Образование крови. Зачем нужна кровь человеку и из каких компонентов она состоит

Кровь (sanguis) - жидкая ткань, осуществляющая в организме транспорт химических веществ (в т.ч. кислорода), благодаря которому происходит интеграция биохимических процессов, протекающих в различных клетках и межклеточных пространствах, в единую систему.

Кровь состоит из жидкой части - плазмы и взвешенных в ней клеточных (форменных) элементов. Нерастворимые жировые частицы клеточного происхождения, присутствующие в плазме, называют гемокониями (кровяная пыль). Объем К. в норме составляет в среднем у мужчин 5200 мл, у женщин 3900 мл.

Различают красные и белые кровяные тельца (клетки). В норме красных кровяных телец (эритроцитов) у мужчин 4-5×1012/л, у женщин 3,9-4,7×1012/л, белых кровяных телец (лейкоцитов) - 4-9×109/л крови.
Кроме того, в 1 мкл крови содержится 180-320×109/л тромбоцитов (кровяных пластинок). В норме объем клеток составляет 35-45% объема крови.

Физико-химические свойства.
Плотность цельной крови зависит от содержания в ней эритроцитов, белков и липидов Цвет крови меняется от алого до темно-красного в зависимости от соотношения форм гемоглобина, а также присутствия его дериватов - метгемоглобина, карбоксигемоглобина и др. Алый цвет артериальной крови связан с присутствием в эритроцитах оксигемоглобина, темно красный цвет венозной крови - с наличием восстановленного гемоглобина. Окраска плазмы обусловлена присутствием в ней красных и желтых пигментов, главным образом каротиноидов и билирубина; содержание в плазме большого количества билирубина при ряде патологических состояний придает ей желтый цвет.

Кровь представляет собой коллоидно-полимерный раствор, в котором вода является растворителем, соли и низкомолекулярные органические вещества плазмы - растворенными веществами, а белки и их комплексы - коллоидным компонентом.
На поверхности клеток К. имеется двойной слой электрических зарядов, состоящий из прочно связанных с мембраной отрицательных зарядов и уравновешивающего их диффузного слоя положительных зарядов. За счет двойною электрического слоя возникает электрокинетический потенциал (дзета-потенциал), предотвращающий агрегацию (склеивание) клеток и играющий, т.о., важную роль в их стабилизации.

Поверхностный ионный заряд мембран клеток крови непосредственно связан с физико-химическими превращениями, происходящими на клеточных мембранах. Определить клеточный заряд мембран можно с помощью электрофореза. Электрофоретическая подвижность прямо пропорциональна величине заряда клетки. Наибольшей электрофоретической подвижностью обладают эритроциты, наименьшей - лимфоциты.

Проявлением микрогетерогенности К.
является феномен оседания эритроцитов. Склеивание (агглютинация) эритроцитов и связанное с ним оседание во многом зависят от состава среди, в которой они взвешены.

Электропроводность крови, т.е. ее способность проводить электрический ток, зависит от содержания электролитов в плазме и величины гематокритного числа. Электропроводность цельной К. на 70% определяется присутствующими в плазме солями (главным образом хлоридом натрия), на 25% белками плазмы и лишь на 5% клетками крови. Измерение электропроводности крови используют в клинической практике, в частности при определении СОЭ.

