Что относится к промежуточному мозгу. Функции и строение промежуточного мозга

12.1. ОБЩИЕ СВЕДЕНИЯ О СТРОЕНИИ

ПРОМЕЖУТОЧНОГО МОЗГА

Промежуточный мозг (diencephalon) находится между большими полушариями мозга. Основную массу его составляют таламусы (thalami, зрительные бугры). Кроме того, к нему относятся структуры, расположенные позади таламусов, над и под ними, составляющие соответственно метаталамус (metathalamus, забугорье), эпиталамус (epithalamus, надбугорье) и гипоталамус (hypothalamus, подбугорье).

В состав эпиталамуса (надбугорья) входит шишковидное тело (эпифиз). С гипоталамусом (подбугорьем) связан гипофиз. К промежуточному мозгу относятся также зрительные нервы, зрительный перекрест (хиазма) и зрительные тракты - структуры, входящие в состав зрительного анализатора. Полостью промежуточного мозга является III желудочек мозга - остаток полости первичного переднего мозгового пузыря, из которого в процессе онтогенеза формируется этот отдел мозга.

III желудочек мозга представлен узкой полостью, расположенной в центре головного мозга между таламусами, в сагиттальной плоскости. Через межже- лудочковое отверстие (foramen interventriculare, монроево отверстие) он со- общается с боковыми желудочками, а через водопровод мозга - с четвертым мозговым желудочком. Верхнюю стенку III желудочка составляют свод (fornix) и мозолистое тело (corpus callosum), а в задней ее части - образования забугорья. Передняя его стенка сформирована ножками свода, отграничивающими спереди межжелудочковые отверстия, а также передней мозговой спайкой и конечной пластинкой. Боковые стенки III желудочка составляют медиальные поверхности таламусов, в 75% они соединены между собой межталамическим сращением (adhesio interthalamica, или massa intermedia). Нижние части боковых поверхностей и дно III желудочка состоят из образований, относящихся к гипоталамическому отделу промежуточного мозга.

12.2. ТАЛАМУСЫ

Таламусы (thalami), или зрительные бугры, расположены по бокам III желудочка и составляют до 80% массы промежуточного мозга. Они имеют яйцевидную форму, приблизительный объем 3,3 куб. см и состоят из клеточных

скоплений (ядер) и прослоек белого вещества. В каждом таламусе различают четыре поверхности: внутреннюю, наружную, верхнюю и нижнюю.

Внутренняя поверхность таламуса образует боковую стенку III желудочка. От расположенного ниже подбугорья она отделена неглубокой гипоталамической бороздой (sulcus hypothalamicus), идущей от межжелудочкового отверстия к входу в водопровод мозга. Внутреннюю и верхнюю поверхности разграничивает мозговая полоска (stria medullaris thalami). Верхняя поверхность таламуса, как и внутренняя, свободна. Она прикрыта сводом и мозолистым телом, с которыми не имеет сращений. В передней части верхней поверхности таламуса расположен его передний бугорок, который иногда называют возвышением переднего ядра. Задний конец таламуса утолщен - это так называемая подушка таламуса (pulvinar). Наружный край верхней поверхности таламуса подходит к хвостатому ядру, от которого ее отделяет пограничная полоска (stria terminalis).

По верхней поверхности таламуса в косом направлении проходит сосудистая борозда, которую занимает сосудистое сплетение бокового желудочка. Эта борозда делит верхнюю поверхность таламуса на наружную и внутреннюю части. Наружная часть верхней поверхности таламуса покрыта так называемой прикрепленной пластинкой, составляющей дно центрального отдела бокового желудочка мозга.

Наружная поверхность таламуса прилежит к внутренней капсуле, отделяющей ее от чечевичного ядра и головки хвостатого ядра. За подушкой таламуса расположены коленчатые тела, относящиеся к метаталамусу. Остальная часть нижней стороны таламуса сращена с образованиями гипоталамической области.

Таламусы находятся на пути восходящих трактов, идущих от спинного мозга и ствола мозга к коре больших полушарий. Они имеют многочисленные связи с подкорковыми узлами, проходящими главным образом через петлю чечевичного ядра (ansa lenticularis).

В состав таламуса входят клеточные скопления (ядра), отграниченные друг от друга прослойками белого вещества. К каждому ядру подходят собственные афферентные и эфферентные связи. Соседние ядра формируют группы. Выделяют: 1) передние ядра (nucll. anteriores) - имеют реципрокные связи с сосцевидным телом и сводом, известные как сосцевидно-таламический пучок (пучок Вик д"Азира) с поясной извилиной, относящиеся к лимбической системе; 2) задние ядра, или ядра подушки бугра (nucll. posteriores) - связаны с ассоциативными полями теменной и затылочной областей; играют важную роль в интеграции различных видов поступающей сюда сенсорной информации; 3) дорсальное боковое ядро (nucl. dorsolateralis) - получает афферентные импульсы от бледного шара и проецирует их в каудальные отделы поясной извилины; 4) вентролатеральные ядра (nucll. ventrolaterales) - самые крупные специфические ядра, являются коллектором большинства соматосенсорных путей: медиальная петля, спиноталамические пути, тройнично-таламические и вкусовые пути, по которым проходят импульсы глубокой и поверхностной чувствительности и др.; отсюда нервные импульсы направляются в корковую проекционную соматосенсорную зону коры (поля 1, 2, 3а и 3б, по Бродману); 5) медиальные ядра (nucll. mediales) - ассоциативные, получают афферентные импульсы от вентральных и интраламинарных таламических ядер, гипоталамуса, ядер среднего мозга и бледного шара; эфферентные пути отсюда направляются в ассоциативные области префронтальной коры, расположенные впереди

моторной зоны; 6) внутрипластинчатые ядра (интраламинарные ядра, nucll. intralaminares) - составляют основную часть неспецифической проекционной системы таламуса; афферентные импульсы они получают частично по восходящим волокнам ретикулярной формации ствола нерва, частично по волокнам, начинающимся от ядер таламуса. Исходящие от этих ядер проводящие пути направляются в хвостатое ядро, скорлупу, бледный шар, относящиеся к экстрапирамидной системе, и, вероятно, в другие ядерные комплексы таламуса, которые затем направляют их во вторичные ассоциативные зоны коры мозга. Важной частью интраламинарного комплекса является центральное ядро таламуса, представляющее таламический отдел восходящей ретикулярной акти- вирующей системы.

Таламусы являются своеобразным коллектором чувствительных путей, местом, в котором концентрируются все пути, проводящие чувствительные импульсы, идущие от противоположной половины тела. Кроме того, в переднее его ядро по сосцевидно-таламическому пучку поступают обонятельные импульсы; вкусовые волокна (аксоны вторых нейронов, расположенных в одиночном ядре) заканчиваются в одном из ядер вентролатеральной группы.

Таламические ядра, получающие импульсы от строго определенных участков тела и передающие эти импульсы в соответствующие ограниченные зоны коры (первичные проекционные зоны), называются проекционными, специфическими или переключающими ядрами. К ним относятся вентролатеральные ядра. Переключающие ядра для зрительных и слуховых импульсов заложены соответственно в латеральных и медиальных коленчатых телах, прилежащих к задней поверхности зрительных бугров и составляющих основную массу забу- горья.

Наличие в проекционных ядрах таламуса, прежде всего в вентролатеральных ядрах, определенного соматотопического представительства делает возможным при ограниченном по объему патологическом очаге в таламусе развитие расстройства чувствительности и сопряженных с этим двигательных нарушений в какой-либо ограниченной части противоположной половины тела.

Ассоциативные ядра, получая чувствительные импульсы от переключающих ядер, подвергают их частичному обобщению - синтезу; в результате из этих таламических ядер к коре большого мозга направляются импульсы, уже усложненные вследствие синтеза поступающей сюда информации. Следовательно, таламусы являются не только промежуточным центром переключения, но могут быть и местом частичной переработки чувствительных импульсов.

Кроме переключающих и ассоциативных ядер, в таламусах находятся, как уже упоминалось, интраламинарные (парафасцикулярное, срединное и медиальное, центральные, парацентральное ядра) и ретикулярные ядра, не имеющие специфической функции. Они рассматриваются как часть ретикулярной формации и объединяются под названием неспецифической диффузной таламической системы. Будучи связанной с корой больших полушарий и структурами лимбико-ретикулярного комплекса. Эта система принимает участие в регуляции тонуса и в «настройке» коры и играет определенную роль в сложном механизме формирования эмоций и соответствующих им выразительных непроизвольных движений, мимики, плача и смеха.

Таким образом, к таламусам по афферентным путям сходится информация практически от всех рецепторных зон. Эта информация подвергается существенной переработке. Отсюда к коре больших полушарий направляется лишь

часть ее, другая же и, вероятно, большая часть принимает участие в формировании безусловных и, возможно, некоторых условных рефлексов, дуги которых замыкаются на уровне таламусов и образований стриопаллидарной системы. Таламусы являются важнейшим звеном афферентной части рефлекторных дуг, обусловливающих инстинктивные и автоматизированные двигательные акты, в частности привычные локомоторные движения (ходьба, бег, плавание, езда на велосипеде, катание на коньках и т.п.).

Волокна, идущие от таламуса к коре больших полушарий мозга, принимают участие в формировании заднего бедра внутренней капсулы и лучистого венца и образуют так называемые лучистости таламуса - переднюю, среднюю (верхнюю) и заднюю. Передняя лучистость связывает переднее и отчасти внутреннее и наружное ядра с корой лобной доли. Средняя лучистость таламуса - самая широкая - связывает вентролатеральные и медиальные ядра с задними отделами лобной доли, с теменной и височной долями мозга. Задняя лучистость состоит главным образом из зрительных волокон (radiatio optica, или пучок Грациоле), идущих от подкорковых зрительных центров в затылочную долю, к корковому концу зрительного анализатора, расположенному в области шпорной борозды (fissura calcarina). В составе лучистого венца проходят и волокна, несущие импульсы от коры больших полушарий к таламусу (корково-таламические связи).

Сложность организации и многообразие функций таламуса определяет полиморфизм возможных клинических проявлений его поражения. Поражение вен- тролатеральной части таламуса обычно ведет к повышению порога чувстви- тельности на стороне, противоположной патологическому очагу, при этом меняется аффективная окраска болевых и температурных ощущений. Больной воспринимает их как трудно локализуемые, разлитые, имеющие неприятный, жгучий оттенок. Характерна в соответствующей части противоположной половины тела гипалгезия в сочетании с гиперпатией, при этом особенно выражено расстройство глубокой чувствительности, что может вести к неловкости движений, сенситивной атаксии.

При поражении заднелатеральной части таламуса может проявиться так называемый таламический синдром Дежерина-Русси [описали в 1906 г. французские невропатологи J. Dejerine (1849-1917) и G. Roussy (1874-1948)], включающий в себя жгучие, мучительные, подчас невыносимые таламические боли в противоположной половине тела в сочетании с нарушением поверхностной и особенно глубокой чувствительности, псевдоастериогнозом и сенситивной гемиатаксией, явлениями гиперпатии и дизестезии. Таламический синдром Де- жерина-Русси чаще возникает при развитии в нем инфарктного очага в связи с развитием ишемии в латеральных артериях таламуса (aa. thalamici laterales) - ветвях задней мозговой артерии. Иногда при этом на стороне, противоположной патологическому очагу, возникает преходящий гемипарез и развивается гомонимная гемианопсия. Следствием расстройства глубокой чувствительности может быть сенситивная гемиатаксия, псевдоастриогноз. В случае поражения медиальной части таламуса, зубчато-таламического пути, по которому к таламусу проходят импульсы от мозжечка, и руброталамических связей на противоположной патологическому очагу стороне появляется атаксия в соче- тании с атетоидным или хореоатетоидным гиперкинезом, обычно особенно выраженным в кисти и пальцах («таламическая» рука). В таких случаях харак- терна тенденция к фиксации руки в определенной позе: плечо прижато к туло- вищу, предплечье и кисть согнуты и пронированы, основные фаланги пальцев

согнуты, остальные разогнуты. Пальцы руки при этом совершают медленные вычурные движения атетоидного характера.

В артериальном кровоснабжении таламуса участвуют задняя мозговая артерия, задняя соединительная артерия, передняя и задние ворсинчатые артерии.

