Теории канцерогенеза опухолей. Стадии канцерогенеза

Вопрос

Опухоль - это типовое нарушение тканевого роста, проявляющееся в бесконтрольном размножении клеток, которые характеризуются атипизмами, или анаплазией.

Под атипизмами понимают совокупность признаков, отличающих опухо­левую ткань от нормальной и составляющих биологические особенности опухолевого роста.

Анаплазия - термин, подчеркивающий сходство опухолевой клетки с эмбриональной (усиленное размножение, интенсивный процесс гликолиза и др.). Но, опухолевые клетки не тождественны эмбриональным: они растут, но не созревают (не дифференцируются), способны к инвазивному росту в окружающие ткани с разрушением последних и т.д.

Причинами развития опухолей являются различные факторы, способные вызвать превращение нормальной клетки в опухолевую. Они называются канцерогенными или бластомогеннами. Это агенты химической, физической и биологи­ческой природы, а главным условием, способствующим реализа­ции их действия (фактором риска), является снижение эффективности механизмов противоопухолевой защиты организма. В значительной мере это определяется генетической предрасположенностью. Свойствами канцерогенных факторов, обеспечивающими опухолевую трансформацию клеток, являются мутагенность (способность прямо или косвенно влиять на геном клетки, что в итоге приводит к мутациям), способность к проникновению через внешние и внутренние барьеры и дозированность действия, которая обеспечивает незначительное повреждение клетки, что позволяет ей выжить.

Наряду с канцерогенными факторами, существует целый ряд веществ, которые не вызывая сами мутаций, являются обязательными участниками канцерогенеза - коканцерогены и синканцерогены . Коканцерогены - немутагенные факторы (промоторы), усиливающие эффект канцерогенных агентов. Коканцеогенез – усиление мутагенного действия канцерогена соединениями, которые стимулируют пролиферацию клеток, инактивируя белки-продукты антионкогенов или усиливая передачу ростостимулирующих сигналов. Синканцерогены – канцерогенные факторы, вызывающие усиленное образование опухолей при комбинированном действии нескольких известных концерогенов.



ХИМИЧЕСКИЕ КАНЦЕРОГЕНЫ

По данным ВОЗ, более 75% случаев злокачественных опухолей человека вызва­но воздействием химических факторов внешней среды. Потенциально канцерогенные вещества сами по себе не вызывают опухолево­го роста. Поэтому их называют проканцерогенами, или преканцерогенами. В организме они подвергаются физико-химическим превращениям, в результате которых становятся истинными, конечными канцерогенами. Конечными канцерогенами являются алкилирующие соедине­ния, эпоксиды, диолэпоксиды, свободнорадикальные формы ряда веществ.

К возникновению опу­холей приводят преимущественно факторы сгорания табака (примерно 40%); химические агенты, входящие в состав пищи (25-30%) и соединения, использу­емые в различных сферах производства (около 10%). Известно более 1500 хими­ческих соединений, обладающих канцерогенным эффектом. Из них не менее 20 определённо являются причиной опухолей у человека. Наиболее опасные канцерогены относятся к нескольким классам химических веществ (рис. 1).

Рис. 1 Основные классы химических канцерогенов.

Органические химические канцерогены

Полициклические ароматические углеводороды.

Наибольшей канцерогенной активностью среди них обладают 3,4-бензпирен, 20-метилхолантрен, диметилбензантрацен. Ежегодно в атмосферу промыш­ленных городов выбрасываются сотни тонн этих и подобных им веществ.

Гетероциклические ароматические углеводороды.

В эту группу входят дибензакридин, дибензкарбазол и другие соединения.

Ароматические амины и амиды.

К ним относятся 2-нафтиламин, 2-аминофлюорен, бензидин и др.

Нитрозосоединения. Наиболее опасные среди них - диэтилнитрозамин, ди-метилнитрозамин, нитрозометилмочевина.

Аминоазосоединения.

Высокоэффективными канцерогенами среди них считаются 4-диметилами-ноазобензол и ортоаминоазотолуол.

Афлатоксины - продукты метаболизма (производные кумаринов) плесневых грибов, в основном аспергилл Aspergillus flavus (отсюда название производи­мых ими веществ).

Прочие органические вещества с канцерогенной активностью: эпоксиды, пластмассы, уретан, четырёххлористый углерод, хлорэтиламины и другие.

