3 стадия митоза. Митоз, клеточный цикл

Митоз (кариокинез, непрямое деление) - это процесс деления ядра клеток человека, животных и растений с последующим разделением цитоплазмы клетки. В процессе деления ядра клетки (см.) различают несколько стадий. В ядре, находящемся в периоде между делением клетки (интерфаза), (см.) обычно представлены тонкими, длинными (рис., а), переплетающимися между собой нитями; хорошо видна оболочка ядра и ядрышко.

Ядро на разных фазах митоза: а - интерфазное неделящееся ядро; б - г - стадия профазы; д - стадия метафазы; е - стадия анафазы; ж и з - стадия телофазы; и - образование двух дочерних ядер.

В первой стадии митоза, так называемой профазе, хромосомы становятся хорошо видимыми (рис., б-г), происходит их укорачивание и утолщение, вдоль каждой хромосомы появляется щель, разделяющая ее на две совершенно подобные друг другу части, благодаря чему каждая хромосома оказывается двойной. В следующей стадии митоза - метафазе оболочка ядра разрушается, ядрышко растворяется и хромосомы оказываются лежащими в цитоплазме клетки (рис., д). Все хромосомы располагаются в один ряд по экватору, образуя так называемую экваториальную пластинку (стадия звезды). Претерпевает изменения и центросома. Она делится на две части, расходящиеся к полюсам клетки, между ними образуются нити, формирующие двухконусное ахроматиновое веретено (рис., д. е).

Митоз (от греч. mitos - нить) - это непрямое деление клетки, заключающееся в равномерном распределении удвоенного числа хромосом между двумя образующимися дочерними клетками (рис.). В процессе митоза участвуют два рода структур: хромосомы и ахроматиновый аппарат, включающий в себя клеточные центры и веретено (см. Клетка).


Схематическое изображение интерфазного ядра и различных стадий митоза: 1 - интерфаза; 2 - профаза; 3 - прометафаза; 4 и 5- метафаза (4 - вид с экватора, 5 - вид с полюса клетки); 6 - анафаза; 7 - телофаза; 8 - поздняя телофаза, начало реконструкции ядер; 9 - дочерние клетки в начале интерфазы; ЯО - ядерная оболочка; ЯК - ядрышко; ХР - хромосомы; Ц - центриоль; В - веретено.

Первая стадия митоза - профаза - начинается с появления в ядре клетки тонких нитей - хромосом (см.). Каждая профазная хромосома состоит из двух хроматид, тесно прилегающих друг к другу по длине; одна из них - хромосома материнской клетки, другая - новообразованная за счет редупликации ее ДНК на ДНК материнской хромосомы в интерфазе (пауза между двумя митозами). По мере прохождения профазы происходит спирализация хромосом, вследствие чего они укорачиваются и утолщаются. К концу профазы исчезает ядрышко. В профазе происходит также развитие ахроматинового аппарата. В клетках животных клеточные центры (центриоли) раздваиваются; вокруг них в цитоплазме возникают зоны, сильно преломляющие свет (центросферы). Эти образования начинают расходиться в противоположных направлениях, образуя к концу профазы два полюса клетки, которая к этому времени часто приобретает шаровидную форму. В клетках высших растений центриоли отсутствуют.

Прометафаза характеризуется исчезновением ядерной оболочки и образованием в клетке веретеновидной нитчатой структуры (ахроматиновое веретено), часть нитей которой соединяет полюсы ахроматинового аппарата (интерзональные нити), а другие - каждую из двух хроматид с противоположными полюсами клетки (тянущие нити). Хромосомы, беспорядочно лежавшие в профазном ядре, начинают перемещаться в центральную зону клетки, где располагаются в экваториальной плоскости веретена (метакинез). Эта стадия называется метафазой.

Во время анафазы происходит расхождение партнеров каждой пары хроматид к противоположным полюсам клетки за счет сокращения тянущих нитей веретена. С этого времени каждая хроматида получает название дочерней хромосомы. Разошедшиеся к полюсам хромосомы собираются в компактные группы, что характерно для следующей стадии митоза - телофазы. При этом хромосомы начинают постепенно деспирализоваться, утрачивая плотное строение; вокруг них появляется ядерная оболочка - начинается процесс реконструкции ядер. Происходит увеличение объема новых ядер, в них появляются ядрышки (начало интерфазы, или стадии «покоящегося ядра»).