12.3. МЕТАТАЛАМУС

Метаталамус (metathalamus, забугорье) составляют медиальные и латеральные коленчатые тела, расположенные под задней частью подушки таламуса, выше и латеральнее верхних холмиков четверохолмия.

Медиальное коленчатое тело (corpus geniculatum medialis) содержит клеточное ядро, в котором заканчивается латеральная (слуховая) петля. Нервными волокнами, составляющими нижнюю ручку четверохолмия (brachium colliculi inferioris), оно связано с нижними холмиками четверохолмия и вместе с ними образует подкорковый слуховой центр. Аксоны клеток, заложенные в подкорковом слуховом центре, главным образом в медиальном коленчатом теле, направляются к корковому концу слухового анализатора, расположенному в верхней височной извилине, точнее в коре находящихся на ней мелких извилин Гешля (поля 41, 42, 43, по Бродману), при этом слуховые импульсы передаются к проекционному слуховому полю коры в тонотопическом порядке. Поражение медиального коленчатого тела ведет к снижению слуха, более выраженному на противоположной стороне. Поражение обоих медиальных коленчатых тел может обусловить глухоту на оба уха.

При поражении медиальной части метаталамуса может проявиться клиническая картина синдрома Франкль-Хохварта, для которого характерны двустороннее снижение слуха, нарастающее и ведущее к глухоте, и атаксия, сочетающиеся с парезом взора вверх, концентрическим сужением полей зрения и признаками внутричерепной гипертензии. Описал этот синдром при опухоли эпифиза австрийский невропатолог L. Frankl-Chochwart (1862-1914).

Латеральное коленчатое тело (corpus geniculatum laterale), как и верхние бугры четверохолмия, с которыми оно связано верхними ручками четверохолмия (brachii colliculi superiores), состоит из чередующихся слоев серого и белого вещества. Латеральные коленчатые тела составляют подкорковый зрительный центр. Главным образом в них заканчиваются зрительные тракты. Аксоны клеток латеральных коленчатых тел проходят компактно в составе заднего отдела заднего бедра внутренней капсулы, а затем формируют зрительную лучистость (radiatio optica), по которой зрительные импульсы достигают в строгом ретинотопическом порядке коркового конца зрительного анализатора - в основном область шпорной борозды на медиальной поверхности затылочной доли (поле 17, по Бродману).

На вопросах, связанных со строением, функцией, методами обследования зрительного анализатора, а также со значением патологии, выявляемой при его обследовании, для топической диагностики следует остановиться подробнее, так как многие структуры, входящие в состав зрительной системы, имеют прямое отношение к промежуточному мозгу и в процессе онтогенеза формируются из первичного переднего мозгового пузыря.

12.4. ЗРИТЕЛЬНЫЙ АНАЛИЗАТОР

12.4.1. Анатомо-физиологические основы зрения

Световые лучи, несущие информацию об окружающем пространстве, проходят через преломляющие среды глаза (роговицу, хрусталик, стекловидное тело) и воздействуют на рецепторы зрительного анализатора, располагающиеся в сетчатой оболочке глаза; при этом изображение видимого пространства проецируется на сетчатку в перевернутом виде.

Зрительные рецепторы (рецепторы световой энергии) представляют собой нейроэпителиальные образования, известные под названием палочек и колбочек, которые обеспечивают возникающие под влиянием света фотохимические реакции, преобразующие энергию света в нервные импульсы. В сетчатой оболочке глаза человека колбочек около 7 млн, палочек - приблизительно 150 млн. Колбочки обладают наиболее высокой разрешающей способностью и обеспечивают в основном дневное и цветное зрение. Они сконцентрированы главным образом в участке сетчатой оболочки, известном как пятно (macula), или желтое пятно. Пятно занимает приблизительно 1% площади сетчатки.

Палочки и колбочки расцениваются как специализированный нейроэпителий, имеющий сходство с клетками эпендимы, выстилающей желудочки мозга. Этот светочувствительный нейроэпителий находится в одном из наружных слоев сетчатки, в области желтого пятна, в расположенной в его центре ямке сконцентрировано особенно большое количество колбочек, что делает его местом наиболее ясного зрения. Импульсы, возникающие в наружном слое сетчатки, достигают расположенных во внутренних слоях сетчатки промежуточных, главным образом биполярных нейронов, а затем и ганглиозных нервных клеток. Аксоны ганглиозных клеток радиально сходятся к одному участку сетчатки, находящемуся медиальнее пятна, и формируют диск зрительного нерва, по сути, его начальный отрезок.

Зрительный нерв, n. opticus (II черепной нерв) состоит из аксонов ганглиозных клеток сетчатой оболочки, выходит из глазного яблока вблизи от его заднего полюса, проходит через ретробульбарную клетчатку. Ретробульбарная (глазничная) часть зрительного нерва, находящаяся в пределах глазницы, имеет длину около 30 мм. Зрительный нерв здесь покрыт всеми тремя мозговыми оболочками: твердой, паутинной и мягкой. Далее он покидает глазницу через расположенное в ее глубине зрительное отверстие и проникает в среднюю черепную ямку (рис. 12.1).

Внутричерепная часть зрительного нерва более короткая (от 4 до 17 мм) и покрыта лишь мягкой мозговой оболочкой. Зрительные нервы, подходя к диафрагме турецкого седла, сближаются и образуют неполный зрительный перекрест (chiasma opticum).

В хиазме перекрест совершают только те волокна зрительных нервов, которые передают импульсы от внутренних половин сетчатой оболочки глаз. Аксоны же ганглиозных клеток, находящихся в латеральных половинах сетчатки, не подвергаются перекресту и, проходя через хиазму, лишь огибают снаружи участвующие в формировании перекреста волокна, составляя его латеральные отделы. Нервные волокна, несущие зрительную информацию от желтого пятна, составляют около 1 / 3 волокон зрительного нерва; проходя в составе хиазмы, они также совершают частичный перекрест, разделяясь на перекрещенные и

Рис. 12.1. Зрительный анализатор и рефлекторная дуга зрачкового рефлекса. 1 - сетчатка глаза; 2 - зрительный нерв; 3 - хиазма; 4 - зрительный тракт; 5 - клетки наружного коленчатого тела; 6 - зрительная лучистость (пучок Грациоле); 7 - корковая проекционная зрительная зона - шпорная борозда; 8 - переднее двухолмие; 9 - ядра глазодвигательного (III) нерва; 10 - вегетативная часть глазодвигательного (III) нерва; 11 - ресничный узел.

прямые волокна макулярного пучка. Кровоснабжение зрительных нервов и хиазмы обеспечивают ветви глазной артерии (а. ophtalmica).

Пройдя через хиазму, аксоны ганглиозных клеток образуют два зрительных тракта, каждый из которых состоит из нервных волокон, несущих импульсы от одноименных половин сетчаток обоих глаз. Зрительные тракты проходят по основанию мозга и достигают наружных коленчатых тел, являющихся подкорковыми зрительными центрами. В них заканчиваются аксоны ганглиозных клеток сетчатки, и импульсы переключаются на следующие нейроны. Аксоны нейронов каждого латерального коленчатого тела проходят через зачечевидную часть (pars retrolenticularis) внутренней капсулы и формируют зрительную лучистость (radiatio optica), или пучок Грациоле, который участвует в формировании белого вещества височной и в меньшей степени теменной долей мозга, затем его затылочной доли и заканчивается в корковом конце зрительного анализатора, т.е. в первичной зрительной коре, расположенной главным образом на медиальной поверхности затылочной доли в области шпорной борозды (поле 17, по Бродману).

Следует подчеркнуть, что на всем протяжении зрительных путей от диска зрительного нерва до проекционной зоны в коре большого мозга зрительные волокна расположены в строгом ретинотопическом порядке.

Зрительный нерв принципиально отличается от черепных нервов стволового уровня. Это, по сути, даже не нерв, а выдвинутый вперед на периферию мозговой тяж. Составляющие его волокна не имеют характерной для периферического нерва шванновской оболочки, дистальнее места выхода зрительного нерва их глазного яблока ее заменяет миелиновая оболочка, формирующаяся из оболочки прилежащих к нервным волокнам олигодендроцитов. Такое строение зрительных нервов объяснимо, если учесть, что в процессе онтогене-

за зрительные нервы образуются из стеблей (ножек) так называемых глазных пузырей, представляющих собой выпячивания передней стенки первичного переднего мозгового пузыря, которые трансформируются в дальнейшем в сетчатую оболочку глаз.

12.4.2. Исследование зрительного анализатора

В неврологической практике наиболее значимы сведения об остроте зрения (visus), о состоянии полей зрения и о результатах офтальмоскопии, в процессе которой возможен осмотр глазного дна и визуализация при этом диска зрительного нерва. При необходимости возможно и фотографирование глазного дна.

Острота зрения. Исследование остроты зрения обычно проводится по спе- циальным таблицам Д.А. Сивцева, состоящим из 12 строк букв (для неграмотных - незамкнутые кольца, для детей - контурные рисунки). Нормально видящий глаз на расстоянии 5 м от хорошо освещенной таблицы четко дифференцирует буквы, составляющие ее 10-ю строку. В таком случае зрение признается нормальным и условно принимается за 1,0 (visus = 1,0). Если пациент различает на расстоянии 5 м лишь 5-ю строку, то visus = 0,5; если он читает только 1-ю строку таблицы, то visus = 0,1 и т.д. Если пациент на расстоянии 5 м не дифференцирует входящие в состав 1-й строки изображения, то можно приближать его к таблице до тех пор, пока он не станет различать составляющие ее буквы или рисунки. В связи с тем, что штрихи, которыми нарисованы буквы первой строки, имеют толщину, приблизительно равную толщине пальца, врач нередко при проверке зрения у слабовидящих показывает им пальцы своей руки. Если больной различает пальцы врача и может сосчитать их на расстоянии 1 м, то visus исследуемого глаза считается равным 0,02, при возможности считать пальцы лишь на расстоянии 0,5 м visus = 0,01. Если visus еще ниже, то больной различает пальцы обследующего лишь при еще большем приближении пальцев, тогда обычно говорят, что он «считает пальцы у лица». Если же больной не различает пальцы и на очень близком расстоянии, но указывает на источник света, говорят о наличии у него правильной или неправильной проекции света. В таких случаях visus обычно обозначается дробью 1 / б , что означает: visus бесконечно мал.

" бесконечность"

При оценке остроты зрения, если почему-либо visus определяется не с расстояния 5 м, можно пользоваться формулой Снеленна: V = d/D, где V - visus, d - расстояние от исследуемого глаза до таблицы, а D - расстояние, с которого штрихи, составляющие буквы, различимы под углом в 1", - этот показатель указан в начале каждой строки таблицы Сивцева.

Visus всегда должен определяться для каждого глаза в отдельности, другой глаз при этом прикрывается. Если при обследовании выявлено снижение остроты зрения, то необходимо выяснить, не является ли оно следствием чисто офтальмологической патологии, в частности аномалии рефракции. В процессе проверки остроты зрения в случае наличия у больного аномалии рефракции (миопия, гиперметропия, астигматизм) необходима ее коррекция с помощью очковых стекол. В связи с этим пациент, который обычно пользуется очками, при проверке остроты зрения должен надеть их.

Снижение зрения обозначается термином «амблиопия», слепота - «амавроз».

Поле зрения. Каждый глаз видит лишь часть окружающего пространс- тва - поле зрения, границы которого находятся под определенным углом от оптической оси глаза. А.И. Богословский (1962) дал этому пространству сле- дующее определение: «Все поле, которое одновременно видит глаз, фиксируя неподвижным взором и при неподвижном положении головы определенную точку в пространстве, и составляет его поле зрения». Видимую глазом часть пространства, или поле зрения, можно очертить на осях координат и дополнительных диагональных осях, переводя при этом угловые градусы в линейные единицы измерения. В норме наружная граница поля зрения составляет 90?, верхняя и внутренняя - 50-60?, нижняя - до 70?. В связи с этим изображенное на графике поле зрения имеет форму неправильного эллипса, вытянутого кнаружи (рис. 12.2).

Поле зрения, как и visus, проверяется для каждого глаза отдельно. Второй глаз во время обследования прикрывается. Для исследования поля зрения пользуются периметром, первый вариант которого был предложен в 1855 г. немецким офтальмологом A. Grefe (1826-1870). Существуют различные его варианты, но в большинстве случаев каждый из них имеет вращающуюся вокруг центра градуированную дугу с двумя метками, одна из которых неподвижна и находится в центре дуги, другая перемещается по дуге. Первая метка служит

Рис. 12.2. Нормальное поле зрения.