Неорганические канцерогены

Экзогенные: хроматы, мышьяк и его соединения, кобальт, окись бериллия, асбест и ряд других.

Эндогенные. Эти соединения образуются в организме в результате физико-химической модификации продуктов нормального обмена веществ. Полагают, что та­кими потенциально канцерогенными веществами являются желчные кис­лоты, эстрогены, некоторые аминокислоты (тирозин, триптофан), липопероксидные соединения.

Вопрос

ФИЗИЧЕСКИЕ КАНЦЕРОГЕННЫЕ ФАКТОРЫ

Основными канцерогенными агентами физической природы являются:

  1. Ионизирующее излучение

а). α-, β- и γ-излучение, источником которых являются радиоактивные изотопы (Р 32 , I 131 , Sr 90 и др.),

б). рентгеновское излучение,

в). поток нейтронов,

  1. ультрафиолетовое излучение.

У лиц, хронически, периодически или однократно подвергавшихся воздействию указанных агентов, часто возникают различные злокачественные новообразо­вания. У пациентов, лечившихся препаратами, содержащими радио­активные вещества, с более высокой частотой, чем в общей популяции, возни­кают новообразования (например, опухоли печени у пациентов, которым нео­днократно вводили радиоактивное рентгеноконтрастное вещество торотраст). Частота рака щитовидной железы резко повысилась у лиц, подвергшихся воздействию радиоактивного йода во время аварии на чернобыльской АЭС.

Вопрос

Виды онкогенных вирусов

По типу вирусной нуклеиновой кислоты онкогенные вирусы подразделяют на ДНК-содержащие и РНК-содержащие.

ДНК-вирусы

Гены ДНК-онковирусов способны непосредственно внедряться в геном клетки-мишени. Участок ДНК-онковируса (собственно онкоген), интег­рированный с клеточным геномом, может осуществить опухолевую транс­формацию клетки. Не исключают также, что один из генов онковируса может играть роль промотора клеточного протоонкогена.

Вирусные онкогены и контролирующие клеточный цикл и пролиферацию кле­точные гены имеют как сходство, так и важные отличия. В связи с этим гово­рят о протоонкогенах и онкогенах.

Протоонкоген - ген нормального генома человека; участвует в регуляции пролиферации клеток. Продукты экспрессии протоонкогенов во многих случаях важны для нормальной дифференцировки клеток и межклеточных взаимодействий. В результате соматических мутаций протоонкоген может стать онкогенным. В этом случае к имени протоонкогена может быть до­бавлена приставка с- (от cellular - клеточный), вирусные гомологи маркиру­ют приставкой v- (от viral - вирусный).

Онкоген - один из генов, в обычных условиях (т.е. в качестве прото­онкогена) кодирующий белок, обеспечивающий пролиферацию и дифференцировку клеточных популяций (протеинкиназы, ядер­ные белки, факторы роста). У опу­холевых ДНК-вирусов онкогены кодируют нормальные вирусные бел­ки; онкогены, однако, могут спровоцировать - в случае их мутаций или активации ретровирусами - злокачественный рост. Идентифици­ровано множество онкогенов (например, ras [опухоли мочевого пузы­ря]); р53, мутантный ген хромосомы 17 (нормально принимает участие в репарации вызванных ультрафиолетом генных дефектов). Мутации р53 ответственны за развитие рака молочной железы, шейки матки, яичника, лёгкого; малигнизирующие эффекты онкогенов могут быть усилены рет­ровирусами, так называемыми прыгающими генами, мутациями. Онкогены найдены в некоторых ДНКовых опухолевых вирусах. Они не­обходимы для репликации вируса (трансформирующий ген). К онкогенам относятся также гены вируса или ретровируса, вызывающие злокачественное перерождение клетки-хозяина, но необязательные для репликации вируса.

Онкосупрессоры

Трансформированные (опухолевые) клетки делятся бесконтрольно и неогра­ниченно долго. Онкосупрессоры, или антионкогены (например, р53) тормозят их пролиферацию. Кодируемый данным геном белок р53 - один из важнейших регуляторов клеточного цикла. Этот белок специфически связывается с ДНК и подавляет рост клеток в фазе G1.