Процесс разделения ядерного вещества клетки - кариокинез - сопровождается разделением цитоплазмы (см.) - цитокинез. У клеток животных в телофазе в области экваториальной зоны появляется перетяжка, которая, углубляясь, приводит к разделению цитоплазмы исходной клетки на две части. У клеток растений в экваториальной плоскости из мелких вакуолей эндоплазматического ретикулума образуется клеточная перегородка, отделяющая друг от друга два новых клеточных тела.

К митозу в принципе близок эндомитоз, т. е. процесс удвоения числа хромосом в клетках, но без разделения ядер. Вслед за эндомитозом может происходить прямое деление ядер и клеток, так называемый амитоз.

См. также Кариотип, Ядро клетки.

Митоз - непрямое деление клетки, наиболее распространенный способ репродукции эукариотических клеток. Биологическое значение митоза состоит в строго одинаковом распределении хромосом между дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений.

Важнейшим компонентом клеточного цикла является митотический (пролиферативный) цикл. Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него. Митотический цикл - это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.

Основные стадии митоза.

1.Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками. Это сопровождается изменениями структуры и морфологии хромосом, в которых сосредоточено более 90% информации эукариотической клетки.

2.Митотический цикл состоит из четырех последовательных периодов: пресинтетического (или постмитотического) G1, синтетического S, постсинтетического (или премитотического) G2 и собственно митоза. Они составляют автокаталитическую интерфазу (подготовительный период).

Стадии митоза.

Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу .Так как он непрерывен, смена фаз осуществляется плавно - одна незаметно переходит в другую.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть - прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n2хр).

В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n2хр).

В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (2nlxp).

В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n1хр).

Биологическое значение митоза.

Оно состоит в том, что митоз обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы.

Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.

Поведение хромосом в митозе.

1) Профаза:

· хроматин спирализуется (скручивается, конденсируется) до состояния хромосом

· ядрышки исчезают

· ядерная оболочка распадается

· центриоли расходятся к полюсам клетки, в цитоплазме начинается формирование веретена деления

2) Метафаза – заканчивается формирование веретена деления: хромосомы выстраиваются по экватору клетки, образуется метафазная пластинка.

3) Анфаза – дочерние хромосомы отделяются друг от друга (хроматиды становятся хромосомами) и расходятся к полюсам.

4) Телофаза:

· хромосомы деспирализуются (раскручтваются, деконденсируются) до состояния хроматина

· появляются ядро и ядрышки

· нити веретена деления разрушаются

· происходит цитокинез – разделение цитоплазмы материнской клетки на две дочерних

Продолжительность митоза – 1-2 часа.

  • < Назад
  • Вперёд >

Митоз - это деление клетки, при котором дочерние клетки генетически идентичны материнской и между собой. То есть при митозе хромосомы удваиваются и распределяются между дочерними клетками так, чтобы каждая получила по одной хроматиде каждой хромосомы .

В митозе выделяют несколько стадий (фаз). Однако самому митозу предшествует длительная интерфаза . Митоз и интерфаза вместе составляют клеточный цикл . В процессе интерфазы клетка растет, в ней образуются органоиды, активно идут процессы синтеза. В синтетическом периоде интерфазы редуплицируется , т. е. удваивается, ДНК.

После удвоения хроматид они остаются соединенными в области центромеры , т. е. хромосома состоит из двух хроматид.

В самом митозе обычно выделяют четыре основные стадии (иногда больше).

Первая стадия митоза - профаза . В эту фазу хромосомы спирализуются и приобретают компактную скрученную форму. Из-за этого становятся невозможны процессы синтеза РНК. Исчезают ядрышки, а значит, рибосомы также не образуются, т. е. синтетические процессы в клетке приостанавливаются. Центриоли расходятся к полюсам (в разные концы) клетки, начинает образовываться веретено деления. В конце профазы распадается ядерная оболочка.

Прометафаза - это стадия, которую не всегда выделяют отдельно. Процессы, происходящие в ней, могут относить к поздней профазе или ранней метафазе. В прометафазе хромосомы оказываются в цитоплазме, беспорядочно перемещаются по клетке пока в районе центромеры не соединятся с нитью веретена деления.

Нить представляет собой микротрубочку, построенную из белка тубулина. Она нарастает присоединяя новые тубулиновые субъединицы. При этом хромосома движется от полюса. Со стороны другого полюса к ней также присоединяется нить веретена и также толкает ее от полюса.

Вторая стадия митоза - метафаза . Все хромосомы располагаются в экваториальной области клетки рядом. К их центромерам прикреплено по две нити веретена деления. В митозе метафаза самая длительная стадия.