Пунктиром изображено поле зрения на белый цвет, цветными линиями - на соответствующие цвета.

для фиксации на ней обследуемого глаза, вторая, подвижная, - для определения границ его поля зрения.

При неврологической патологии могут быть различные формы сужения полей зрения, в частности по концентрическому типу и по типу гемианопсии (выпадение половины поля зрения), или квадрантной гемианопсии (выпадение верхней или нижней части половины поля зрения). Кроме того, в процессе периметрии или кампиметрии 1 могут выявляться скотомы - невидимые больным участки поля зрения. Надо иметь в виду обязательное наличие в поле зрения здорового глаза небольшой физиологической скотомы (слепого пятна) в 10-15? латеральнее от центра поля, представляющей собой проекцию участка глазного дна, занятого диском зрительного нерва и потому лишенного фоторецепторов.

Ориентировочное представление о состоянии полей зрения можно получить и предложив пациенту фиксировать исследуемый глаз на расположенной перед ним определенной точке, после чего вводить в поле зрения или выводить из него какой-либо предмет, выявляя при этом момент, когда этот предмет становится видимым или исчезающим. Границы поля зрения в таких случаях, конечно же, определяются приблизительно.

Выпадение одноименных (правых или левых) половин полей зрения (гомонимная гемианопсия) можно выявить, попросив больного, смотрящего перед собой, разделить пополам развернутое перед ним в горизонтальной плоскости полотенце (проба с полотенцем). Больной в случае наличия у него гемианопсии делит пополам лишь видимую им часть полотенца и в связи с этим оно разделяется на неравные отрезки (при полной гомонимной геминанопсии их соотношение равно 1:3). Проба с полотенцем может быть проверена, в частности, и у больного, находящегося в горизонтальном положении.

Диск зрительного нерва. Состояние глазного дна, в частности диска зритель- ного нерва, выявляется при его осмотре с помощью офтальмоскопа. Офтальмоскопы могут быть разной конструкции. Простейшим является зеркальный офтальмоскоп, состоящий из зеркала-отражателя, отражающего луч света на сетчатку. В центре этого зеркала имеется небольшое отверстие, через которое врач рассматривает сетчатую оболочку глаза. Для увеличения ее изображения пользуются лупой в 13 или 20 дптр. Лупа представляет собой двояковыпуклую линзу, поэтому врач видит через нее перевернутое (обратное) изображение осматриваемого участка сетчатки.

Более совершенными являются прямые безрефлексные электрические офтальмоскопы. Большие безрефлексные офтальмоскопы дают возможность не только осмотреть, но и сфотографировать глазное дно.

В норме диск зрительного нерва круглый, розовый, имеет четкие границы. От центра диска зрительного нерва в радиальном направлении расходятся артерии (ветви центральной артерии сетчатки), к центру диска сходятся вены сетчатки. Диаметры артерий и вен в норме соотносятся между собой как 2:3.

Волокна, идущие от желтого пятна и обеспечивающие центральное зрение, вступают в зрительный нерв с височной стороны и, лишь пройдя некоторое расстояние, смещаются в центральную часть нерва. Атрофия макулярных, т.е. идущих от желтого пятна, волокон вызывает характерное побледнение височ-

1 Метод выявления скотом; заключается в регистрации восприятия фиксированным глазом объектов, перемещающихся по черной поверхности, расположенной во фронтальной плоскости на расстоянии 1 м от исследуемого глаза.

ной половины диска зрительного нерва, которое может сочетаться с ухудшением центрального зрения, тогда как периферическое зрение при этом остается сохранным (возможный вариант нарушения зрения, в частности, при обострении рассеянного склероза). При повреждении периферических волокон зрительного нерва в экстраорбитальной зоне характерно концентрическое сужение зрительного поля.

При поражении аксонов ганглиозных клеток на любом участке их следования до хиазмы (зрительный нерв) со временем наступает дегенерация диска зрительного нерва, называющаяся в таких случаях первичной атрофией диска зрительного нерва. Диск зрительного нерва сохраняет свои размеры и форму, но цвет его бледнеет и может стать серебристо-белым, сосуды его при этом запустевают.

При поражении проксимальных отделов зрительных нервов и особенно хиазмы признаки первичной атрофии дисков развиваются позднее, при этом атрофический процесс постепенно распространяется в проксимальном направлении - нисходящая первичная атрофия. Поражение хиазмы и зрительного тракта может вести к сужению полей зрения, при этом поражение хиазмы в большинстве случаев сопровождается частичной или полной гетеронимной гемианопсией. При полном поражении хиазмы или двустороннем тотальном поражении зрительных трактов со временем должны развиться слепота и первичная атрофия дисков зрительных нервов.

Если же у больного повышается внутричерепное давление, то нарушается венозный и лимфатический отток из диска зрительного нерва, что ведет к развитию в нем признаков застоя (застойного диска зрительного нерва). Диск при этом отекает, увеличивается в размере, границы его становятся размытыми, отечная ткань диска может выстоять в стекловидное тело. Артерии диска зрительного нерва сужаются, вены же оказываются расширенными и переполненными кровью, извитыми. При резко выраженных явлениях застоя возможны кровоизлияния в ткань диска зрительного нерва. Развитию застойных дисков зрительных нервов при внутричерепной гипертензии предшествует выявляемое при кампиметрии увеличение слепого пятна (Федоров С.Н., 1959).

Застойные диски зрительных нервов, если не устраняется причина внутричерепной гипертензии, со временем могут переходить в состояние вторичной атрофии, при этом размеры их постепенно уменьшаются, приближаясь к нормальным, границы становятся более четкими, цвет - бледным. В таких случаях говорят о развитии атрофии дисков зрительных нервов после застоя или о вторичной атрофии дисков зрительных нервов. Развитие вторичной атрофии дисков зрительных нервов у больного с выраженной внутричерепной гипертензией иногда сопровождается уменьшением гипертензионной головной боли, что можно объяснить параллельным развитием дегенеративных изменений в рецепторном аппарате мозговых оболочек и других тканей, находящихся в полости черепа.

Офтальмоскопическая картина застоя на глазном дне и неврита зрительного нерва имеет много общих черт, но при застое острота зрения длительно (в течение нескольких месяцев) может оставаться нормальной или близкой к норме и снижается лишь при развитии вторичной атрофии зрительных нервов, а при неврите зрительного нерва острота зрения падает остро или подостро и весьма значительно, вплоть до слепоты.

12.4.3. Изменения функций зрительной системы при поражении различных ее отделов

Поражение зрительного нерва ведет к нарушению функций глаза на стороне патологического очага, при этом отмечается снижение остроты зрения, сужение поля зрения, чаще по концентрическому типу, иногда выявляются патологические скотомы, со временем возникают признаки первичной нисходящей атрофии диска зрительного нерва, нарастание которых сопровождается прогрессирующим снижением остроты зрения, при этом возможно развитие слепоты. Надо иметь в виду, что чем проксимальнее расположена зона поражения зрительного нерва, тем позднее наступает атрофия его диска.

В случае поражения зрительного нерва, ведущего к слепоте глаза, оказывается несостоятельной афферентная часть дуги зрачкового рефлекса на свет, в связи с этим прямая реакция зрачка на свет оказывается нарушенной, тогда как содружественная реакция зрачка на свет сохранна. Ввиду отсутствия прямой реакции зрачка на свет (его сужения под влиянием нарастающей освещенности) возможна анизокория, так как не реагирующий на свет зрачок слепого глаза не сужается при нарастании освещенности.

Острое одностороннее снижение зрения у молодых пациентов, если это не обусловлено поражением сетчатой оболочки глаза, скорее всего, является следствием демиелинизации зрительного нерва (ретробульбарный неврит). У больных пожилого возраста снижение зрения может быть обусловлено нарушениями кровообращения в сетчатке или зрительном нерве. При височном артериите возможна ишемическая ретинопатия, при этом обычно определяет- ся высокая СОЭ; диагностике могут способствовать результаты биопсии стенки наружной височной артерии.

При подострых расстройствах зрения, с одной стороны, надо иметь в виду и возможность наличия онкологической патологии, в частности опухоли зрительного нерва или близко к нему расположенных тканей. В таком случае целесообразно исследовать состояние глазницы, канала зрительного нерва, области хиазмы с помощью краниографии, КТ и МРТ.

Причиной острого или подострого двустороннего снижения зрения может быть токсическая невропатия зрительных нервов, в частности отравление метанолом.

Поражение перекреста зрительных нервов (хиазмы) ведет к двустороннему нарушению полей зрения, может обусловить также снижение остроты зрения. Со временем в связи с нисходящей атрофией зрительных нервов в таких случаях развивается первичная нисходящая атрофия дисков зрительных нервов, при этом течение и характер расстройств зрительных функций зависят от первичной локализации и темпа поражения хиазмы. Если поражена централь- ная часть хиазмы, что нередко бывает при сдавливании ее опухолью, обычно аденомой гипофиза, то сначала повреждаются перекрещивающиеся в хиазме волокна, идущие от внутренних половин сетчаток обоих глаз. Слепнут внутренние половины сетчаток, что ведет к выпадению височных половин полей зрения - развивается битемпоральная гемианопсия, при которой больной, глядя вперед, видит ту часть пространства, которая перед ним, и не видит, что делается по сторонам. Патологическое воздействие на наружные части хиазмы ведет к выпадению внутренних половин полей зрения - к биназальной гемианопсии (рис. 12.3).

Рис. 12.3. Изменения полей зрения при поражении различных отделов зрительного анализатора (по Гомансу).

а - при поражении зрительного нерва слепота на той же стороне; б - поражение центральной части хиазмы - двусторонняя гемианопсия с височной стороны (битемпоральная гемианопсия); в - поражение наружных отделов хиазмы с одной стороны - назальная гемианопсия на стороне патологического очага; г - поражение зрительного тракта - изменение обоих полей зрения по типу гомонимной гемианопсии на стороне, противоположной очагу поражения; д, е - частичное поражение зрительной лучистости - верхнеили нижнеквадрантная гемианопсия на противоположной стороне; ж - поражение коркового конца зрительного анализатора (шпорной борозды затылочной доли) - на противоположной стороне гомонимная гемианопсия с сохранением центрального зрения.

Дефекты полей зрения, обусловленные сдавлением хиазмы, могут быть следствием роста краниофарингиомы, аденомы гипофиза или менингиомы бугорка турецкого седла, а также сдавления хиазмы артериальной аневризмой. С целью уточнения диагноза при характерных для поражения хиазмы изменениях полей зрения показаны краниография, КТ или МРТ-сканирование, а при подозрении на развитие аневризмы - ангиографическое исследование.

Тотальное поражение хиазмы ведет к двусторонней слепоте, при этом выпадают прямая и содружественная реакции зрачков на свет. На глазном дне с обеих сторон в связи с нисходящим атрофическим процессом со временем развиваются признаки первичной атрофии дисков зрительных нервов.

В случае поражения зрительного тракта на противоположной стороне обычно возникает неконгруэнтная (неидентичная) гомонимная гемианопсия на стороне, противоположной патологическому очагу. Со временем на глазном дне появляются признаки частичной первичной (нисходящей) атрофии дисков зрительных нервов, преимущественно на стороне очага поражения. Возможность атрофии дисков зрительных нервов сопряжена с тем, что зрительные тракты составляют аксоны, участвующие в формировании дисков зрительных нервов и являющиеся отростками ганглионарных клеток, расположенных в сетчатой оболочке глаз. Причиной поражения зрительного тракта может быть базальный патологический процесс (базальный менингит, аневризма, краниофарингиома и др.).

Поражение подкорковых зрительных центров, прежде всего латерального коленчатого тела, также вызывает гомонимное неконгруэнтное гемианопсическое, или секторальное выпадение полей зрения на стороне, противоположной патологическому очагу, при этом обычно изменяются реакции зрачков на свет. Такие расстройства возможны, в частности, при нарушении кровообращения в бассейне передней ворсинчатой артерии (a. chorioidea anterior, ветвь внутренней сонной артерии) или в бассейне задней ворсинчатой артерии (a. chorioidea posterior, ветвь задней мозговой артерии), обеспечивающих кровоснабжение латерального коленчатого тела.