Ионная сила раствора - величина, характеризующая взаимодействие растворенных в нем ионов, что сказывается на коэффициентах активности, электропроводности и других свойствах растворов электролитов; для плазмы К. человека эта величина равна 0,145. Концентрация водородных ионов плазмы выражается в величинах водородного показателя. Средний рН крови 7,4. В норме рН артериальной крови 7,35-7,47, венозной крови на 0,02 ниже, содержимое эритроцитов обычно имеет на 0,1-0,2 более кислую реакцию, чем плазма. Поддержание постоянства концентрации водородных ионов в крови обеспечивается многочисленными физико-химическими, биохимическими и физиологическими механизмами, среди которых важную роль играют буферные системы крови. Их свойства зависят от присутствия солей слабых кислот, главным образом угольной, а также гемоглобина (он диссоциирует как слабая кислота), низкомолекулярных органических кислот и фосфорной кислоты. Сдвиг концентрации водородных ионов в кислую сторону называется ацидозом, в щелочную - алкалозом. Для поддержания постоянства рН плазмы наибольшее значение имеет бикарбонатная буферная система (см. Кислотно-щелочное равновесие). Т.к. буферные свойства плазмы почти целиком зависят от содержания в ней бикарбоната, а в эритроцитах большую роль играет также гемоглобин, то буферные свойства цельной К. в большой степени обусловлены содержанием в ней гемоглобина. Гемоглобин, как и подавляющее большинство белков К., при физиологических значениях рН диссоциирует как слабая кислота, при переходе в оксигемоглобин он превращается в значительно более сильную кислоту, что способствует вытеснению угольной кислоты из К. и переходу ее в альвеолярный воздух.

Осмотическое давление плазмы крови определяется ее осмотической концентрацией, т.е. суммой всех частиц - молекул, ионов, коллоидных частиц, находящихся в единице объема. Эта величина поддерживается физиологическими механизмами с большим постоянством и при температуре тела 37° составляет 7,8 мН/м2 (» 7,6 атм). Она в основном зависит от содержания в К. хлористого натрия и других низкомолекулярных веществ, а также белков, главным образом альбуминов, неспособных легко проникать через эндотелий капилляров. Эту часть осмотического давления называют коллоидно-осмотическим, или онкотическим. Оно играет важную роль в движении жидкости между кровью и лимфой, а также в образовании гломерулярного фильтрата.

Одно из важнейших свойств крови - вязкость составляет предмет изучения биореологии. Вязкость крови зависит от содержания белков и форменных элементов, главным образом эритроцитов, от калибра кровеносных сосудов. Измеряемая на капиллярных вискозиметрах (с диаметром капилляра несколько десятых миллиметра), вязкость крови в 4-5 раз выше вязкости воды. Величина, обратная вязкости, называется текучестью. При патологических состояниях текучесть крови существенно изменяется вследствие действия определенных факторов свертывающей системы крови.

Морфология и функция форменных элементов крови. К форменным элементам крови относятся эритроциты, лейкоциты, представленные гранулоцитами (нейтрофильными, эозинофильными и базофильными полиморфно-ядерными) и агранулоцитами (лимфоцитами и моноцитами), а также тромбоциты. В крови содержится незначительное количество плазматических и других клеток. На мембранах клеток крови происходят ферментативные процессы и осуществляются иммунные реакции. Мембраны клеток крови несут информацию о группах К. в тканевых антигенах.

Эритроциты (около 85%) являются безъядерными двояковогнутыми клетками с ровной поверхностью (дискоцитами), диаметром 7-8 мкм. Объем клетки 90 мкм3 площадь 142 мкм2, наибольшая толщина 2,4 мкм, минимальная - 1 мкм, средний диаметр на высушенных препаратах 7,55 мкм. Сухое вещество эритроцита содержит около 95% гемоглобина, 5% приходится на долю других веществ (негемоглобиновые белки и липиды). Ультраструктура эритроцитов однообразна. При исследовании их с помощью трансмиссионного электронного микроскопа отмечается высокая однородная электронно-оптическая плотность цитоплазмы за счет содержащегося в ней гемоглобина; органеллы отсутствуют. На более ранних стадиях развития эритроцита (ретикулоцита) в цитоплазме можно обнаружить остатки структур клеток-предшественников (митохондрии и др.). Клеточная мембрана эритроцита на всем протяжении одинакова; она имеет сложное строение. Если мембрана эритроцитов нарушается, то клетки принимают сферические формы (стоматоциты, эхиноциты, сфероциты). При исследовании в сканирующем электронном микроскопе (растровая электронная микроскопия) определяют различные формы эритроцитов в зависимости от их поверхностной архитектоники. Трансформация дискоцитов вызывается рядом факторов, как внутриклеточных, так и внеклеточных.