Третья стадия митоза - анафаза . В этой фазе хроматиды каждой хромосомы отделяются друг от друга и за счет тянущих их нитей веретена деления отходят к разным полюсам. Микротрубочки теперь не нарастают, а разбираются. Анафаза достаточно быстрая фаза митоза. При расхождении хромосом органоиды клетки примерно в равных количествах также расходятся ближе к полюсам.

Четвертая стадия митоза - телофаза - во многом обратна профазе. Хроматиды собираются у полюсов клетки и раскручиваются, т. е. деспирализуются. Вокруг них формируются ядерные оболочки. Образуются ядрышки, начинается синтез РНК. Веретено деления начинает разрушаться. Далее происходит деление цитоплазмы - цитокинез . В клетках животных это происходит за счет впячивания мембраны внутрь и образования перетяжки. В клетках растений мембрана начинает формироваться внутри в экваториальной плоскости и идет к периферии.

Митоз. Таблица
Фаза Процессы
Профаза Спирализация хромосом.
Исчезновение ядрышек.
Распад ядерной оболочки.
Начало образования веретена деления.
Прометафаза Прикрепление хромосом к нитям веретена и их движение к экваториальной плоскости клетки.
Метафаза Каждая хромосома стабилизируется в экваториальной плоскости за счет двух нитей, идущих с разных полюсов.
Анафаза Разрыв центромер хромосом.
Каждая хроматида становится самостоятельной хромосомой.
Сестринские хроматиды двигаются к разным полюсам клетки.
Телофаза Деспирализация хромосом и возобновление синтетических процессов в клетке.
Образование ядрышек и ядерной оболочки.
Разрушение веретена деления. Удвоение центриолей.
Цитокинез - деление тела клетки надвое.

Профаза . В профазе происходит конденсация хромосом, и они становятся видимыми при световой микроскопии. Хромосомы по мере компактизации ДНП приобретают строение хорошо окрашивающихся нитей. Число хромосом равно 4n, что соответствует количеству ДНК 4с. В связи с инактивацией генов в области ядрышкового организатора и угнетением синтеза РНК в профазе отмечается исчезновение ядрышек. Ядерная оболочка постепенно распадается на фрагменты и мелкие мембранные пузырьки. При этом к противоположным полюсам клетки расходятся центриоли.
В сателлитном участке материнской центриоли начинается образование микротрубочек, из которых формируются нити веретена деления.

Метафаза . Характерным событием для метафазы является перемещение хромосом в экваториальную плоскость веретена. Здесь они располагаются строго закономерно, образуя метафазную пластинку (при взгляде на веретено деления сбоку). Если рассматривать группу метафазных хромосом со стороны полюсов веретена, то отчетливо выступает фигура, напоминающая звезду (так называемая материнская звезда). В этот период можно определить число, форму и размеры хромосом (d-хромосом, двойных хромосом), составляющих метафазную пластинку.
К концу метафазы продольные половинки хромосом (сестринские хроматиды) обособляются на всем протяжении, кроме зоны первичной перетяжки.

Для каждого вида животных характерно строго постоянное число хромосом в соматических клетках. Для человека оно равно 46. По длине хромосом различают чередование окрашенных и неокрашенных участков. При этом каждая хромосома отличается неповторимым рисунком дифференциальной окраски. Хромосомы человека подразделяются на 7 групп по их размерам и особенностям строения (А, В, С, D, Е, F, G) и каждая хромосома имеет свой номер. Совокупность признаков строения хромосом, их размеров и числа составляет то, что называют кариотипом.

Анафаза включает процесс расхождения хромосом к полюсам делящейся клетки. Механизм движения хромосом объясняется гипотезой скользящих нитей, согласно которой состоящие из микротрубочек нити веретена, взаимодействуя друг с другом и с сократительными белками, тянут хромосомы к полюсам. Скорость движения хромосом достигает 0,2-0,5 мкм/мин, а вся анафаза продолжается 2-3 мин. Анафаза заканчивается перемещением двух идентичных наборов хромосом (s-хромосом, или одиночных хромосом) к полюсам, где они сближаются, образуя фигуры, напоминающие по внешнему виду (если смотреть со стороны полюса) звезды. Эти фигуры называют дочерними звездами.

Так как хромосомные звезды образуются у каждого из полюсов, данную стадию митоза иногда называют стадией двойной звезды (диастер), или стадией дочерних звезд. Телофаза - конечная стадия митоза, в течение которой на полюсах веретена реконструируются дочерние ядра. Перестройка телофазных хромосом напоминает процессы их изменения в профазе, но происходящие в обратном направлении. При взаимодействии хромосом с мембранными пузырьками цитоплазмы формируется ядерная оболочка. С переходом хромосом в интерфазное состояние образуются новые ядрышки. Телофаза завершается разделением тела клетки - цитотомией, или цитокинезом, что приводит к образованию двух дочерних клеток.