Нарушение функции зрительного анализатора за латеральным коленчатым телом - зачечевичной части внутренней капсулы, зрительной лучистости (пучка Грациоле) или проекционной зрительной зоны (кора медиальной поверхности затылочной доли в области шпорной борозды, поле 17, по Бродману) также ведет к полной или неполной гомонимной гемианопсии на стороне, противоположной патологическому очагу, при этом гемианопсия, как правило, конгруэнтная. В отличие от гомонимной гемианопсии при поражении зри- тельного тракта в случае поражения внутренней капсулы, зрительной лучистости или коркового конца зрительного анализатора гомонимная гемианопсия не ведет к атрофическим изменениям на глазном дне и изменению зрачковых реакций, так как в таких случаях нарушение зрения обусловлено наличием очага поражения, расположенного позади подкорковых зрительных центров, и зоны замыкания рефлекторных дуг зрачковых реакций на свет.

Волокна зрительной лучистости расположены в строгом порядке. Нижняя часть ее, проходящая через височную долю мозга, состоит из волокон, несущих импульсы от нижних отделов одноименных половин сетчаток. Они заканчиваются в коре нижней губы шпорной борозды. При их поражении выпадают верхние части противоположных патологическому очагу половин полей зрения или возникает одна из разновидностей квадрантной гемианопсии, в данном случае - верхняя квадрантная гемианопсия на стороне, противоположной па-

тологическому очагу. При поражении верхних отделов зрительной лучистости (пучков, проходящих частично через теменную долю и идущих к верхней губе шпорной борозды на стороне, противоположной патологическому процессу) возникает нижняя квадрантная гемианопсия.

При поражении коркового конца зрительного анализатора больной обычно не осознает дефекта полей зрения (возникает неосознаваемая гомонимная гемианопсия), тогда как нарушение функций любого другого отдела зрительного анализатора ведет к дефекту полей зрения, которые осознаются больным (осознаваемая гемианопсия). Кроме того, при корковой неосознаваемой гемианопсии сохраняется зрение в зоне проекции на нее макулярного пучка.

При раздражении, обусловленном патологическим процессом коркового конца зрительного анализатора, в противоположных половинах полей зрения могут возникать галлюцинации в виде мелькания точек, кругов, искр, известные под названием «простые фотомы» или «фотопсии». Фотопсии нередко бывают предвестником приступа офтальмической формы мигрени, могут составлять зрительную ауру эпилептического припадка.

12.5. ЭПИТАЛАМУС

Эпиталамус (epithalamus, надбугорье) можно рассматривать как непосредственное продолжение крыши среднего мозга. К эпиталамусу принято относить заднюю эпиталамическую спайку (commissura epithalamica posterior), два поводка (habenulae) и их спайку (commissura habenularum), а также шишковидное тело (corpus pineale, эпифиз).

Эпиталамическая спайка располагается над верхней частью водопровода мозга и представляет собой комиссуральный пучок нервных волокон, который берет начало от ядер Даркшевича и Кахаля. Впереди от этой спайки расположено непарное шишковидное тело, имеющее вариабельные размеры (при этом длина его не превышает 10 мм) и форму конуса, обращенного вершиной назад. Основание шишковидного тела образовано нижней и верхней мозго- выми пластинками, которые окаймляют выворот шишковидного тела (recessus pinealis) - выступающую верхнезаднюю часть третьего желудочка мозга. Нижняя мозговая пластинка продолжается назад и переходит в эпиталамическую спайку и пластинку четверохолмия. Передняя часть верхней мозговой пластинки переходит в спайку поводков, от конца которой отходят направляющиеся вперед поводки, называемые иногда ножками шишковидного тела. Каждый из поводков тянется к зрительному бугру и на границе верхней и внутренней его поверхности заканчивается треугольным расширением, находящимся над расположенным уже в веществе таламуса небольшим ядром уздечки. От ядра уздечки вдоль задненаружной поверхности таламуса тянется белая полоска - stria medullaris, состоящая из волокон, соединяющих шишковидное тело со структурами обонятельного анализатора. В связи с этим существует мнение о том, что эпиталамус имеет отношение к обонянию.

В последнее время установлено, что отделы эпиталамуса, главным образом шишковидное тело, продуцируют физиологически активные вещества - серотонин, мелатонин, адреногломерулотропин и антигипоталамический фактор.

Шишковидное тело представляет собой железу внутренней секреции. Оно имеет дольчатое строение, паренхима его состоит из пинеоцитов, эпителиаль-

ных и глиальных клеток. Шишковидное тело содержит большое количество кровеносных сосудов, кровоснабжение его обеспечивается ветвями задних мозговых артерий. Подтверждает эндокринную функцию эпифиза и его высокая способность к поглощению радиоактивных изотопов 32 P и 131 I. Он поглощает радиоактивного фосфора больше, чем любой другой орган, а по количеству поглощаемого радиоактивного йода уступает только щитовидной железе. До периода полового созревания клетки шишковидного тела выделяют вещества, тормозящие действие гонадотропного гормона гипофиза, и в связи с этим задерживают развитие половой сферы. Это подтверждают клинические наблюдения преждевременного полового созревания при заболеваниях (главным образом при опухолях) шишковидного тела. Существует мнение, что шишковидное тело находится в состоянии антагонистической корреляции со щитовидной железой и надпочечниками и влияет на обменные процессы, в частности на витаминный баланс и функцию вегетативной нервной системы.

Некоторое практическое значение имеет наблюдаемое после полового созревания отложение в шишковидном теле солей кальция. В связи с этим на краниограммах взрослых людей видна тень обызвествленного шишковидного тела, которое при объемных патологических процессах (опухоль, абсцесс и т.п.) в полости супратенториального пространства может смещаться в сторону, противоположную патологическому процессу.

12.6. ГИПОТАЛАМУС И ГИПОФИЗ

Гипоталамус (hypothalamus) составляет нижнюю, филогенетически наиболее древнюю часть промежуточного мозга. Условная граница между таламусами и гипоталамусом проходит на уровне гипоталамических борозд, находящихся на боковых стенках третьего желудочка мозга.

Гипоталамус (рис. 12.4) условно делится на две части: переднюю и заднюю. К задней части гипоталамической зоны относят расположенные позади серого бугра сосцевидные тела (corpora mammillaria) с прилежащими к ним участками мозговой ткани. К передней части относится зрительный перекрест (chiasma opticum) и зрительные тракты (tracti optici), серый бугор (tuber cinereum), воронка (infundibulum) и гипофиз (hypophysis). Гипофиз, соединенный с серым бугром через воронку и гипофизарную ножку, располагается в центре основания черепа в костном ложе - гипофизарной ямке турецкого седла основной кости. Диаметр гипофиза составляет не более 15 мм, масса его от 0,5 до 1 г.

Гипоталамическая область состоит из многочисленных клеточных скоплений - ядер и пучков нервных волокон. Основные ядра гипоталамуса можно разделить на 4 группы.

1. В переднюю группу входят медиальные и латеральные предоптическое, супраоптическое, паравентрикулярные и переднее гипоталамическое ядра.

2. Промежуточную группу составляют дугообразное ядро, серобугорные ядра, вентромедиальное и дорсомедиальное гипоталамические ядра, дорсальное гипоталамическое ядро, заднее паравентрикулярное ядро, ядро воронки.

3. Задняя группа ядер включает заднее гипоталамическое ядро, а также медиальные и латеральные ядра сосцевидного тела.

4. К дорсальной группе относятся ядра чечевицеобразной петли.

Ядра гипоталамуса имеют ассоциативные связи между собой и с другими отделами мозга, в частности с лобными долями, лимбическими структура-

Рис. 12.4. Сагиттальный срез гипоталамуса.

1 - паравентрикулярное ядро; 2 - сосцевидно-таламический пучок; 3 - дорсомедиальное гипоталамическое ядро; 4 - вентромедиальное гипоталамическое ядро, 5 - мост мозга; 6 - супраоптический гипофизарный путь; 7 - нейрогипофиз; 8 - аденогипофиз; 9 - гипофиз; 10 - зрительный перекрест; 11 - супраоптическое ядро; 12 - преоптическое ядро.

ми больших полушарий, различными отделами обонятельного анализатора, таламусами, образованиями экстрапирамидной системы, ретикулярной формацией ствола мозга, ядрами черепных нервов. Большинство этих связей - двусторонние. Ядра гипоталамической области связывают с гипофизом проходящий через воронку серого бугра и ее продолжение - гипофизарную ножку - гипоталамо-гипофизарный пучок нервных волокон и густая сеть сосудов.

Гипофиз (hypophisis) представляет собой неоднородное образование. Он развивается из двух разных зачатков. Передняя, большая, его доля (аденогипофиз) формируется из эпителия первичной ротовой полости или так называемого кармана Ратке; она имеет железистое строение. Задняя доля состоит из нервной ткани (нейрогипофиз) и представляет собой непосредственное продолжение воронки серого бугра. Кроме передней и задней долей, в гипофизе различают среднюю, или промежуточную, долю, представляющую собой узкую эпителиальную прослойку, содержащую пузырьки (фолликулы), наполненные серозной или коллоидной жидкостью.

По функции структуры гипоталамуса делят на неспецифические и специ- фические. Специфические ядра обладают способностью выделять химические

соединения, обладающие эндокринной функцией, регулирующие, в частности, метаболические процессы в организме и поддержание гомеостаза. К специфическим относят обладающие способностью к нейрокринии супраоптическое и паравентрикулярное ядра, связанные с нейрогипофизом с помощью супраоптико-гипофизарного пути. Они продуцируют гормоны вазопрессин и окситоцин, которые по упомянутому пути переносятся через ножку гипофиза в нейрогипофиз.

Вазопрессин, или антидиуретический гормон (АДГ), продуцируемый главным образом клетками супраоптического ядра, очень чувствителен к изменению солевого состава крови и регулирует водный метаболизм, стимулируя резорбцию воды в дистальном отделе нефронов. Таким образом, АДГ регулирует концентрацию мочи. При дефиците этого гормона в связи с поражением упомянутых ядер увеличивается количество выделяемой мочи с низкой относительной плотностью - развивается несахарный диабет, при котором наряду с полиурией (до 5 л мочи и более) возникает сильная жажда, ведущая к потреблению большого количества жидкости (полидипсия).

Окситоцин продуцируется паравентрикулярными ядрами, он обеспечивает сокращения беременной матки и влияет на секреторную функцию молочных желез.

Кроме того, в специфических ядрах гипоталамуса образуются «освобождающие» факторы (рилизинг-факторы) и «ингибирующие» факторы, поступающие

из гипоталамуса в переднюю долю гипофиза по бугорно-гипофизарному пути (tractus tuberoinfundibularis) и портальной сосудистой сети гипофизарной ножки. Попадая в гипофиз, указанные факторы регулируют секрецию гормонов, выделяемых железистыми клетками передней доли гипофиза.

Клетки аденогипофиза, продуцирующие гормоны под влиянием поступающих в него рилизинг-факторов, являются крупными и хорошо окрашивающимися (хромофильными), при этом большая часть из них окрашивается кислыми красками, в частности эозином. Их называют эозинофильными, или оксифильными, а также альфа-клетками. Они составляют 30-35% всех клеток аденогипофиза и продуцируют соматотропный гормон (СТГ), или гормон роста (ГР), а также пролактин (ПРЛ). Клетки аденогипофиза (5-10%), окрашивающиеся щелочными (основными, базисными) красками, в том числе гематоксилином, называются базофильными клетками, или бета-клетками. Они выделяют адренокортикотропный гормон (АКТГ) и тиреотропный гормон (ТТГ).

Около 60% клеток аденогипофиза плохо воспринимают краски (хромофобные клетки, или гамма-клетки) и не обладают гормоносекреторной функцией.