Белок р53 регистрирует различные сигналы при воздействиях на клетку (вирусная инфекция, гипоксия) и состояние её генома (активация онко­генов, повреждения ДНК). При неблагоприятной информации о состоя­нии клетки р53 блокирует клеточный цикл до тех пор, пока нарушения не будут устранены. В повреждённых клетках содержание р53 возрастает. Это даёт клетке шансы восстановить ДНК путём блокирования клеточно­го цикла. При грубых повреждениях р53 инициирует самоубийство клет­ки - апоптоз. Опухоли (практически в 50%) сопровождаются мутациями гена р53. При этом, несмотря на возможные нарушения генома (включая изменения в количестве хромосом), клетки не входят в апоптоз, а вступа­ют в беспрерывный клеточный цикл. Репертуар мутаций гена р53 широк. Они приводят к бесконтрольному размножению клеток при раке толстой кишки, печени, лёгкого, пищевода, молочной железы, глиальных опухо­лях мозга, опухолях лимфоидной системы. При синдроме Ли-Фромени врождённый дефект р53 является причиной высокой частоты развития карцином.

Важную регулирующую роль играет также белок р27 связывается с циклином и белками циклин-зависимой протеинкиназы и блокирует вхождение клетки в S-фазу цикла. Снижение уровня р27 является прогностически небла­гоприятным признаком. Определение р27 используют при диагностике рака молочной железы.

Этапы химического канцерогенеза. Сами по себе потенциально канцерогенные вещества не вызывают опухолевого роста. Поэтому их называют проканцеро-генами или преканцерогенами. В организме они подвергаются физико-химическим превращениям, в результате которых становятся истинными, конечными канцерогенами.
Считают, что конечными канцерогенами являются:
♦ алкилирующие соединения;
♦ эпоксиды;
♦ диолэпоксиды;
♦ свободнорадикальные формы ряда веществ.
По-видимому, они вызывают такие изменения в геноме нормальной клетки, которые ведут к ее трансформации в опухолевую.
Выделяют 2 взаимосвязанных этапа химического канцерогенеза:
1) инициации;
2) промоции.
Этап инициации. На данном этапе происходит взаимодействие конечного канцерогена с локусами ДНК, содержащими гены, контролирующие деление и созревание клетки (такие локусы еще называют протоонкогенами).
Возможны 2 варианта взаимодействия:
1) геномный механизм заключается в точковой мутации протоонкогена;
2) эпигеномный механизм характеризуется дерепрессией неактивного протоонкогена. Под действием химических канцерогенов протоонкоген превращается в онкоген, который и обеспечивает в последующем процесс опухолевой трансформации клетки. И хотя такая клетка еще не имеет опухолевого фенотипа (ее называют латентной опухолевой клеткой), процесс инициации уже необратим.
Инициированная клетка становится иммортализованной (бессмертной, от англ. immortality - вечность, бессмертие). Она лишается так называемого лимита Хайфлика: строго ограниченного числа делений (в культуре клеток млекопитающих обычно около 50).
Этап промоции. Процесс промоции индуцируют различные канцерогенные агенты, а также клеточные факторы роста. На этапе промоции:
1) осуществляется экспрессия онкогена;
2) происходит неограниченная пролиферация клетки, ставшей генотипически и фенотипически опухолевой;
3) формируется новообразование.
Канцерогены биологической природы. К ним относят онкогенные (опухоле-родные) вирусы. Роль вирусов в канцерогенезе привлекает внимание, с одной стороны, как самостоятельная проблема, а с другой стороны тем, что большое число клеточных протоонкогенов сходны с онкогенами ретровирусов.

Этапы физического канцерогенеза

Мишенью канцерогенных агентов физической природы также является ДНК. Допускается либо их прямое действие на ДНК, либо через посредники - своеобразные медиаторы канцерогенеза. К последним относят свободные радикалы кислорода, липидов и других органических и неорганических веществ.

Первый этап физического канцерогенеза - инициация опухолевого роста. Он заключается в прямом или опосредованном воздействии агентов физической природы на ДНК. Это вызывает либо повреждение её структуры (генные мутации, хромосомные аберрации), либо эпигеномные изменения. Как первое, так и второе может привести к активации протоонкоге-нов и последующую опухолевую трансформацию клетки.

Второй этап - промоции. На этом этапе канцерогенеза осуществляется экспрессия онкогена и модификация нормальной клетки в раковую. В результате последовательных циклов пролиферации формируется опухоль.

Генетический аппарат клеток обладает сложной системой контроля деления, роста и дифференцировки клеток. Изучены две регулирующие системы оказывающие кардинальное влияние на процесс клеточной пролиферации .