Часть клеток может выходить из цикла репродукции и вступить на путь дифференцировки. Некоторые клетки могут выходить из клеточного цикла в G1-периоде или после S-периода и находиться в покое (Go-период). Такие покоящиеся клетки сохраняют способность к делению и могут снова входить в цикл размножения.

Учебное видео: митоз клетки и его стадии

При проблемах с просмотром скачайте видео со страницы Оглавление темы "Строение клетки. Клеточные элементы.":

Лекция № 10

Количество часов: 2

МИТОЗ

1. Жизненный цикл клетки

2. Митоз. Стадии митоза, их продолжительность и характеристика

3. Амитоз. Эндорепродукция

1. Жизненный цикл клетки

Клетки многоклеточного организма чрезвычайно разнообразны по выполняемым функциям. В соответствии со специализацией клетки имеют разную продолжительность жизни. Так нервные клетки после завершения эмбриогенеза перестают делиться и функционируют на протяжении всей жизни организма. Клетки же других тканей (костного мозга, эпидермиса, эпителия тонкого кишечника) в процессе выполнения своей функции быстро погибают и замещаются новыми в результате клеточного деления. Деление клеток лежит в основе развития, роста и размножения организмов. Деление клеток также обеспечивает самообновление тканей на протяжении жизни организма и восстановление их целостности после повреждения. Существует два способа деления соматических клеток: амитоз и митоз . Преимущественно распространено непрямое деление клеток (митоз). Размножение с помощью митоза называют бесполым размножением, вегетативным размножением или клонированием.

Жизненный цикл клетки (клеточный цикл) – это существование клетки от деления до следующего деления или смерти. Продолжительность клеточного цикла в размножающихся клетках составляет 10-50 ч и зависит от типа клеток, их возраста, гормонального баланса организма, температуры и других факторов. Детали клеточного цикла варьируют среди разных организмов. У одноклеточных организмов жизненный цикл совпадает с жизнью особи. В непрерывно размножающихся тканевых клетках клеточный цикл совпадает с митотическим циклом.

Митотический цикл - совокупность последовательных и взаимосвязанных процессов в период подготовки клетки к делению и период деления (рис 1). В соответствие с приведенным выше определением митотический цикл подразделяют на интерфазу и митоз (греч. “митос” - нить).

Интерфаза - период между двумя делениями клетки - подразделяется на фазы G 1 , S и G 2 (ниже указана их продолжительность, типичная для растительных и животных клеток.). По продолжительности интерфаза составляет большую часть митотического цикла клетки. Наиболее вариабельны по времени G 1 и G 2 -периоды.

G 1 (от англ. grow – расти, увеличиваться). Продолжительность фазы составляет 4–8 ч. Это фаза начинается сразу после образования клетки. В этой фазе в клетке усиленно синтезируются РНК и белки, повышается активность ферментов, участвующих в синтезе ДНК. Если клетка в дальнейшем не делится, то переходит в фазу G 0 – период покоя. С учетом периода покоя клеточный цикл может длиться недели или даже месяцы (клетки печени).

S (от англ. synthesis - синтез). Длительность фазы составляет 6–9 ч. Масса клетки продолжает увеличиваться, и происходит удвоение хромосомной ДНК. Две спирали старой молекулы ДНК расходятся, и каждая становится матрицей для синтеза новых цепей ДНК. В результате каждая из двух дочерних молекул обязательно включает одну старую спираль и одну новую. Тем не менее хромосомы остаются одинарными по структуре, хотя и удвоенными по массе, так как две копии каждой хромосомы (хроматиды) все еще соединены друг с другом по всей длине. После завершения фазы S митотического цикла клетка не сразу начинает делиться.

G 2 . В этой фазе в клетке завершается процесс подготовки к митозу: накапливается АТФ, синтезируются белки ахроматинового веретена, удваиваются центриоли. Масса клетки продолжает увеличиваться до тех пор, пока она приблизительно вдвое не превысит начальную, а затем наступает митоз.

Рис. Митотический цикл: М - митоз, П - профаза, Мф - метафаза, А - анафаза, Т- телофаза, G 1 - пресинтетический период, S - синтетический период, G 2 - постсинтетический

2. Митоз. Стадии митоза, их продолжительность и характеристика. Митоз условно разделяют на четыре фазы: профазу, метафазу, анафазу и телофазу.