Источниками кровоснабжения гипоталамуса и гипофиза являются ветви артерий, составляющих артериальный круг большого мозга (circulus arteriosis cerebri, виллизиев круг), в частности гипоталамические ветви средней мозговой и задней соединительной артерий, при этом кровоснабжение гипоталамуса и гипофиза оказывается исключительно обильным. В 1 мм 3 ткани серого вещества гипоталамуса насчитывается в 2-3 раза больше капилляров, чем в таком же объеме ядер черепных нервов. Кровоснабжение гипофиза представлено так называемой воротной (портальной) сосудистой системой. Отходящие от артериального круга артерии разделяются на артериолы, затем образуют густую первичную артериальную сеть. Обилие сосудов гипоталамуса и гипофиза обеспечивает происходящую здесь своеобразную интеграцию функций нервной, эндокринной и гуморальной систем. Сосуды гипоталамической области и гипофиза обладают высокой проницаемостью для различных химических и гормональных

ингредиентов крови, а также белковых соединений, в том числе нуклеопротеидов, нейротропных вирусов. Это определяет повышенную чувствительность гипоталамической области к воздействию разнообразных вредных факторов, попадающих в сосудистое русло, что необходимо хотя бы для обеспечения скорейшего их выведения из организма с целью поддержания гомеостаза.

Гипофизарные гормоны выделяются в кровяное русло и гематогенным путем, достигая соответствующих мишеней. Существует мнение, что частично они попадают в ликворные пути, прежде всего в III желудочек мозга.

Эндокринные функции гипоталамуса и гипофиза регулируются нервной системой. Продуцируемые в них гормоны можно отнести к лигандам - биологически активным веществам, носителям регулирующей информации. Мишенью для них служат специализированные рецепторы органов и тканей. Поэтому гормоны можно рассматривать как своеобразные медиаторы, которые могут передавать информацию на большие расстояния гематогенным путем. В таких случаях этот путь рассматривают как гуморальное колено сложных рефлекторных дуг, обеспечивающих деятельность отдельных органов и тканей на периферии. Кстати, информация о деятельности этих органов и тканей направляется в структуры центральной нервной системы, в частности гипоталамуса, по нервным афферентным путям, а также гематогенным путем, по которому с периферии в центр передается информация о степени активности различных периферических же- лез внутренней секреции (процесс обратной афферентации).

Такая трактовка роли гормонов исключает представления об автономности эндокринной системы и подчеркивает взаимосвязь и взаимозависимость эндокринных желез и нервной ткани.

Гипоталамические структуры осуществляют регуляцию функций симпатического и парасимпатического отделов вегетативной нервной системы и поддержание в организме вегетативного баланса, при этом в гипоталамусе могут быть выделены эрготропные и трофические зоны (Hess W., 1881-1973).

Эрготропная система активирует физическую и психическую деятельность, обеспечивая включение преимущественно симпатических аппаратов вегетативной нервной системы. Трофотропная система способствует накоплению энергии, пополнению затраченных энергетических ресурсов, обеспечивает процессы парасимпатической направленности: тканевый анаболизм, уменьшение частоты сердечных сокращений, стимуляцию функции пищеварительных желез, снижение мышечного тонуса и пр.

Трофотропные зоны находятся главным образом в передних отделах гипо- таламуса, прежде всего в его преоптической зоне, эрготропные - в задних отделах, точнее, в задних ядрах и латеральной зоне, которые В. Гесс назвал динамогенными.

Дифференциация функций различных отделов гипоталамуса имеет функционально-биологическое значение и определяет их участие в осуществлении целостных поведенческих актов.

12.7. СИНДРОМЫ ПОРАЖЕНИЯ ГИПОТАЛАМОГИПОФИЗАРНОЙ СИСТЕМЫ

Многообразие функций гипоталамо-гипофизарного отдела промежуточного мозга ведет к тому, что при его поражении возникают разнообразные

патологические синдромы, включающие в себя различные по характеру неврологические расстройства, в том числе признаки эндокринной патологии, проявления вегетативной дисфункции, эмоциональный дисбаланс.

Гипоталамическая область обеспечивает взаимодействие между регуляторными механизмами, осуществляющими интеграцию психической, прежде всего эмоциональной, вегетативной и гормональной сфер. От состояния гипоталамуса и отдельных его структур зависят многие процессы, играющие важную роль в поддержании в организме гомеостаза. Так, расположенная в переднем его отделе преоптическая область обеспечивает терморегуляцию за счет изменения теплового метаболизма. В случае поражения этой области больной может оказаться не в состоянии отдавать тепло в условиях высокой температуры окружающей среды, что ведет к перегреванию организма и к гипертермии, или так называемой центральной лихорадке. Поражение задней части гипоталамуса может привести к пойкилотермии, при которой температура тела меняется в зависимости от температуры окружающей среды.

Латеральная область серого бугра признается «центром аппетита», а с зоной расположения вентромедиального ядра обычно связывают чувство насыщения. При раздражении «центра аппетита» возникает прожорливость, которая может быть подавлена стимуляцией зоны насыщения. Поражение латерального ядра обычно ведет к кахексии. Повреждение серого бугра может обусловить развитие адипозогенитального синдрома, или синдрома Бабинского-Фрелиха

(рис. 12.5).

В эксперименте на животных показано, что гонадотропный центр локализуется в ядре воронки и вентромедиальном ядре и выделяет гонадотропный гормон, тогда как тормозной центр половой функции локализуется кпереди от вентромедиального ядра. В процессе деятельности указанных клеточных структур вырабатываются рилизинг-факторы, влияющие на продукцию гипофизом

гонадотропных гормонов.

В определенной зависимости от функ- ционального состояния гипоталамуса находятся физико-химические свойства всех тканей и органов, их трофика и в какой-то степени готовность к выполнению специфических для них функций. Это касается и нервной ткани, в том числе больших полушарий. Некоторые ядра гипоталамической области функционируют в тесном взаимодействии с ретикулярной формацией, и разграничить их влияние на физиологические процессы подчас трудно.

В определенной зависимости от состояния и функциональной активности гипоталамуса находятся деятельность сердечно-сосудистой и дыхательной систем, регуляция температуры тела, особенности различных видов обмена (водно-солевого, углеводного, жирового, белкового), регуляция работы эндокринных желез, функций пищеваритель-

Рис. 12.5. Адипозогенитальный синдром.

ного тракта, функциональное состояние мочеполовых органов, в частности осуществление сложных половых рефлексов.

Вегетативная дистония может быть следствием несбалансированности деятельности трофотропного и эрготропного отделов гипоталамуса. Такая не- сбалансированность возможна у практически здоровых людей в периоды эндокринной перестройки (в пубертатном периоде, во время беременности, климакса). Ввиду высокой проницаемости сосудов, снабжающих кровью гипоталамо-гипофизарную область, при инфекционных заболеваниях, эндогенных и экзогенных интоксикациях может наступать проявляющийся временно или стойкий вегетативный дисбаланс, характерный для так называемого неврозоподобного синдрома. Возможны также возникающие на фоне вегетативного дисбаланса вегетативно-висцеральные расстройства, проявляющиеся, в частности, язвенной болезнью, бронхиальной астмой, гипертонической болезнью, а также другими формами соматической патологии.

Особенно характерно для поражения гипоталамического отдела мозга развитие различных по характеру форм эндокринной патологии. Среди нейроэндокринно-обменных синдромов существенное место занимают различные формы гипоталамического (церебрального) ожирения (рис. 12.6), при этом ожирение обычно бывает резко выраженным и от- ложение жира чаще возникает на лице, туловище и в проксимальных отделах конечностей. Ввиду неравномерности отложения жира тело больного нередко приобретает причудливые формы. При так называемой адипозогенитальной дистрофии (синдром Бабинского-Фрели- ха), которая может быть следствием растущей опухоли гипоталамо-гипофизарной области - краниофарингиомы, уже в раннем детском возрасте наступает ожирение, а в пубертатном периоде обращают на себя внимание недоразвитие половых органов и вторичных половых признаков.

Одним из основных гипоталамо-эндокринных симптомов является обусловленный недостаточностью продукции антидиуретичес- кого гормона несахарный диабет, характеризующийся повышенной жаждой и выделением больших количеств мочи с низкой относительной плотностью. Избыточное выделение адиурекрина характеризуется олигурией, сопровождающейся отеками, и иногда сменяющейся полиурией в сочетании с диареей (болезнь Пархона).

Избыточная продукция передней долей гипофиза соматотропного гормона сопровождается развитием синдрома акромегалии.

Недостаточность продукции соматотропного гормона (СТГ), проявляющаяся с детского возраста, ведет к физическому недоразвитию организма, что проявляется синдромом гипо-

Рис. 12.6. Церебральное ожире ние.

физарного нанизма, при этом прежде всего обращает на себя внимание пропорциональный карликовый рост в сочетании с недоразвитием половых органов.

Гиперфункция оксифильных клеток передней доли гипофиза ведет к избытку продукции СТГ. Если чрезмерная его продукция проявляется в пубертатном периоде, развивается гипофизарный гигантизм. Если же избыточная функция оксифильных клеток гипофиза проявляется у взрослых, это ведет к развитию синдрома акромегалии. У гипофизарного гиганта обращает на себя внимание непропорциональность роста отдельных частей тела: очень длинными оказываются конечности, а туловище и голова кажутся относительны небольшими. При акромегалии увеличиваются размеры выступающих частей головы: носа, верхнего края глазниц, скуловых дуг, нижней челюсти, ушей. Чрезмерно крупными становятся также дистальные отделы конечностей: кисти, стопы. Проявляется общее утолщение костей. Кожа грубеет, становится пористой, складчатой, сальной, появляется гипергидроз.

Гиперфункция базофильных клеток передней доли гипофиза ведет к развитию болезни Иценко-Кушинга, обусловленной в основном избыточной продукцией адренокортикотропного гормона (АКТГ) и связанным с этим повышением выделения гормонов коры надпочечников (стероидов). Болезнь характеризуется прежде всего своеобразной формой ожирения. Обращает на себя внимание круглое, багровое, сальное лицо. Также на лице характерны высыпания по типу акне, а у женщин - еще и рост волос на лице по мужскому типу. Гипертрофия жировой клетчатки особенно отчетлива на лице, на шее в области VII шейного позвонка, в верхней части живота. Конечности больного по сравнению с ожиревшими лицом и туловищем кажутся худыми. На коже живота, передневнутренней поверхности бедер обычно видны полосы растяжения, напоминающие стрии беременных. Кроме того, характерно повышение артериального давления, возможны аменорея или импотенция.

При выраженной недостаточности функций гипоталамо-гипофизарной области может развиться гипофизарное истощение, или болезнь Симонса. Болезнь прогрессирует постепенно, истощение при ней достигает резкой степени выраженности. Потерявшая тургор кожа становится сухой, матовой, морщинистой, лицо приобретает монголоидный характер, волосы седеют и выпадают, отмечается ломкость ногтей. Рано наступает аменорея или импотенция. Отмечаются сужение круга интересов, апатия, депрессия, сонливость.

Синдромы нарушения сна и бодрствования могут носить пароксизмальный или затянувшийся, подчас стойкий характер (см. главу 17). Среди них, пожалуй, лучше других изучен синдром нарколепсии, проявляющийся неудержимым стремлением ко сну, возникающим в дневное время, даже в самой неподходящей обстановке. Часто сочетающаяся с нарколепсией катаплексия характеризуется приступами резкого снижения мышечного тонуса, приводящего больного к состоянию обездвиженности на период от нескольких секунд до 15 мин. Приступы катаплексии нередко возникают у больных, находящихся в состояния аффекта (смех, чувство гнева и т.п.), возможны также состояния катаплексии, возникающие при пробуждении (катаплексия пробуждения).

Современные методы физиологических исследований, в частности опыт стереотаксических операций, позволили установить, что гипоталамическая область, наряду с другими структурами лимбико-ретикулярного комплекса, принимает участие в формировании эмоций, создании так называемого эмоционального фона (настроения) и обеспечении внешних эмоциональных проявлений. По мнению П.К. Анохина (1966), область гипоталамуса определяет

первичное биологическое качество эмоционального состояния, его характерное внешнее выражение.

Эмоциональные реакции, прежде всего эмоции стенического характера, ведут к повышению функций эрготропных структур гипоталамуса, которые через посредство вегетативной нервной системы (в основном ее симпатического отдела) и эндокринно-гуморальной системы стимулируют функции коры больших полушарий, что, в свою очередь, влияет на многие органы и ткани, активизирует в них метаболические процессы. В результате возникает напряжение или стресс, проявляющийся мобилизацией средств адаптации организма к новой обстановке, помогающих ему защититься от влияющих на него или только ожидаемых вредных эндогенных и экзогенных факторов.