Протоонкогены

Таким образом, система протоонкогенов и генов-супрессоров формирует сложный механизм контроля темпов клеточного деления, роста и дифференцировки. Нарушения этого механизма возможны как под влиянием факторов внешней среды, так и в связи с геномной нестабильностью - теория, предложенная Кристофом Лингауром и Бертом Фогельштейном . Питер Дюсберг из Калифорнийского университета в Беркли утверждает, что причиной опухолевой трансформации клетки может быть анеуплоидия (изменение числа хромосом или потеря их участков), являющаяся фактором повышенной нестабильности генома. По мнению некоторых ученых, ещё одной причиной возникновения опухолей мог бы быть врождённый или приобретённый дефект систем репарации клеточной ДНК . В здоровых клетках процесс репликации (удвоения) ДНК протекает с большой точностью благодаря функционированию специальной системы исправления пострепликационных ошибок. В геноме человека изучено, по крайней мере, 6 генов, участвующих в репарации ДНК. Повреждение этих генов влечёт за собой нарушение функции всей системы репарации, и, следовательно, значительное увеличение уровня пострепликационных ошибок, то есть мутаций (Lawrence A. Loeb ).

Канцерогенные факторы

На данный момент известно большое количество факторов, способствующих канцерогенезу:

Химические факторы

Физические факторы

Солнечная радиация (в первую очередь ультрафиолетовое излучение) и ионизирующее излучение также обладает высокой мутагенной активностью. Так, после аварии Чернобыльской АЭС отмечено резкое увеличение заболеваемости раком щитовидной железы у людей, проживающих в зараженной зоне. Длительное механическое или термическое раздражение тканей также является фактором повышенного риска возникновения опухолей слизистых оболочек и кожи (рак слизистой рта, рак кожи, рак пищевода).

Биологические факторы

Доказана канцерогенная активность вируса папиломы человека в развитии рака шейки матки , вируса гепатита В в развитии рака печени, ВИЧ - в развитии саркомы Капоши . Попадая в организм человека, вирусы активно взаимодействуют с его ДНК, что в некоторых случаях вызывает трансформацию собственных протоонкогенов человека в онкогены. Геном некоторых вирусов (ретровирусы) содержит высоко активные онкогены, активирующиеся после включения ДНК вируса в ДНК клеток человека.

Наследственная предрасположенность

Изучено более 200 наследственных заболеваний, характеризующихся повышенным риском возникновения опухолей различной локализации. Развитие некоторых типов опухолей связывают с врожденным дефектом системы репарации ДНК (пигментная ксеродерма) .

Биологические механизмы канцерогенеза

Теория четырёхстадийного канцерогенеза

Материальным субстратом опухолевой трансформации клеток являются различного типа повреждения генетического аппарата клетки (соматические мутации, хромосомные аберрации, рекомбинации), вызывающие превращение протоонкогенов в онкогены или резко повышающие уровень их экспрессии. Гиперэкспрессия клеточных онкогенов, вызывающая опухолевую трансформацию, может иметь место также и в случае стойкого деметилирования их ДНК при отсутствии каких бы то ни было повреждений самих онкогенов. Следствием данных изменений является возникновение на каком-либо уровне внутриклеточных сигнальных каскадов несанкционированного пролиферативного сигнала, вызывающего бесконтрольное деление клеток. Повреждение генетического материала клетки происходит под воздействием внешних и внутренних канцерогенных факторов, рассмотренных выше. Первичное воздействие канцерогенного фактора на клетку носит название «инициации » и заключается в возникновении потенциально трансформирующего изменения клеточных онкогенов, а также несанкционированном выключении генов-супрессоров или генов, вызывающих апоптоз и активизации генов, препятствующих апоптозу. Внутриклеточные сигнальные каскады устроены таким образом, что нарушение лишь одного из их звеньев вызовет апоптоз клетки, а не её бесконтрольное деление, поэтому для успешного канцерогенеза необходимы изменения многих звеньев, максимально имитирующие влияние цитокинов и устраняющие возможность гибели клетки. Это первая стадия канцерогенеза.

Однако для осуществления опухолевой трансформации клетки - «промоции » - необходимо повторное воздействие на клетку или канцерогенного фактора (того же, что вызвал инициацию, или другого), или фактора, не являющегося канцерогеном, но способного вызвать активизацию изменённых онкогенов - промотора. Как правило, промоторы вызывают пролиферацию клеток посредством активизации пролиферативных сигнальных каскадов, прежде всего протеинкиназы С. Промоция - вторая стадия канцерогенеза. Образование опухолей вследствие воздействия онкогенных ретровирусов , привносящих в клетку активный онкоген, эквивалентно осуществлению первых двух стадий канцерогенеза - в этом случае инициация имела место в других клетках иного организма, где изменённый онкоген был захвачен в геном ретровируса.