Профаза. Две центриоли начинают расходиться к противоположным полюсам ядра. Ядерная мембрана разрушается; одновременно специальные белки объединяются, формируя микротрубочки в виде нитей. Центриоли, расположенные теперь на противоположных полюсах клетки, оказывают организующее воздействие на микротрубочки, которые в результате выстраиваются радиально, образуя структуру, напоминающую по внешнему виду цветок астры («звезда»). Другие нити из микротрубочек протягиваются от одной центриоли к другой, образуя веретено деления. В это время хромосомы спирализуются и вследствие этого утолщаются. Они хорошо видны в световом микроскопе, особенно после окрашивания. Считывание генетической информации с молекул ДНК становится невозможным: синтез РНК прекращается, ядрышко исчезает. В профазе хромосомы расщепляются, но хроматиды все еще остаются скрепленными попарно в зоне центромеры. Центромеры тоже оказывают организующее воздействие на нити веретена, которые теперь тянутся от центриоли к центромере и от нее к другой центриоли.

Метафаза. В метафазе спирализация хромосом достигает максимума, и укороченные хромосомы устремляются к экватору клетки, располагаясь на равном расстоянии от полюсов. Образуется экваториальная, или метафазная, пластинка. На этой стадии митоза отчетливо видна структура хромосом, их легко сосчитать и изучить их индивидуальные особенности. В каждой хромосоме имеется область первичной перетяжки - центромера, к которой во время митоза присоединяются нить веретена деления и плечи. На стадии метафазы хромосома состоит из двух хроматид, соединенных между собой только в области центромеры.

Рис. 1. Митоз растительной клетки. А - интерфаза;
Б, В, Г, Д- профаза; Е, Ж-метафаза; 3, И - анафаза; К, Л, М-телофаза

В анафазе вязкость цитоплазмы уменьшается, центромеры разъединяются, и с этого момента хроматиды становятся самостоятельными хромосомами. Нити веретена деления, прикрепленные к центромерам, тянут хромосомы к полюсам клетки, а плечи хромосом при этом пассивно следуют за центромерой. Таким образом, в анафазе хроматиды удвоенных еще в интерфазе хромосом точно расходятся к полюсам клетки. В этот момент в клетке находятся два диплоидных набора хромосом (4n4с).

Таблица 1. Митотический цикл и митоз

Фазы

Процесс, происходящий в клетке

Интерфаза

Пресинтетический период (G1)

Синтез белка. На деспирализованных молекулах ДНК синтезируется РНК

Синтетический

период (S)

Синтез ДНК - самоудвоение молекулы ДНК. Построение второй хроматиды, в которую переходит вновь образовавшаяся молекула ДНК: получаются двухроматидные хромосомы

Постсинтетический период (G2)

Синтез белка, накопление энергии, подготовка к делению

Фазы

митоза

Профаза

Двухроматидные хромосомы спирализуются, ядрышки растворяются, центриоли расходятся, ядерная оболочка растворяется, образуются нити веретена деления

Метафаза

Нити веретена деления присоединяются к центромерам хромосом, двухроматидные хромосомы сосредоточиваются на экваторе клетки

Анафаза

Центромеры делятся, однохроматидные хромосомы растягиваются нитями веретена деления к полюсам клетки

Телофаза

Однохроматидные хромосомы деспирализуются, сформировывается ядрышко, восстанавливается ядерная оболочка, на экваторе начинает закладываться перегородка между клетками, растворяются нити веретена деления

В телофазе хромосомы раскручиваются, деспирализуются. Из мембранных структур цитоплазмы образуется ядерная оболочка. В это время восстанавливается ядрышко. На этом завершается деление ядра (кариокинез), затем происходит деление тела клетки (или цитокинез). При делении животных клеток на их поверхности в плоскости экватора появляется борозда, постепенно углубляющаяся и разделяющая клетку на две половины - дочерние клетки, в каждой их которых имеется по ядру. У растений деление происходит путем образования так называемой клеточной пластинки, разделяющей цитоплазму: она возникает в экваториальной области веретена, а затем растет во все стороны, достигая клеточной стенки (т.е. растет изнутри кнаружи). Клеточная пластинка формируется из материала, поставляемого эндоплазматической сетью. Затем каждая из дочерних клеток образует на своей стороне клеточную мембрану и, наконец, на обеих сторонах пластинки образуются целлюлозные клеточные стенки. Особенности протекания митоза у животных и растений приведены в таблице 2.

