистон + комплекс ДНК), а также другие органоиды . К эукариотам относятся большинство современных известных науке одноклеточных и многоклеточных живых организмов (в том числе, и растений).

Строение ограноидов эукариотов.

Название органоида

Строение органоида

Функции органоида

Цитоплазма

Внутренняя среда клетки, в которой находится ядро и другие органоиды. Имеет полужидкую, мелкозернистую структуру.

  1. Выполняет транспортную функцию.
  2. Регулирует скорость протекания обменных биохимических процессов.
  3. Обеспечивает взаимодействие органоидов.

Рибосомы

Мелкие органоиды сферической или эллипсоидной формы диаметром от 15 до 30 нанометров.

Обеспечивают процесс синтеза молекул белка, их сборку из аминокислот.

Митохондрии

Органоиды, имеющие самую разнообразную форму - от сферической до нитевидной. Внутри митохондрий имеются складки от 0,2 до 0,7 мкм. Внешняя оболочка митохондрий имеет двухмембранную структуру. Наружная мембрана гладкая, а на внутренней имеются выросты крестообразной формы с дыхательными ферментами.

  1. Ферменты на мембранах обеспечивают синтез АТФ (аденозинтрифосфорной кислоты).
  2. Энергетическая функция. Митохондрии обеспечивают поставки энергии в клетку за счет высвобождения ее при распаде АТФ.

Эндоплазматическая сеть (ЭПС)

Система оболочек в цитоплазме, которая образует каналы и полости. Бывает двух типов: гранулированная, на которой имеются рибосомы и гладкая.

  1. Обеспечивает процессы по синтезу питательных веществ (белков, жиров, углеводов).
  2. На гранулированной ЭПС синтезируются белки, на гладкой - жиры и углеводы.
  3. Обеспечивает циркуляцию и доставку питательных веществ внутри клетки.

Пластиды (органоиды, свойственные только растительным клеткам) бывают трех видов:

Двухмембранные органоиды

Лейкопласты

Бесцветные пластиды, которые содержатся в клубнях, корнях и луковицах растений.

Являются дополнительным резервуаром для хранения питательных веществ.

Хлоропласты

Органоиды овальной формы, имеющие зеленый цвет. От цитоплазмы отделяются двумя трехслойными мембранами. Внутри хлоропластов находится хлорофилл.

Преобразуют органические вещества из неорганических, используя энергию солнца.

Хромопласты

Органоиды, от желтого до бурого цвета, в которых накапливается каротин.

Способствуют появлению у растений частей с желтой, оранжевой и красной окраской.

Лизосомы

Органоиды округлой формы диаметром около 1 мкм, имеющие на поверхности мембрану, а внутри - комплекс ферментов.

Пищеварительная функция. Переваривают питательные частицы и ликвидируют отмершие части клетки.

Комплекс Гольджи

Может быть разной формы. Состоит из полостей, разграниченных мембранами. Из полостей отходят трубчатые образования с пузырьками на концах.

  1. Образует лизосомы.
  2. Собирает и выводит синтезируемые в ЭПС органические вещества.

Клеточный центр

Состоит из центросферы (уплотненного участка цитоплазмы) и центриолей - двух маленьких телец.

Выполняет важную функцию для деления клетки.

Клеточные включения

Углеводы, жиры и белки, которые являются непостоянными компонентами клетки.

Запасные питательные вещества, которые используются для жизнедеятельности клетки.

Органоиды движения

Жгутики и реснички (выросты и клетки), миофибриллы (нитевидные образования) и псевдоподии (или ложноножки).

Выполняют двигательную функцию, а также обеспечивают процесс сокращения мышц.

Ядро клетки является главным и самым сложным органоидом клетки, поэтому его мы рассмотрим



Похожие публикации