Эритроциты в зависимости от размера называют нормо-, микро- и макроцитами. У здоровых взрослых людей количество нормоцитов составляет в среднем 70%.

Определение размеров эритроцитов (эритроцитометрия) дает представление об эритроцитопоэзе. Для характеристики эритроцитопоэза используют также эритрограмму - результат распределения эритроцитов по какому-либо признаку (например, по диаметру, содержанию гемоглобина), выраженный в процентах и (или) графически.

Зрелые эритроциты не способны к синтезу нуклеиновых кислот и гемоглобина. Для них характерен относительно низкий уровень обмена, что обусловливает длительную продолжительность их жизни (приблизительно 120 дней). Начиная с 60-го дня после попадания эритроцита в кровяное русло постепенно снижается активность ферментов. Это приводит к нарушению гликолиза и, следовательно, к уменьшению потенциала энергетических процессов в эритроците. Изменения внутриклеточного обмена связаны со старением клетки и в итоге приводят к ее разрушению. Большое число эритроцитов (около 200 млрд.) ежедневно подвергается деструктивным изменениям и погибает.

Лейкоциты.
Гранулоциты - нейтрофильные (нейтрофилы), эозинофильные (эозинофилы), базофильные (базофилы) полиморфно-ядерные лейкоциты - крупные клетки от 9 до 15 мкм, они циркулируют в крови несколько часов, а затем перемещаются в ткани. В процессы дифференциации гранулоциты проходят стадии метамиелоцитов и палочкоядерных форм. В метамиелоцитах бобовидное ядро имеет нежное строение. В палочкоядерных гранулоцитах хроматин ядра более плотно упакован, ядро вытягивается, иногда в нем намечается образование долек (сегментов). В зрелых (сегментоядерных) гранулоцитах ядро обычно имеет несколько сегментов. Все гранулоциты характеризуются наличием в цитоплазме зернистости, которую подразделяют на азурофильную и специальную. В последней, в свою очередь, различают зрелую и незрелую зернистость.

В нейтрофильных зрелых гранулоцитах количество сегментов бывает от 2 до 5; новообразования гранул в них не происходит. Зернистость нейтрофильных гранулоцитов окрашивается красителями от коричневатого до красновато-фиолетового цвета; цитоплазма - в розовый цвет. Соотношение азурофильных и специльных гранул непостоянно. Относительное число азурофильных гранул достигает 10-20%. Важную роль в жизнедеятельности гранулоцитов играет их поверхностная мембрана. По набору гидролитических ферментов гранулы могут быть идентифицированы как лизосомы с некоторыми специфическими особенностями (наличие фагоцитина и лизоцима). При ультрацитохимическом исследовании показано, что активность кислой фосфатазы в основном связана с азурофильными гранулами, а активность щелочной фосфатазы - со специальными гранулами. С помощью цитохимических реакций в нейтрофильных гранулоцитах обнаружены липиды, полисахариды, пероксидаза и др. Основной функцией нейтрофильных гранулоцитов является защитная реакция по отношению к микроорганизмам (микрофаги). Они активные фагоциты.

Эозинофильные гранулоциты содержат ядро, состоящее из 2, реже 3 сегментов. Цитоплазма слабо базофильна. Эозинофильная зернистость окрашивается кислыми анилиновыми красителями, особенно хорошо эозином (от розового до цвета меди). В эозинофилах выявлены пероксидаза, цитохромоксидаза, сукцинатдегидрогеназа, кислая фосфатаза и др. Эозинофильные гранулоциты обладают дезинтоксикационной функцией. Количество их увеличивается при введении в организм чужеродного белка. Эозинофилия является характерным симптомом при аллергических состояниях. Эозинофилы принимают участие в дезинтеграции белка и удалении белковых продуктов, наряду с другими гранулоцитами способны к фагоцитозу.