В качестве причин стресса (стрессоров) могут быть самые разнообразные хронические и острые психические воздействия, провоцирующие эмоциональное перенапряжение, инфекции, интоксикации, травмы. В период стресса обычно меняется функция многих систем и органов, прежде всего сердечно- сосудистой и дыхательной систем (учащение сердцебиения, повышение арте- риального давления, перераспределение крови, учащение дыхания и т.д.).

По Г. Селье (Selye H., род. в 1907 г.), стресс-синдром, или синдром общей адаптации, в своем развитии проходит 3 фазы: реакцию тревоги, во время которой мобилизуются защитные силы организма; стадию сопротивления, отражающую полную адаптацию к стрессу; стадию истощения, которая наступает неизбежно, если стрессор оказывается чрезмерно интенсивным или действует на организм слишком долго, так как энергия адаптации или приспособляемости живого организма к стрессу не безгранична. Стадия истощения стресссиндрома проявляется возникновением болезненного состояния, носящего неспецифический характер. Различные варианты таких болезненных состояний Г. Селье назвал болезнями адаптации. Им присущи сдвиги гормонального и вегетативного баланса, дисметаболические расстройства, обменные нарушения, изменения реактивности нервной ткани. «В этом смысле, - писал Селье, - определенные нервные и эмоциональные нарушения, артериальная гипертония, некоторые виды ревматизма, аллергических, сердечно-сосудистых и почечных болезней также суть болезнь адаптации».

Тема 12. Промежуточный мозг.

Промежуточный мозг в процессе эмбриогенеза развивается из переднего мозгового пузыря. Он образует стенки третьего мозгового желудочка. В состав промежуточного мозга входят: зрительные бугры (таламус) , гипоталамус , эпиталамус и метаталамус .

Рис.1. Фотография сагиттального среза промежуточного мозга

1 – таламус ; 2 – эпиталамус ; 3 – эпифиз ; 4 – гипоталамус ; 5 – воронка серого бугра ; 6 – зрительный перекрест ; 7 – сосцевидные тела ; 8 – межжелудочковое отверстие; 9 – свод; 10 –боковой желудочек; 11 – мозолистое тело; 12 – полушария конечного мозга; 13 – пластинка четверохолмия; 14 – ножка мозга; 15 – водопровод мозга; 16 – IV желудочек

Таламус (зрительные бугры) представляет собой скопление серого вещества, имеющего яйцевидную форму. Его длина составляет около 40 мм, ширина 16 мм, высота 20 мм. Медиальная и дорсальная поверхности свободны, вентральная и латеральная поверхности сращены со структурами конечного мозга. Медиальная поверхность таламуса обращена в полость III желудочка.

Таламус является крупным подкорковым образованием, через которое в кору больших полушарий проходят разнообразные афферентные пути. Нервные клетки его группируются в большое количество ядер (около120). Топографически последние разделяют на переднюю, заднюю, срединную, медиальную и латеральную группы:

Передние ядра таламуса являются подкорковым центром обоняния.

Задние ядра – подкорковым центром зрения.

Срединные ядра – подкорковые центры вестибулярных и слуховых функций.

Медиальные ядра - интегративным центром промежуточного мозга, в который поступает информация от остальных ядер таламуса, а также центром экстрапирамидной системы.

Латеральные ядра – подкорковый центр общей чувствительности.

Рис. 2. Группы ядер таламуса

1 - передняя группа (обонятельные); 2 - задняя группа (зрительные); 3 - латеральная группа (общая чувствительность); 4 - медиальная группа (экстрапирамидная система, интегративный центр таламуса); 5 – срединнаягруппа (вестибулярных и слуховых функций).

По функции таламические ядра можно дифференцировать на специфические, неспецифические и ассоциативные.

Специфические ядра делятся на чувствительные и двигательные. От чувствительных ядер информация о характере сенсорных стимулов поступает в строго определенные участки 3-4 слоев коры. Чувствительные ядра имеют топическую организацию, строго организованную локальную систему входов и выходов. Функциональной единицей специфических чувствительных таламических ядер являются «релейные» нейроны, которые имеют мало дендритов, длинный аксон и выполняют переключательную функцию. Здесь происходит переключение путей, идущих в кору от кожной, мышечной и других видов чувствительности. Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности. К двигательным ядрам таламуса относится вентральное ядро , которое имеет вход от мозжечка и базальных ганглиев, и одновременно дает проекции в моторную зону коры больших полушарий. Это ядро включено в систему регуляции движений.

Неспецифические ядра таламуса имеют обширные входы от разных отделов мозга, связаны с обширными участками коры и принимают участие в активизации ее деятельности, их относят к ретикулярной формации. Неспецифический ядра таламуса принимают участие в организации процессов внимания.

Ассоциативные ядра образованы мультиполярными и биполярными нейронами. Ядра не имеют прямых контактов с афферентными системами. Получают импульсы от релейных ядер таламуса. От них импульсы идут в кору головного мозга в ассоциативные зоны (в третичные проекционные зоны), за счет этих импульсов возникают примитивные ощущения; также они обеспечивают взаимосвязь между сенсорными системами в коре головного мозга.

Функционально таламус – структура, в которой происходит обработка и интеграция практически всех сенсорных сигналов, идущих в кору головного мозга. Возможность получить информацию о состоянии множества систем организма позволяет ему участвовать в регуляции и определять функциональное состояние организма в целом. В связи с этим таламус фактически является подкорковым чувствительным центром. Отростки нейронов таламуса направляются отчасти к ядрам полосатого тела конечного мозга (в связи с этим таламус рассматривается как чувствительный центр экстропирамидной системы), отчасти к коре большого мозга, образуя таламокортикальные пути.

Гипоталамус (подталамическая область), hypothalamus, - сравнительно небольшое, но исключительно важное образование головного мозга, образующее нижние отделы промежуточного мозга. Гипоталамус спереди граничит со зрительным перекрестом; задняя граница - сосцевидные тела, латерально ограничен зрительными трактами. Верхней границей является гипоталамическая борозда. Нижняя граница, или дно III желудочка, представлена серым бугром, лежащим впереди сосцевидных тел. Нижняя стенку III желудочка кпереди продолжается в концевую пластинку конечного мозга.

Учитывая, что гипоталамус включает большое количество отдельных образований, целесообразно сгруппировать их по топографическому принципу следующим образом.

1. Передняя гипоталамическая область, или зрительная часть:

- зрительный перекрест , chiasma optictnn;

- зрительный тракт , tractus opticus.

П. Промежуточная гипоталамическая область:

- серый бугор , tuber cinereum;

- воронка , infundibulum;

- гипофиз , hypophisis.

III. Задняя гипоталамическая область, или сосочковая часть,

- заднее гипоталамическое ядро ;

- сосочковые тела , corpora mamillaria.

Рассмотрим внешнюю форму этих образований:

Зрительная часть гипоталамуса включает перекрест зрительных нервов, правый и левый зрительные тракты . Зрительный перекрест имеет вид поперечно лежащего валика, образованного волокнами зрительных нервов, которые здесь частично переходят на противоположную сторону. От задних углов зрительного перекреста отходят зрительные тракты, имеющие вид белых тяжей, сращенных с веществом мозга. Они идут латерально и назад, огибают ножки мозга и заканчиваются двумя корешками. Более крупный латеральный корешок заканчивается в латеральных коленчатых телах, а медиальный – направляется к верхнему холму четверохолмия.

Кзади от зрительного перекреста находится серый бугор.Серый 6угop, tuber cinereum ,- тонкостенная часть дна III желудочка, расположенная между сосцевидными телами и перекрестом зрительного нерва. Стенки серого бугра образованы тонкой пластинкой серого вещества. Кпереди серый бугор переходит в истонченную конечную пластинку (lamina terminalis). Она натянута между перекрестом зрительных нервов и передней мозговой спайкой. В ядрах серого бугра расположены высшие центры регуляции вегетативного отдела нервной системы. Серый бугор вытягивается в воронку (infundibulum), на которой висит гипофиз.

Гипофиз(hypophysis), или нижний придаток мозга имеет яйцевидную форму, соединен ножкой с серым бугром промежуточного мозга. Он имеет форму фасоли массой 0,4-0,6 г, размером 10х12х6 мм. У женщин, особенно беременных, гипофиз несколько больше: масса его иногда достигает 1,0-1,2 г, обычно 0,7 г. Гипофиз состоит из трех долей - задней, промежуточной и передней, окруженных общей соединительнотканной оболочкой. Задняя доля, меньшего размера, посредством ножки связана с воронкой. Между передней и задними долями имеется небольших размеров промежуточная доля, отделенная щелью от передней доли. Передняя доля непосредственной связи с головным мозгом не имеет, так как она имеет другое происхождение. Она представляет собой выпячивание эпителия первичной ротовой ямки. Задняя доля образуется путем выпячивания вентральной стенки промежуточного мозга.

Сосочковые тела, corpora mamillaria , - сферической формы, диаметром 5-6 мм, белого цвета. Они располагаются между серым бугром и задним продырявленным пространством. Белое вещество только снаружи, внутри находится серое вещество. Вместе с передними ядрами таламуса их рассматривают как подкорковые центры обоняния.

Рис. 3. Гипоталамус.

1 – сосцевидное тело; 2 – гипофиз; 3 – паравентрикулярное ядро; 4 – дорсомедиальное ядро; 5 – заднегипоталамическая область; 6 – ядра серого бугра; 7 – ядра воронки; 8 – углубление воронки; 9 – воронка; 10 – зрительный перекрест; 12 – супраоптическое ядро; 13 – переднее гипоталамическое ядро

Пути и центры гипоталамуса . Ядра подталамической области, весьма многочисленные (около 40), располагаются главным образом в собственно подталамической области. По расположению их разделяют на три группы: переднюю, промежуточную и заднюю.

1. Передняя группа ядер включает супраоптическое, предоптическое и паравентрикулярные ядра. Эти ядра являются нейросекреторными. Надзрительное ядро (nucl supraopticus) - парное, располагается латеральнее медиальной плоскости над зрительным трактом от начала перекреста зрительного тракта и распространяется до середины серого бугра; клетки этого ядра вырабатывают антидиуретические гормоны (вазопрессин). Вазопрессин выделяется в ответ на раздражение, идущее с осморецепторов. Надзрительное ядро совместно с околожелудочковым ядром вырабатывает также нейрофизины - белки-носители. Околожелудочковое ядро (nucl. paraventricularis) - парное, в виде пластинки, располагается несколько выше III желудочка. Нижняя его часть начинается на уровне перекреста зрительных нервов, затем идет вверх и назад. Паравентрикулярные (околожелудочковые) ядра вырабатывают гормон окситоцин в ответ на раздражение механорецепторов матки и молочных желез. Отростки нейросекреторных клеток надзрительного и околожелудочкового ядер образуют гипоталамо-гипофизарный пучок, по аксонам которого их нейросекрет стекает в заднюю долю гипофиза в тельца скопления нейросекрета. В последних образуются гормоны задней доли гипофиза - антидиуретический гормон (АДГ) и окситоцин.

2. Промежуточная группа представлена ядрами собственно подталамической области, ядрами серого бугра и воронки. В собственно подталампческой области располагается вентро-медиальное гипоталамическое, дорсо-меднальное гипоталамическое, дугообразное, дорсальное гипоталамическое и заднее перивентрикулярное ядра. Ядра промежуточной группы прилежат к углублению воронки III желудочка. К этим ядрам подходят многочисленные сосуды, проникающие в вещество мозга в области заднего продырявленного вещества. Вокруг нейронов формируются капиллярные сплетения. Установлено, что в ядрах промежуточной группы осуществляется анализ химического состава крови и цереброспинальной жидкости. Следовательно, их нейроны обладают хеморецепторными свойствами и в ответ на поступающую информацию о химическом составе крови и цереброспинальной жидкости выделяют релизинг-факторы.