Таблица 2. Особенности митоза у растений и у животных

Растительная клетка

Животная клетка

Центриолей нет

Звезды не образуются

Образуется клеточная пластинка

При цитокенезе борозда не образуется

Митозы преимущественно

происходят в меристемах

Центриоли имеются

Звезды образуются

Клеточная пластинка не образуется

При цитокинезе образуется борозда

Митозы происходят

в различных тканях организма

Так из одной клетки формируются две дочерние, в которых наследственная информация точно копирует информацию, содержавшуюся в материнской клетке. Начиная с первого митотического деления оплодотворенной яйцеклетки (зиготы) все дочерние клетки, образовавшиеся в результате митоза, содержат одинаковый набор хромосом и одни и те же гены. Следовательно, митоз - это способ деления клеток, заключающийся в точном распределении генетического материала между дочерними клетками. В результате митоза обе дочерние клетки получают диплоидный набор хромосом.

Весь процесс митоза занимает в большинстве случаев от 1 до 2 часов. Частота митоза в разных тканях и у разных видов различна. Например, в красном костном мозге человека, где каждую секунду образуется 10 млн эритроцитов, в каждую секунду должно происходить 10 млн. митозов. А в нервной ткани митозы крайне редки: так, в центральной нервной системе клетки в основном перестают делиться уже в первые месяцы после рождения; а в красном костном мозге, в эпителиальной выстилке пищеварительного тракта и в эпителии почечных канальцев они делятся до конца жизни.

Регуляция митоза, вопрос о пусковом механизме митоза.

Факторы, побуждающие клетку к митозу точно не известны. Но полагают, что большую роль играет фактор соотношения объемов ядра и цитоплазмы (ядерно-плазменное соотношение). По некоторым данным, отмирающие клетки продуцируют вещества, способные стимулировать деление клетки. Белковые факторы, отвечающие за переход в фазу М, первоначально были идентифицированы на основе экспериментов по слиянию клеток. Слияние клетки, находящейся в любой стадии клеточного цикла, с клеткой находящейся в М фазе, приводит к вхождению ядра первой клетки в М фазу. Это означает, что в клетке находящейся в М фазе существует цитоплазматический фактор способный активировать М фазу. Позднее этот фактор был вторично обнаружен в экспериментах по переносу цитоплазмы между ооцитами лягушки, находящимися на различных стадиях развития, и был назван "фактором созревания" MPF (maturation promoting factor). Дальнейшее изучение MPF показало, что этот белковый комплекс детерминирует все события М-фазы. На рисунке показано, что распад ядерной мембраны, конденсация хромосом, сборка веретена, цитокинез регулируются MPF.

Митоз тормозится высокой температурой, высокими дозами ионизирующей радиации, действием растительных ядов. Один из таких ядов называется колхицин. С его помощью можно остановить митоз на стадии метафазной пластинки, что позволяет подсчитать число хромосом и дать каждой из них индивидуальную характеристику, т. е. провести кариотипирование.

4. Амитоз. Эндорепродукция

Амитоз (от греч. а – отриц. частица и митоз) -прямоеделение интерфазного ядра путем перешнуровывания без преобразования хромосом. При амитозе не происходит равномерное расхождение хроматид к полюсам. И это деление не обеспечивает образование генетически равноценных ядер и клеток. По сравнению с митозом амитоз более кратковременный и экономичный процесс. Амитотическое деление может осуществляться несколькими способами. Наиболее распространенный тип амитоза – это перешнуровывание ядра на две части. Этот процесс начинается с разделения ядрышка. Перетяжка углубляется, и ядро разделяется надвое. После этого начинается разделение цитоплазмы, однако это происходит не всегда. Если амитоз ограничивается только делением ядра, то это приводит к образованию дву- и многоядерных клеток. При амитозе может также происходить почкование и фрагментация ядер.

Клетка, претерпевшая амитоз, в последующем не способна вступить в нормальный митотический цикл.

Амитоз встречается в клетках различных тканей растений и животных. У растений амитотическое деление довольно часто встречается в эндосперме, в специализирующихся клетках корешков и в клетках запасающих тканей. Амитоз также наблюдается в высокоспециализированных клетках с ослабленной жизнеспособностью или дегенерирующих, при различных патологических процессах, таких как злокачественный рост, воспаление и т. п.