Базофильные гранулоциты обладают свойством окрашиваться метахроматически, т.е. в оттенки, отличные от цвета краски. Ядро этих клеток не имеет структурных особенностей. В цитоплазме органеллы развиты слабо, в ней определяются специальные гранулы полигональной формы (диаметром 0,15-1,2 мкм), состоящие из электронно-плотных частиц. Базофилы наряду с эозинофилами участвуют в аллергических реакциях организма. Несомненна их роль и в обмене гепарина.

Для всех гранулоцитов характерна высокая лабильность клеточной поверхности, которая проявляется в адгезивных свойствах, способности к агрегации, образованию псевдоподий, передвижению, фагоцитозу. В гранулоцитах обнаружены кейлоны - вещества, которые оказывают специфическое действие, подавляя синтез ДНК в клетках гранулоцитарного ряда.

В отличие от эритроцитов лейкоциты в функциональном отношении являются полноценными клетками с большим ядром и митохондриями, высоким содержанием нуклеиновых кислот и окислительным фосфорилированием. В них сосредоточен весь гликоген крови, служащий источником энергии при недостатке кислорода, например в очагах воспаления. Основная функция сегментоядерных лейкоцитов - фагоцитоз. Их антимикробная и антивирусная активность связана с выработкой лизоцима и интерферона.

Лимфоциты - центральное звено в специфических иммунологических реакциях; они являются предшественниками антителообразующих клеток и носителями иммунологической памяти. Основная функция лимфоцитов - выработка иммуноглобулинов (см. Антитела). В зависимости от величины различают малые, средние и большие лимфоциты. В связи с различием иммунологических свойств выделяют лимфоциты тимусзависимые (Т-лимфоциты), ответственные за опосредованный иммунный ответ, и В-лимфоциты, которые являются предшественниками плазматических клеток и ответственны за эффективность гуморального иммунитета.

Большие лимфоциты имеют обычно круглое или овальное ядро, хроматин конденсируется по краю ядерной мембраны. В цитоплазме находятся одиночные рибосомы. Эндоплазматическая сеть развита слабо. Выявляют 3-5 митохондрий, реже их больше. Пластинчатый комплекс представлен небольшими пузырьками. Определяются электронно-плотные осмиофильные гранулы, окруженные однослойной мембраной. Малые лимфоциты характеризуются высоким ядерно-цитоплазматическим отношением. Плотно упакованный хроматин образует крупные конгломераты по периферии и в центре ядра, которое бывает овальной или бобовидной формы. Цитоплазматические органеллы локализуются на одном полюсе клетки.

Продолжительность жизни лимфоцита колеблется от 15-27 дней до нескольких месяцев и лет. В химическом составе лимфоцита наиболее выраженными компонентами являются нуклеопротеиды. Лимфоциты содержат также катепсин, нуклеазу, амилазу, липазу, кислую фосфатазу, сукцинатдегидрогеназу, цитохромоксидазу, аргинин, гистидин, гликоген.

Моноциты - наиболее крупные (12-20 мкм) клетки крови. Форма ядра разнообразная, клетка окрашивается в фиолетово-красный цвет; хроматиновая сеть в ядре имеет широко-нитчатое, рыхлое строение (рис. 5). Цитоплазма обладает слабобазофильными свойствами, окрашивается в сине-розовый цвет, имея в разных клетках различные оттенки. В цитоплазме определяется мелкая нежная азурофильная зернистость, диффузно распределенная по всей клетке; окрашивается в красный цвет. Моноциты обладают резко выраженной способностью к окрашиванию, амебоидному движению и фагоцитозу, особенно остатков клеток и мелких чужеродных тел.