Рилизинг-гормоны, или рилизинг-факторы (release - освобождать), - нейрогормоны, синтезируемые мелкоклеточными ядрами гипоталамуса и стимулирующие (либерины) или угнетающие (статины) выработку и выделение так называемых тропных гормонов гипофиза. Ониобеспечивают взаимодействие высших отделов ЦНС и эндокринной системы. По химической природе рилизинг-гормоны - пептиды. Рилизинг-гормоны выделяются из гипоталамуса в ответ на нервные или химические стимулы и транспортируются с кровью в гипофиз по гипоталамо-гипофизарной портальной системе. Обнаружены 7 стимулирующих (кортиколиберин, тиролиберин, соматолиберин, люлиберин, фоллиберин, пролактолиберин, меланолиберин) и 3 ингибирующих (пролактостатин, меланостатин, соматостатин) секреторную функцию гипофиза рилизинг-гормона. Последние с током крови доставляются в переднюю долю гипофиза (аденогипофиз). Клетки аденогипофиза под воздействием релизинг-факторов (статинов и либеринов) продуцируют тропные гормоны (ТТГ, СТГ, ГТГ, АКТГ, и др.).

3. Задние ядра гипоталамуса представлены задним гипоталамическим ядром. Это ядро имеет непосредственные связи с медиальными ядрами таламуса, с базальными ядрами конечного мозга и с корой полушарий большого мозга. Аксоны клеток заднего гипоталамического ядра заканчиваются на нейронах передних и промежуточных ядер гипоталамуса, следовательно, заднее гипоталамическое ядро в функциональном отношении являются главным среди ядер гипоталамуса. Оно выполняет роль интеграционного центра подталамической области промежуточного мозга. При его поражении у больных развиваются симптомы функциональных нарушений ядер передней и промежуточной групп (нарушение продукции АДГ и тропных гормонов). Кроме названного ядра к задним ядрам гипоталамуса также иногда относят медиальные и латеральные ядра сосцевидного тела.

Учитывая, что гипоталамус координирует нервную и гуморальную регуляцию деятельности всех внутренних органов, его считают высшим центром вегетативных функций организма. В ядрах гипоталамуса осуществляется регуляция сердечно-сосудистой деятельности, температуры тела, различных видов обмена: водного, жирового, углеводного и т.д., выделения слюны, желудочного и кишечного соков, мочи, пота и др.

В свете современных представлений о строении центральной нервной системы указанные высшие центры вегетативных функций находятся под контролем коры полушарий большого мозга.

Мамиллярный комплекс гипоталамуса содержит системы толстых миелинизированных волокон, а также латеральное и медиальное мамиллярные и премамиллярные ядра. Их афференты прежде всего представлены аксонами нейронов гиппокампа, входящими в состав волокон свода. Кроме того, подходят афференты из передней спайки, черной субстанции, ретикулярной формации, коры больших полушарий и мозжечка. Полагают, что кортико- и мозжечково-мамиллярные пути оказывают тормозное влияние на клетки мамиллярного комплекса, а через него и на остальные структуры лимбической системы.

Эпиталамус. Эпиталамическая область расположена дорсально по отношению к каудальным отделам зрительного бугра и занимает относительно небольшой объем. В ее состав входит треугольник поводков , образованный как расширение каудальной части мозговых полосок таламуса и расположенных в его основании ядер поводков. Треугольники соединены комиссурой поводков, в глубине которой проходит задняя комиссура. На поводках – парных тяжах, начинающихся от треугольника, подвешено непарное шишковидное тело , или эпифиз – коническое образование длиной около 6 мм.

Ядра поводков сформированы двумя клеточными группами – медиальными и латеральными ядрами. Афферентами медиального ядра являются волокна мозговых полосок, проводящие импульсацию от лимбических образований конечного мозга (области перегородок, гиппокампа, миндалины), а также от медиального ядра, бледного шара и гипоталамуса. Латеральное ядро получает входы от латеральной преоптической области, внутреннего сегмента бледного шара и медиального ядра. Эфференты медиального ядра, адресованные интерпедункулярному ядру среднего мозга, формируют отогнутый пучок. Эфференты латерального ядра поводков следуют в составе этого же пути, проходят межножковое ядро без переключений и адресуются компактной части черной субстанции, центральному серому веществу среднего мозга и ретикулярным ядрам среднего мозга.

Эпифиз находится посередине под утолщенной задней частью мозолистого тела и располагается в неглубокой борозде, отделяющей друг от друга верхние холмики крыши среднего мозга. Снаружи эпифиз покрыт соединительнотканной капсулой, содержащей большое количество кровеносных сосудов. От капсулы внутрь органа проникают соединительнотканные трабекулы, подразделяющие паренхиму эпифиза на дольки.

Эпифиз является железой внутренней секреции (пинеальная железа) и состоит из глиальных элементов и особых клеток пинеалоцитов . Он иннервируется ядрами поводков, к нему подходят также волокна мозговых полосок задней комиссуры и проекции верхнего шейного симпатического ганглия. Аксоны, входящие в железу, ветвятся среди пинеалоцитов, обеспечивая регуляцию их активности. К числу биологически активных веществ, вырабатываемых эпифизом, относятся мелатонин и вещества, играющие важную роль в регуляции процессов развития, в частности, полового созревания и деятельности надпочечников.

В шишковидном теле у взрослых людей, особенно в старческом возрасте, нередко встречаются причудливой формы отложения, которые придают эпифизу определенное сходство с еловой шишкой, чем и объясняется его название.

Метаталамус представлен латеральным и медиальным коленчатыми телами – парными образованиями. Они имеют продолговато-овальную форму и соединяется с холмиками крыши среднего мозга при помощи ручек верхнего и нижнего холмиков.

Рис.4. Ствол мозга сбоку и сверху (мозжечок удален):

1 – третий желудочек; 2 – эпифиз (оттянут); 3 – подушка таламуса; 4 – латеральное коленчатое тело; 5 – ручка верхнего двухолмия (6); 7 – поводок; 8 – ножка мозга; 9 медиальное коленчатое тело; 10 – нижнее двухолмие и 11 – его ручка; 12 – мост; 13 – верхний мозговой парус; 14 – верхняя ножка мозжечка; 15 – четвертый желудочек; 16 – нижние ножки мозжечка; 17 – средняя ножка мозжечка; IV – корешок черепно-мозгового нерва

Латеральное коленчатое тело находится возле нижнебоковой поверхности таламуса, сбоку от его подушки. Его легко можно обнаружить, следуя по ходу зрительного тракта, волокна которого направляются к латеральному коленчатому телу. Несколько кнутри и сзади от латерального коленчатого тела, под подушкой, находится медиальное коленчатое тело , на клетках ядра которого заканчиваются волокна латеральной (слуховой) петли.

Метаталамус состоит из серого вещества. Латеральное коленчатое тело, правое и левое, является подкорковым центром зрения. К нейронам его ядра подходят нервные волокна зрительного тракта (от сетчатки глаза). Аксоны этих нейронов идут в зрительную зону коры. Медиальные коленчатые тела являются подкорковыми центрами слуха.

Третий мозговой желудочек . Полостью промежуточного мозга является третий желудочек. Он представляет собой сагитальную щель, расположенную в срединной плоскости. Его ширина 4-5 мм, длина в верхнем отделе около 25 мм, максимальная высота также 25 мм. Сзади в третий желудочек открывается мозговой водопровод. По бокам своей передней части III желудочек сообщается правым и левым межжелудочковыми отверстиями с боковыми желудочками, лежащими внутри полушарий. Спереди III желудочек ограничен тонкой пластинкой серого вещества – конечной пластинкой, которая представляет собой самую переднюю часть первоначальной стенки мозга, оставшейся посередине между двумя сильно выросшими полушариями. Соединяя оба полушария конечного мозга, эта пластинка и сама принадлежит ему. Непосредственно над ней располагается соединительный пучок волокон, идущих из одного полушария в другое в поперечном направлении; эти волокна связывают участки полушарий, имеющие отношение к обонятельным нервам. Это – передняя комиссура. Ниже конечной пластинки полость III желудочка ограничена перекрестом зрительных нервов.

Боковые стенки III желудочка образованы медиальными сторонами зрительных бугров. На этих стенках проходит продольное углубление – подбугровая борозда. Назад она ведет к водопроводу мозга, вперед – к межжелудочковым отверстиям. Дно III желудочка построено из следующих образований (спереди назад): перекреста зрительных нервов, воронки, серого бугра, сосцевидных тел и заднего продырявленного пространства. Крышу образует эпендема, входящая в состав сосудистых сплетений III и бокового желудочков. Над ней расположен свод и мозолистое тело.

Промежуточный мозг (diencephalon) является производным переднего мозга (prosencephalon). В промежуточном мозге выделяют два отдела: таламический мозг и гипоталамус. Полостью промежуточного мозга является III желудочек.
1. Таламический мозг (thalamencephalon) прикрыт полушариями головного мозга. Он разделяется на таламус (thalamus) надталамическую (epithalamus) и заталамическую (metathalamus) области.

Таламус парный (рис. 469); в его ядрах переключаются пути кожной и мышечно-суставной, обонятельной, зрительной чувствительности и имеются ядра, относящиеся к ретикулярной формации. Оба таламуса образуют латеральные стенки III мозгового желудочка. Таламус сверху прикрыт сводом и мозолистым телом, а снизу граничит с гипоталамусом.

Таламус имеет яйцевидную форму; передний конец его более узкий и заканчивается передним бугорком (tuberculum anterius thalami), задний конец более широкий и называется подушкой (pulvinar). Верхняя и медиальная поверхности бугра свободные и покрыты эпендимой. На верхней поверхности имеется неглубокая борозда (sulcus terminalis), отграничивающая впереди и латерально расположенное от него хвостатое ядро, а медиальнее от борозды располагается лента таламуса (tenia thalami), к которой прикрепляется сосудистое сплетение бокового желудочка. Верхняя поверхность таламуса отделена от медиальной его поверхности мозговой полоской (stria medullaris). В переднем отделе медиальной поверхности таламусы соединены мозговой тканью (adhesio interthalamica). Внутренняя структура таламуса включает многочисленные ядра (около 60) и ассоциативные волокна. Условно топографически эти ядра объединяются в крупные зоны: переднюю, латеральную и медиальную. В ядрах латеральной зоны заканчиваются пути общей чувствительности, в передних ядрах - обонятельные пути, в медиальных - зрительные пути.

469. Желудочки большого мозга и таламус.
1 - corpus callosum; 2 - cavum septi pellucidi; 3 - cornu anterius ventriculi lateralis; 4 - caput nuclei caudati; 5 - columnae fornicis; 6 - stria terminalis; 7 - gyrus dentatus; 8 - hippocampus; 9 - fimbria hippocampi; 10 - pulvinar; 11-cornu posterius ventriculi lateralis; 12 - calcar avis; 13 - sulcus calcarinus; 14 - cerebellum; 15 - corpus pineale; 16 - tectum mesencephali; 17 - plexus chorioideus; 18 - cornu inferius ventriculi lateralis; 19 - tuberculum anterius thalami; 20 - commissura anterior.

Эпиталамус (рис. 469) - незначительный участок головного мозга, расположенный между III желудочком и средним мозгом. В эту область включается треугольник поводка (trigonum habenulae), который является задней расширенной частью мозговой полоски. Треугольник поводка относится к подкорковым центрам обоняния. От треугольников отходят поводки (habenulae), которые подвешивают шишковидное тело (corpus pineale). Поводки связаны спайкой (commissura habenularum). Шишковидное тело лежит между верхними бугорками среднего мозга. У низших животных оно является преобразованным выростом промежуточного мозга, который у них представляет третий глаз. У человека из этого выроста формируется эндокринная железа.

Метаталамус состоит из медиального и латерального коленчатых тел (corpus geniculatum mediale et lalerale) ().

Латеральное тело лежит под подушкой таламуса; оно имеет верхнюю ручку (brachium superius), в которой проходят волокна от зрительного пути к верхнему двухолмию среднего мозга. В латеральном теле располагаются III нейроны зрительных путей.

Медиальное коленчатое тело несколько больше, чем латеральное, и располагается за подушкой таламуса. Его ручка вступает в соединение с нижним двухолмием среднего мозга, через нее проходят слуховые пути для переключения на покрышечно-спинномозговой путь (tr. tectospinalis). В медиальном коленчатом теле располагаются III нейроны слухового пути.

Промежуточный мозг является самой крупной и весьма функционально значимой частью ствола мозга. В нем содержится огромное количество ядер, которые являются очень важными центрами вегетативной системы, а также в состав него входят две эндокринных железы - эпифиз и гипофиз. Промежуточный мозг располагается под самим между большими полушариями, сзади он ограничивается зрительным трактом и задним продырявленным веществом, а впереди - зрительным перекрестом.