Основным процессом в подготовке клетки к митозу является реп­ликация ДНК и удвоение хромосом. Но синтез ДНК и митоз непос­редственно не связаны, т.к. окончательный синтез ДНК не является непосредственной причиной вступления клетки в митоз. Поэтому в ряде случаев клетки после удвоения хромосом не делятся, ядро и все клетки увеличиваются в объеме, становятся полиплоидными. Такое явление - редупликация хромосом, без деления, выработалась в про­цессе эволюции как способ, обеспечивающий рост органов без уве­личения числа клеток. Все случаи, когда происходит редупликация хромосом или репликация ДНК, но не наступает митоз, называются эндорепродукциями. Клетки становятся полиплоидными. Как постоянный процесс эндорепродукция наблюдается в клетках пече­ни, эпителия мочевыводящих путей млекопитающих. В случае эндомитоза хромосомы после редупликации становятся видны, но ядерная оболочка не разрушается.

Если делящиеся клетки на некоторое время охладить или об­ работать их каким-либо веществом, разрушающим микротрубочки веретена (например, колхицином), то деление клеток прекратит­ ся. При этом исчезнет веретено, а хромосомы без расхождения к полюсам будут продолжать цикл своих превращений: они начнут набухать, одеваться ядерной оболочкой. Так возникают за счет объединения всех неразошедшихся наборов хромосом крупные новые ядра. Они, естественно, будут содержать вначале 4п число хроматид и соответственно 4с количество ДНК. По определению, это уже не диплоидная, а тетраплоидная клетка. Такие полипло идные клетки могут из стадии gi переходить в S -период и, если убрать колхицин, снова делиться митотическим путем, давая уже потомков с 4 п числом хромосом. В результате можно получить полиплоидные клеточные линии разной величины плоидности. Этот прием часто используется для получения полиплоидных растений.

Как оказалось, во многих органах и тканях нормальных ди­ плоидных организмов животных и растений встречаются клетки с крупными ядрами, количество ДНК в которых кратно больше 2 п. При делении таких клеток видно, что количество хромосом у них также кратно увеличено по сравнению с обычными дипло­ идными клетками. Эти клетки являются результатом соматиче­ ской полиплоидии. Часто это явление называют эндорепродук цией - - появление клеток с увеличенным содержанием ДНК. Появление подобных клеток происходит в результате отсутствия в целом или незавершенности отдельных этапов митоза. Суще­ ствует несколько точек в процессе митоза, блокада которых приведет к его остановке и к появлению полиплоидных клеток. Блок может наступить при переходе от С 2 -периода к собствен­ но митозу, остановка может произойти в профазе и метафазе, в последнем случае часто происходит нарушение целостности ве­ ретена деления. Наконец, нарушения цитотомии также могут пре­ кратить деление, что приведет к появлению двуядерных и поли­ плоидных клеток.

При естественной блокаде митоза в самом его начале, при переходе G 2 - профазы, клетки приступают к следующему циклу репликации, который приведет к прогрессивному увеличению ко­ личества ДНК в ядре. При этом не наблюдается никаких морфо­ логических особенностей таких ядер, кроме их больших размеров. При увеличении ядер в них не выявляются хромосомы митоти ческого типа. Часто такой тип эндорепродукции без митотической конден сации хромосом встречается у беспозвоночных животных, обна­руживается он также и у позвоночных животных, и у растений. У беспозвоночных в результате блока митоза степень поли плоидии может достигать огромных значений. Так, в гигантских нейронах моллюска тритонии, ядра которых достигают величины до 1 мм (!), содержится более 2-10 5 гаплоидных наборов ДНК. Другим примером гигантской полиплоидной клетки, образо­ вавшейся в результате редупликации ДНК без вступления кле­ ток в митоз, может служить клетка шелкоотделительной железы тутового шелкопряда. Ее ядро имеет причудливую ветвистую форму и может содержать огромные количества ДНК. Гигантские клетки железы пищевода аскариды могут содержать до 100000с ДНК.