Появление несанкционированных сигналов является хотя и необходимым, но не достаточным условием образования опухоли. Опухолевый рост становится возможным лишь после осуществления ещё одной, третьей, стадии канцерогенеза - уклонения трансформированных клеток от дальнейшей дифференцировки, которое обычно вызывается несанкционированной активностью генов некоторых клеточных микроРНК. Последние препятствуют функционированию белков, отвечающих за протекание специализации клеток; известно, что не менее 50 % опухолей ассоциированы с теми или иными повреждениями в участках генома, которые содержат гены микроРНК. Прекращение дифференцировки возможно также из-за отсутствия цитокинов, необходимых для перехода созревающих клеток на следующий этап специализации (в этом случае присутствие цитокина может вызвать нормализацию и продолжение дифференцировки раковых клеток - процесс, обратный канцерогенезу). Созревание трансформированных клеток приостанавливается, и они - в результате непрерывной пролиферации и подавления апоптоза - накапливаются, формируя опухоль - клон клеток, обладающих рядом особенностей, не свойственных нормальным клеткам организма. Так, в частности, для опухолевых клеток характерен высокий уровень анеуплоидии и полиплоидии , что является результатом нестабильности генома. Также наблюдаются различные нарушения митоза . Клетки опухоли с наиболее распространённым набором хромосом образуют стволовую линию .

В ходе развития опухоли, в силу её генетической нестабильности, происходит частое изменение ее клеточного состава и смена стволовой линии Такая стратегия роста имеет адаптативный характер, так как выживают только наиболее приспособленные клетки. Мембраны опухолевых клеток не способны реагировать на стимулы микроокружения (межклеточная среда, кровь , лимфа), что приводит к нарушению морфологических характеристик ткани (клеточный и тканевой атипизм). Сформировавшийся опухолевый клон (стволовая линия) синтезирует собственные цитокины и идёт по пути наращивания темпов деления, предотвращения истощения теломер, уклонения от иммунного надзора организма и обеспечения интенсивного кровоснабжения. Это четвёртая, заключительная стадия канцерогенеза - опухолевая прогрессия . Её биологический смысл заключается в окончательном преодолении препятствий на пути опухолевой экспансии. Опухолевая прогрессия носит скачкообразный характер и зависит от появления новой стволовой линии опухолевых клеток. Прорастая в кровеносные и лимфатические сосуды опухолевые клетки разносятся по всему организму и, оседая в капиллярах различных органов, формируют вторичные (метастатические) очаги опухолевого роста. .

Иммунологические особенности онкологических процессов

Существует мнение что в организме человека постоянно образуются потенциальные опухолевые клетки. Однако в силу своей антигенной гетерогенности они быстро распознаются и разрушаются клетками иммунной системы . Таким образом нормальное функционирование иммунной системы является основным фактором натуральной защиты от опухолей. Этот факт доказан клиническими наблюдениями за больными с ослабленной иммунной системой, у которых опухоли встречаются в десятки раз чаще чем у людей с нормально работающей иммунной системой. Иммунный механизм сопротивляемости опухолям опосредован большим количеством специфических клеток (В- и Т-лимфоциты , NK-клетки, моноциты , полиморфо-ядерные лейкоциты) и гуморальных механизмов. В процессе опухолевой прогрессии клетки опухоли оказывают выраженное антииммунное действие, что приводит к ускорению темпов роста опухоли и появлению метастазов .

Стадии формирования опухоли

Переход рака in situ в микрокарциному. Инвазия опухолевых клеток через базальную мембрану

Прорастание опухолевых клеток через базальную мембрану и инвазия в подлежащую ткань. Врастание в кровеносные и лимфатические сосуды

Выделяют следующие стадии формирования опухоли

  1. Гиперплазия ткани
  2. Инвазивный рак

Вторая стадия (формирование доброкачественной опухоли) может отсутствовать.

Рак in situ прорастает базальную мембрану. Опухолевые клетки разрушают и замещают собой предсуществующий эпителий. В дальнейшем раковые клетки врастают в лимфатические и кровеносные сосуды с последующим переносом опухолевых клеток и образованием метастазов.