Промежуточный имеет сложное, так как в нем располагается большое количество различных центров, регулирующих нормальное функционирование и правильную деятельность различных органов и систем. В мозге (промежуточном) различают: эпиталамус, таламус, метаталамус, гипоталамус и третий желудочек.

Является парным образованием продолговатой формы. Он сформирован скоплением серого вещества в виде ядер (около сорока), которые разделены прослойкой Эпиталамус представлен эпифизом или шишковидным телом. Эпифиз по внешнему виду напоминает еловую шишку и локализуется над четверохолмием среднего мозга. С наружной стороны он покрыт капсулой, от которой внутрь отходят перегородки, разделяющие эпифиз на дольки.

Метаталамус представлен медиальными и, конечно же, латеральными коленчатыми телами, которые являются центрами слуха и зрения. Они располагаются позади подушки двух частей таламуса и соединяются со средним мозгом ножками верхнего двухолмия и нижнего. Гипоталамус представлен воронкой, зрительным перекрестом, серым бугром, гипофизом и двумя сосцевидными телами. Гипофиз является центральной железой расположенной в гипофизной ямке на клиновидной кости. Гипоталамус формирует именно нижнюю часть мозга промежуточного.

Все гипоталамические ядра, которых около сорока, по своему расположению дополнительно разделяются на задние, промежуточные и передние, большинство из них вырабатывают нейросекрет. Передние ядра представлены паравентикулярными и супраоптическими, задние - гипоталамическими и ядрами сосцевидного тела, средние - нижними и верхнемедиальными гипоталамическими ядрами, ядрами воронки и серобугорными.

Промежуточный мозг также представлен третьим желудочком, который является полостью мозга. Он сообщается внизу с четвертым желудочком, сзади и спереди - через межжелудочковое отверстие - с первым и вторым желудочками. Как и во всех остальных, в третьем находятся сосудистые сплетения, которые вырабатывают спинномозговую жидкость.

Функции промежуточного мозга зависят от его отделов:

  • Регулирование работы эндокринной системы, так как в промежуточном мозге расположены гипофиз и эпифиз. Гипофиз стимулирует выработку следующих гормонов: роста, пролактина (способность образования молока в альвеолах молочных желез), ТТГ, АКТГ, фолликулостимулирующего, лютеинизирующего, лютеотропного, меланотропинного, окситоцина, вазопрессина. Нейросекреторная функция эпифиза носит четкий суточный режим. Ночью синтезирует мелатоксин, который участвует в пигментном обмене, а днем - серотоксин.
  • Регуляция вегетативной системы. В гипоталамусе расположены подкорковые центры вегетативных рефлексов, таких как жажда, голод, насыщение, удовольствие, неудовольствие, терморегуляция, а так же всех видов чувств.
  • В латеральных коленчатых телах расположены подкорковые центры зрения, а в медиальных - слуха.
  • Таламус является центром общей чувствительность, кроме обонятельной.

Промежуточный мозг, как правило, имеет множество функций, при нарушении хоть одной из них могут возникнуть непоправимые последствия, которые неизбежно приведут к инвалидности или летальному исходу.

Министерство образования и науки российской федерации

Московский государственный университет прикладной биотехнологии

Кафедра анатомии, физиологии и животноводства

Курсовая работа

Строение промежуточного мозга и его функции

Выполнил: студент 2 курса 9 группы

Егоров Петр

Научный руководитель:

доц. Рубекин Э.А.

Москва 2004

Введение

I. Развитие и анатомическое строение промежуточного мозга

1. Таламус

2. Гипоталамус

4. Ретикулярная формация ствола мозга

III. Заключение

Библиографический список

Введение

Организм находится в непрерывном взаимодействии с окружающей его внешней средой. Это взаимодействие очень многогранно; оно обусловлено, с одной стороны, степенью сложности организации животного, а с другой - изменениями, которые постоянно происходят во внешней среде и в самом организме. Так как внешняя среда служит для организма не только источником, откуда он черпает материал для своего существования, но таит в себе различные для него опасности, то вполне понятно, что организм должен очень четко воспринимать различного рода раздражения и не менее четко на них реагировать. В связи с этим и развились высокодифференцированные органы нервной системы, приспособленные воспринимать и анализировать раздражения, идущие не только из внешней среды, но и из всех без исключения органов и тканей самого организма, и координировать деятельность организма в целом, проявляющуюся в его поведении, а также работу всех отдельных его органов и происходящий в них обмен веществ. Трофическая функция нервной системы впервые была выявлена И.П. Павловым. Такая координирующая функция осуществляется нервной системой при непременном участии органов чувств. Таким образом, интегрирующая функция принадлежит не только сосудистой системе, но в ещё большей степени нервной системе, влиянию которой подчинена и сама сосудистая система. Нервная система обеспечивает единство организма, взаимообусловленность всех его составных частей, единство организма и внешней среды, т.е. единство высшего порядка.

Основной структурной единицей нервной системы являются нейроны. Каждый нейрон состоит из тела и нервных отростков: рецепторного и эффекторного. Рецепторные отростки проводят раздражение к телу нейрона - это дендриты. Эффекторный отросток бывает только один; он проводит раздражение от тела нейрона к его периферии - это аксон ил нейрит.

В то время как нервные отростки служат только для передачи раздражений, тела нейронов выполняют необычно сложную функцию. В них воспринятое раздражение или затухает, если оно недостаточно сильно и действует монотонно, или же трансформируется и передаётся нейриту.

Весь процесс, протекающий в нервной клетке, от восприятия раздражения до ответа на него, т.е. до передачи раздражения с нервной клетки на выполняющий орган (мускульную или железистую клетку), называется рефлексом. В сложном организме рефлекс обычно осуществляется не одним нейроном, а рядом их, образующим цепь нейронов, или рефлекторную дугу.

I. Развитие и анатомическое строение промежуточного мозга

Промежуточный мозг - diencephalons - занимает довольно значительный участок головного мозга с обширной полостью третьего желудочка. Впоследствии, однако, полость желудочка становится щелевидной.

Пластинка покрышки служит сводом для третьего желудочка, который у всех животных остается зачаточным, состоящим из эпителиальной пластинки - laminaepithelialis, - которая, срастаясь с мягкой мозговой оболочкой, формирует сосудистую покрышку третьего мозгового желудочка - telachorioideaventriculitertii, - заключающую в себе сосудистое сплетение. Покрышка внедряется отростками в полость третьего желудочка, а через межжелудочковое отверстие проникает также в конечный мозг, где и переходит в сосудистое сплетение боковых мозговых желудочков, - образовавшиеся за счет пластинки покрышки конечного мозга.

Производными свода являются:

1) непарный трубкообразный вырост - эпифиз и 2) парный - узел уздечки.

Эпифиз, или шишковидная железа, - epiphysis - рудимент третьего, так называемого теменного, глаза. Эпифиз, имеющийся почти у всех животных, развит не у всех одинаково и отсутствует лишь у немногих животных (у сумчатых и у некоторых других).

У млекопитающих эпифиз становится железой с внутренней секрецией. Он прикрепляется к зрительным буграм посредством двух ножек, на которых находятся ганглиозные утолщения - узел уздечки. Последние соединяются с обонятельными центрами, а также с ядрами тройничного нерва.

Боковые стенки третьего желудочка утолщаются в зрительные бугры - talamioptici - вследствие вторичного образования ядер серого вещества и увеличения проводящих путей. Зрительные бугры играют роль важного промежуточного центра для проводящих путей, идущих в кору головного мозга и обратно. Оба бугра уже у рептилий соединяются друг с другом посредством промежуточной массы, состоящей из серого вещества; она проходит через полость третьего желудочка, вследствие чего последняя превращается в кольцевидный канал.

Производные базальной стенки мозгового пузыря, т.е. пластинки дна, объединяются под названием подталамическая часть - hipotalamus; она состоит из следующих органов.

Впереди зрительного перекреста вентральная стенка промежуточного мозга дает зрительный выступ - recessusopticus, - передняя стенка которого, переходящая в переднюю мозговую спайку, образована кольцевой пластинкой. Позади зрительного перекреста лежит другой непарный тонкостенный выступ в виде воронки - infundibulum. Передняя стенка её утолщается в серый бугор, - а сзади к ней примыкает сосцевидное тело - corpusmammilare, - также из серого вещества. В них оканчиваются волокна из свода в виде передних ножек последнего и из зрительных бугров.

Гипофиз, придаток мозга, - hypophysis - прилежит вентрально к воронке; он состоит из трех частей неодинакового происхождения, строения и различных по функции. Из эктодермы глотки первоначально образуется кармашкообразное выпячивание (карман Ратке), которое затем обособляется от стеки глотки и в виде пузырька примыкает к области воронки. Эпителий стенок пузырька образует разветвлённую железу. Затем просвет железы исчезает, но остаются тяжи от железистых клеток, окружённые большим количеством кровеносных сосудов. Ещё позднее обособляется промежуточная доля гипофиза, непосредственно граничащая с полостью воронки. У наземных животных за счет стенки воронки возникает нервная часть гипофиза, состоящая из нервных клеток. Таким образом, гипофиз у высших животных состоит из трех частей: дорзальной - нервной - neirohypohpysis, - вентральной - железистой - adenohypohpysis - и промежуточной. Железистая часть выделяет инкрет непосредственно в кровеносные сосуды (в кровь), а промежуточная и нервная - в третий мозговой желудочек.

У низших позвоночных животных - анамний - промежуточный мозг не играет еще такой роли, как у амниот, поэтому он и развит у них относительно слабо. Лишь с перемещением в него нервных центов из среднего мозга, обусловленным переходом к наземному образу жизни, промежуточный мозг начинает увеличиваться, оставляя далеко за собой средний мозг, что особенно заметно у человека. Благодаря наличию значительного количества ядер серого вещества промежуточный мозг становится центром корреляции для множества проводящих путей, идущих в кору головного мозга и обратно; отсюда понятно, что дифференциация промежуточного мозга начинается с момента роста конечного мозга.

II. Функции промежуточного мозга

Промежуточный мозг расположен между средним и конечным мозгом, вокруг третьего желудочка мозга. Он состоит из таламической области и гипоталамуса. Таламическая область включает в себя таламус, метаталамус и эпиталамус (эпифиз). Многие физиологи метаталамус объединяют с таламусом.

1. Таламус

Таламус (thalamus - зрительный бугор) представляет собой парный ядерный комплекс, составляющий основную массу (~20 г) промежуточного мозга и наиболее развитый у человека. В таламусе обычно выделяют до 60 парных ядер, которые в функциональном плане можно разделить на следующие три группы: релейные, ассоциативные и неспецифические. Все ядра таламуса в разной степени обладают тремя общими функциями: переключающей, интегративной и модулирующей.

Релейные ядра таламуса ( переключательные, специфические) делятся на сенсорные и несенсорные.

Сенсорные релейные ядра переключают потоки афферентной (чувствительной) импульсации в сенсорные зоны коры (рис.1). В них также происходит перекодирование и обработка информации.


Кора больших полушарий

Вентральные задние ядра (вентробазальный комплекс) является главным реле для переключения соматосенсорной афферентной системы, импульсы которой поступают по волокнам медиальной петли и примыкающих к ней волокнам других афферентных путей, где переключаются тактильная, проприоцептивная, вкусовая, висцеральная, частично температурная и болевая чувствительность. В этих ядрах имеется топографическая проекция периферии; при этом функционально более тонко организованные части тела (например, язык, лицо) имеют большую зону представительства. Импульсация из вентральных задних ядер проецируется в соматосенсорную кору постцентральной извилины (поля 1-3), в которой формируются соответствующие ощущения. Электростимуляция вентральных задних ядер вызывает парастезии (ложные ощущения) в разных частях тела, иногда нарушение "схемы тела" (искаженное восприятие частей тела). Стереотаксическое разрушение участков этих ядер используется для ликвидации тяжелых болевых синдромов, характеризующихся острой локализованной болью и фантомными болями.

Латеральное коленчатое тело способствует переключению зрительной импульсации в затылочную кору, где она используется для формирования зрительных ощущений. Кроме корковой проекции, часть зрительной импульсации направляется в верхние бугры четверохолмия. Эта информация используется для регуляции движения глаз и в зрительном ориентировочном рефлексе.



Похожие публикации