Особый случай эндорепродукции представляет собой увеличе­ ние плоидности путем политении. При политении в S -периоде при репликации ДИК новые до­ черние хромосомы продолжают оставаться в деспирализованном состоянии, но располагаются друг около друга, не расходятся и не претерпевают митотическую конденсацию. В таком истинно интерфазном виде хромосомы снова вступают в следую­щий цикл репликации, снова удваиваются и не расходятся. По­ степенно в результате репликации и нерасхождения хромосомных нитей образуется многонитчатая, политенная структура хромосо­ мы интерфазного ядра. Последнее обстоятельство необходимо под­ черкнуть, так как такие гигантские политенные хромосомы ни­ когда не участвуют в митозе, более того - это истинно интерфаз­ ные хромосомы, участвующие в синтезе ДНК и РНК. От митотических хромосом они резко отличаются и по разме­ рам: в несколько раз толще митотических хромосом из-за того, что состоят из пучка множественных неразошедшихся хро матид - по объему политенные хромосомы дрозофилы в 1000 раз «больше митотических. Они в 70-250 раз длиннее митотических из-за того, что в интерфазном состоянии хромосомы менее кон­денсированы (спирализованы), чем митотические хромосомы. Кроме того, у двукрылых их общее число в клетках равно гаплоидному из-за того, что при политенизации происходит объе­динение, конъюгация гомологичных хромосом. Так, у дрозофилы в диплоидной соматической клетке 8 хромосом, а в гигантской клетке слюнной железы - 4. Встречаются гигантские полиплоидные ядра с политенными хромосомами у некоторых личинок двукрылых насекомых в клет­ ках слюнных желез, кишечника, мальпигиевых сосудов, жирового тела и т. д. Описаны политенные хромосомы в макронуклеусе инфузо­ рии стилонихии. Лучше всего этот тип эндорепродукции изучен у насекомых. Было подсчитано, что у дрозофилы в клетках слюнных желез может произойти до 6-8 циклов редупликации, что приведет к общей плоидности клетки, равной 1024. У некоторых хирономид (их личинку называют мотылем) плоидность в этих клетках до­ стигает 8000-32000. В клетках политенные хромосомы начинают быть видны после достижения политении в 64-128 п, до этого такие ядра ничем, кроме размера, не отличаются от окружающих диплоидных ядер.

Отличаются политенные хромосомы и своим строением: они структурно неоднородны по длине, состоят из дисков, междис­ ковых участков и пуфов. Рисунок расположения дисков строго характерен для каждой хромосомы и отличается даже у близких видов животных. Диски представляют собой участки конденсированного хро­ матина. Диски могут отличаться друг от друга по толщине. Общее их число у политенных хромосом хирономид достигает 1,5-2,5 тыс. У дрозофилы имеется около 5 тыс. дисков. Диски разделены междисковыми пространствами, состоящими, так же как и диски, из фибрилл хроматина, только более рыхла упакованных. На политенных хромосомах двукрылых часто видны вздутия, пуфы. Оказалось, что пуфы возникают на местах некоторых дис ков за счет их деконденсации и разрыхления. В пуфах выявля­ ется РНК, которая там же и синтезируется. Рисунок расположения и чередования дисков на политенных хромосомах постоянен и не зависит ни от органа, ни от возраста животного. Это является хорошей иллюстрацией одинаковости качества генетической информации в каждой клетке организма. Пуфы являются временными образованиями на хро­мосомах, и в процессе развития организма существует определен­ная последовательность в их появлении и исчезновении на гене­ тически различных участках хромосомы. Эта последо вательность различна для разных тканей. Сейчас доказано, что образование пуфов на политенных хромосомах - - это выражение генной активности: в пуфах синтезируются РНК, необходимые для проведения белковых синтезов на разных этапах развития насекомого. В естественных условиях у двукрылых особенно активны в отношении синтеза РНК два самых крупных пуфа, так называе­ мые кольца Бальбиани, который описал их 100 лет тому назад.

В других случаях эндорепродукции полиплоидные клетки воз­ никают в результате нарушений аппарата деления - веретена: при этом происходит митотическая конденсация хромосом. Такое явление носит название эндомитоз, потому что конденсация хро­ мосом и их изменения происходят внутри ядра, без исчезновения ядерной оболочки. Впервые явление эндомитоза было хорошо изучено в клетках: различных тканей водяного клопа - - геррии. В начале эндоми­ тоза хромосомы конденсируются, благодаря чему становятся хо­ рошо различимы внутри ядра, затем хроматиды обособляются, вытягиваются. Эти стадии по состоянию хромосом могут соответ­ствовать профазе и метафазе обычного митоза. Затем хромосомы в таких ядрах исчезают, и ядро принимает вид обычного интер­ фазного ядра, но размер его увеличивается в соответствии с уве­ личением плоидности. После очередной редупликации ДНК такой цикл эндомитоза повторяется. В результате могут возникнуть полиплоидные (32 п) и даже гигантские ядра. Сходный тип эндомитоза описан при развитии макронуклеу­ сов у некоторых инфузорий, у целого ряда растений.

Результат эндорепродукции: полиплоидия и увеличение размеров клетки.

Значение эндорепродукции: не прерывается деятельность клетки. Так, например, деле­ ние нервных клеток привело бы к временному выключению их функций; эндорепродукция позволяет без перерыва в функциони­ ровании нарастить клеточную массу и тем самым увеличить объ­ ем работы, выполняемый одной клеткой.

увеличение продуктивности клеток.



Похожие публикации