Влияние опухоли на организм

См. также

Примечания

Ссылки

  • Материалы по онкологии от Российской Академии Наук

Химические и физические канцерогенные факторы стимулируют мутационный механизм экспрессии онкогенов. В основе мутационного механизма лежат соматические мутации, то есть мутации возникающие в тканях, органах, не передающиеся по наследству. По своему характеру они могут быть как хромосомными, так и генными. К хромосомным мутациям относятся хромосомные аберрации, делеции, транслокации, инверсии - все варианты, когда возникает разрыв хромосомы, что приводит к экспрессии онкогенов в месте разрыва так как происходит освобождение онкогена от компенсирующего влияния генома. В процессе хромосомных аберраций может выявиться влияние гена-промотора, который может быть перенесен с одной хромосомы на другую, в другой участок хромосомы. При хроническом миелолейкозе с очень большим постоянством в лейкоцитах находят измененную 22 филадельфийскую хромосому. Она характеризуется утратой части плеча. Установлено, что эта мутация является следствием взаимной транслокации 9 и 22 хромосом, причем 9-я хромосома получает избыток материала, а 22-я теряет часть плеча. В процессе взаимной транслокации с 9 на 22 хромосому переносится промотор, который встраивается рядом с онкогеном. Следствием является стимуляция онкогена мус, образуется ДНК-связывающий онкобелок - митоген.

Точечные мутации также могут приводить к экспрессии онкогенов, причем для некоторых онкогенов типичный именно точечные мутации (онкогены семейства ras). Возможно мутация в самом онкогена или в гене регулятора с изменением в репрессоре, который регулирует активность онкогена, и происходит активация онкогена. Следующий механизм экспрессии онкогенов связан с действием транспозонов. Транспозоны это двигающиеся, блуждающие или прыгающие гены. Они передвигаются вдоль ДНК и могут встраиваться в любой участок. Их физиологическая функция - усиление активности того или иного гена. Транспозоны могут выполнять функцию и экспрессии онкогенов, выполняя функцию промоторов. Замечено, что в процессе канцерогенеза активность мутационного процесса, активность транспозонов резко возрастает, а механизмы репарации резко снижаются.

Амплификация - это тоже физиологический механизм регуляции активности генома. Это увеличение копий генов, полученных для усиления активности гена, до 5 , максимум до 10 копий. В условиях канцерогена число копий онкогенов достигает сотен (500-700 и более, это эпигеномный механизм экспрессии онкогенов.

Еще один эпигеномный механизм - деметилирование ДНК. Под действием химических канцерогенов, активных радикалов идет процесс деметилирования ДНК. деметилированный участок становится активным.

Для того, что произошло превращение нормальной клетки в опухолевую должна активизироваться группа онкогенов (от 2 до 6-8 и более онкогенов. Механизмы взаимодействия онкогенов сейчас изучаются. Известно, что взаимная активация онкогенов представляет собой цепную реакцию, то есть продукт одного онкогена активирует новый онкоген и т.д.

Стадии канцерогенеза:

1. Инициация

2. Трансформация

3. Опухолевая агрессия

Под действием канцерогенов в клетке происходит активация определенной группы онкогенов. На стадии инициации наблюдается чаще всего экспрессия онкогенов мус и муt (продукты этих онкогенов относятся к ДНК-связывающим митогенам), стимулируется бесконтрольная пролиферация. нарушение дифференцировки не происходит, функция сохраняется. Это длительная скрытая - латентная фаза. Продолжительность фазы инициации составляет приблизительно 5% от продолжительности жизни вида (у человека в зависимости от вида опухоли - 5,10,12 лет, иногда значительно короче). На стадии инициации происходит снятие лимита Хейфлика. Для нормальноразвивающейся клетки характерно совершать не более 30-50 митозов, затем деление прекращается и клетка погибает. Вот это ограничение числа митозов и носит название лимит Хейфлика. В опухолевой клетке этого нет, клетка непрерывно, бесконтрольно делится. Клетка в фазе инициации называется иммортальной (бессмертной) так как она себя непрерывно воспроизводит, фаза инициации называется фазой иммортализации. Клетка в этой фазе может вернуться на пути нормального развития, а может перейти в следующую фазу развития - фазу трансформации.

Трансформация происходит если на инициированную клетку продолжает воздействовать канцерогенный фактор и происходит экспрессия новой группы онкогенов. В культуре клеток с наибольшим постоянством наблюдается экспрессия характерных для этой фазы онкогенов семейства ras, продукты этих онкогенов связывают гуанозинтрифосфат. на этой фазе происходит также экспрессия онкогена sis. Экспрессия этих онкогенов приводит к окончательной малигнизации клетки - нарушается дифференцировка и пролиферация. Образование единичных опухолевых клеток еще не приводит к опухолевому процессу. Опухолевые клетки обладают свойством чужеродности (антигены) для организма. Считается я, что опухолевые клетки образуются постоянно, но при достаточном иммунном контроле они уничтожаются. Переход в стадию опухолевой прогрессии зависит от состояния иммунологической реактивности.

Антигенные свойства опухолевой клетки проявляются несколькими механизмами:

1. антигенное упрощение. Особенно важно качественно изменение гликопротеидов - укорачиваются углеводные цепи.

2. Антигенное усложнение - появление несвойственных компонентов - увеличение фосфотирозинов.

3. Реверсия (возврат к прошлому) - появление эмбриональных белков в составе мембраны опухолевой клетки. Эмбриональные белки - альфа-кетопротеин и др.

4. Дивергенция.

Появляются в тканях антигенные компоненты, несвойственные данной ткани. Дивергенция - это как бы обмен антигенными фрагментами. Таким образом нет абсолютно чужеродного антигена, все антигены представляют собой модификации собственной ткани организма, это слабые мозаичные антигены.

Существует несколько уровней защиты против опухолевого антигена:

1. функция естественных киллеров (натуральные киллеры) - они создают основную противоопухолевую защиту. Они узнают опухолевую клетку по негативной информации - отсутствию длинных гликопротеидов и т.п. происходит контакт киллера с опухолевой клеткой и ее уничтожение.

2. Сенсибилизированные Т-киллеры также уничтожают чужеродные клетки. Роль гуморального иммунитета спорная. Считается что комплекс антител на поверхности опухолевых клеток препятствует проявлению киллерного эффекта.

Показано что при иммунодефицитах риск развития опухолей увеличивается в 1000 раз, а иногда в 10000 раз, а также при длительном применении иммунодепресантов, глиюокортикоидов.

Этап опухолевой прогрессии характеризуется уже клиническими проявлениями - увеличивается масса опухоли, наблюдается инфильтративный рост, метастизирование, и заканчивается раковой кахексией.

Процесс развития сосудов, в опухоли контролируется онкобелком ангиогенином (сейчас пытаются применять для лечения опухоли блокаторы этого белка).

Постоянным признаком опухолевого роста является увеличение количества Т-супрессоров по отношению и Т-хелперам (непонятно, первичный это механизм или вторичный).

1. Индукция (инициация)заключается в мутации одного из генов, регулирующих клеточное размножение (протоонкоген превращается в онкоген) → клетка становится потенциально спо­собной к неограниченному делению; инициирующими факторами являются различные канцероге­ны.

2. Промоция (ускорение)- стимуляция клеточного деления промоторами, благодаря которой создается критическая масса ини­циированных клеток Промоторы – это химические вещества, не вызывающие повреждения ДНК, не являющиеся канце­рогенами. Свою деятельность начинают онкогены → синтезируются онкобелки → количество инициированных клеток увеличивается.

3. Прогрессия - наряду с увеличением массы опухоли она постоянно приобретает новые свойства, «озлокачествляется» - все большую автономность от ре­гулирующих воздействий организма, деструктивный рост, инвазивность, способность к образованию метастазов (обычно от­сутствующую на ранних этапах) и, наконец, приспособляемость к меняющимся условиям.

Опухоль представляет собой потомство (клон) одной первичной клетки, которая в результате много­стадийного процесса приобрела способность нерегулируемого роста. Первичная трансформированная клетка передает свои свойства только своим потомкам, т.е. «вертикально». При этом окружающие опухоль нормальные клетки в процесс перерождения не вовлекаются. Это представление получило название положения о клональном происхож­дении опухоли .

Клональная гетерогенность опухоли развивается из-за генетической нестабильности опухолевой клетки. Это приводит к появлению новых клонов, различающихся генотипически и фенотипически. В результате селекции отбираются и выживают самые злокачественные клоны. После химиотерапии остается всего 0,1% клеток опухоли, но так как клеточный цикл равен 24 часам, то опухоль может восстанавливаться через 10 суток и быть резистентной к прежней химиотерапии.

Свойства опухолевого роста. Атипизмы. Влияние опухоли на организм.

Атипизм (от а + греч. typicos - образцовый, типичный) - совокупность признаков, отличающих опухолевую ткань от нормальной, и составляющих биологические особенности опухолевого роста.

Анаплазия иликатаплазия (от ana - обратное, противоположное, kata - вниз + греч. plasis - формирование) - изменение структуры и биологических свойств опухоли, делающее их похожими на недифференцированные ткани.

Термин введен ввиду определенного формально­го сходства опухолевых клеток с эмбриональными (ин­тенсивное размножение, усиленный анаэробный гликолиз). При этом опухолевые клетки принципиально отличаются от эмбриональных. Они не созревают, способны к миграции и инвазивному росту в окружающие соседние ткани сразрушением их и т.д.

Вне зависимости от конкретной причины опухолевой трансформации клетки, гистологической структуры и локализации новообразования, в процессе канцерогенеза можно выделить несколько общих этапов:

1) На первом этапе происходит взаимодействие канцерогенов химической, физической или биологической природы с протоонкогенами и антионкогенами (онкосупрессорами) генома нормальной клетки.

Протоонкогены – специфические гены нормальных клеток, которые осуществляют позитивный контроль процессов пролиферации и мембранного транспорта.

Под влиянием мутаций протоонкогены претерпевают так называемую активацию, что способствует их превращению в онкогены, экспрессия которых вызывает возникновение и прогрессию опухолей. Протоонкоген может превратиться в онкоген при замене в нем даже одного из 5000 нуклеотидов. В настоящее время известно около сотни протоонкогенов. Нарушение функций протоонкогенов вызывает их превращение в онкогены и способствует опухолевой трансформации клетки.

2) На втором этапе канцерогенеза (в результате воздействия канцерогена на геном) подавляется активность антионкогенов и происходит трансформация протоонкогенов в онкогены. Последующая экспрессия онкогена – необходимое и достаточное условие для опухолевой трансформации.

Антионкогены – гены-супрессоры клеточного деления. Их известно около двух десятков, они действуют как ингибиторы проведения рострегулирующих сигналов в клетке и тем самым предупреждают возможность нерегулируемой пролиферации. Поэтому считается, что антионкогены осуществляют негативную регуляцию пролиферации.

Инактивация антионкогенов, вызванная их мутациями (точковыми мутациями и делециями), приводит к неконтролируемому росту клеток. Для выключения антионкогена необходимы две мутации в обоих его аллелях (так как антионкогены – рецессивны), тогда как для превращения протоонкогена в действующий онкоген достаточно только одной (доминантной) мутации.

Наличие первой мутации в одном из аллелей антионкогенов предрасполагает к возникновению опухоли, и если такой мутантный аллель унаследован, то достаточно второй мутации, чтобы произошла опухолевая трансформация.

3) На третьем этапе канцерогенеза, в связи с экспрессией онкогенов, синтезируются и реализуют свои эффекты (непосредственно или с участием клеточных факторов роста и рецепторов к ним) онкобелки. С этого момента генотипически изменённая клетка приобретает опухолевый фенотип.

4) Четвёртый этап канцерогенеза характеризуется пролиферацией и увеличением числа опухолевых клеток, что ведёт к формированию новообразования (опухолевого узла).

Сами по себе потенциально канцерогенные вещества не вызывают опухолевого роста. В связи с этим их называют проканцерогенами, или преканцерогенами. В организме они подвергаются физико-химическим превращениям, в результате которых становятся истинными, конечными канцерогенами.

Выделяют два взаимосвязанных этапа химического канцерогенеза: инициации и промоции.

На этапе инициации конечный канцероген взаимодействует с генами, контролирующими деление и созревание клетки (протоонкогенами). При этом происходит либо мутация протоонкогена (геномный механизм изменения генетической программы), либо его регуляторная дерепрессия (эпигеномный механизм). Протоонкоген превращается в онкоген. Это и обеспечивает опухолевую трансформацию клетки. И хотя такая клетка ещё не имеет опухолевого фенотипа (её называют «латентной» опухолевой клеткой), процесс инициации уже необратим. Инициированная клетка становится иммортализованной (бессмертной). Она лишается так называемого лимита Хайфлика: строго ограниченного числа делений (в культуре клеток млекопитающих обычно около 50).



Похожие публикации