Тромбоциты - полиморфные безъядерные образования, окруженные мембраной. В кровяном русле тромбоциты имеют округлую или овальную форму. В зависимости от степени целости различают зрелые формы тромбоцитов, юные, старые, так называемые формы раздражения и дегенеративные формы (последние встречаются у здоровых людей крайне редко). Нормальные (зрелые) тромбоциты - круглой или овальной формы с диаметром 3-4 мкм; составляют 88,2 ± 0,19% всех тромбоцитов. В них различают наружную бледно-голубую зону (гиаломер) и центральную с азурофильной зернистостью - грануломер (рис. 6). При соприкосновении с чужеродной поверхностью волоконца гиаломера, переплетаясь между собой, образуют на периферии тромбоцита отростки различной величины. Юные (незрелые) тромбоциты - несколько больших размеров по сравнению со зрелыми с базофильным содержимым; составляют 4,1 ± 0,13%. Старые тромбоциты - различной формы с узким ободком и обильной грануляцией, содержат много вакуолей; составляют 4,1 ± 0,21%. Процентное соотношение различных форм тромбоцитов отражают в тромбоцитограмме (тромбоцитарной формуле), которая зависит от возраста, функционального состояния кроветворения, наличия патологических процессов в организме. Химический состав тромбоцитов достаточно сложен. Так, в их сухом остатке содержится 0,24% натрия, 0,3% калия, 0,096% кальция, 0,02% магния, 0,0012% меди, 0,0065% железа и 0,00016% марганца. Наличие в тромбоцитах железа и меди позволяет предположить их участие в дыхании. Большая часть кальция тромбоцитов связана с липидами в виде липидно-кальциевого комплекса. Важную роль играет калий; в процессе образования кровяного сгустка он переходит в сыворотку крови, что необходимо для осуществления его ретракции. До 60% сухого веса тромбоцитов составляют белки. Содержание липидов достигает 16-19% от сухого веса. В тромбоцитах выявлены также холинплазмалоген и этанолплазмалоген, играющие определенную роль в ретракции сгустка. Кроме того, в тромбоцитах отмечаются значительные количества b-глюкуронидазы и кислой фосфатазы, а также цитохромоксидазы и дегидрогеназы, полисахариды, гистидин. В тромбоцитах обнаружено соединение, близкое к гликопротеидам, способное ускорять процесс образования кровяного сгустка, и небольшое количество РНК и ДНК, которые локализуются в митохондриях. Хотя в тромбоцитах отсутствуют ядра, в них протекают все основные биохимические процессы, например синтезируется белок, происходит обмен углеводов и жиров. Основная функция тромбоцитов - способствовать остановке кровотечения; они обладают свойством распластываться, агрегировать и сжиматься, обеспечивая тем самым начало образования кровяного сгустка, а после его формирования - ретракцию. В тромбоцитах содержится фибриноген, а также сократительный белок тромбастенин, во многом напоминающий мышечный сократительный белок актомиозин. Они богаты аденилнуклеотидами, гликогеном, серотонином, гистамином. В гранулах содержится III, а на поверхности адсорбированы V, VII, VIII, IX, X, XI и XIII факторы свертывания крови.

Плазматические клетки встречаются в нормальной крови, в единичном количестве. Для них характерно значительное развитие структур эргастоплазмы в виде канальцев, мешочков и др. На мембранах эргастоплазмы очень много рибосом, что делает цитоплазму интенсивно-базофильной. Около ядра локализуется светлая зона, в которой обнаруживается клеточный центр и пластинчатый комплекс. Ядро располагается эксцентрично. Плазматические клетки продуцируют иммуноглобулины

Биохимия.
Перенос кислорода к тканям крови (эритроциты) осуществляет с помощью специальных белков - переносчиков кислорода. Это содержащие железо или медь хромопротеиды, которые получили название кровяных пигментов. Если переносчик низкомолекулярный, он повышает коллоидно-осмотическое давление, если высокомолекулярный - увеличивает вязкость крови, затрудняя ее движение.

Сухой остаток плазмы крови человека около 9%, из них 7% составляют белки, в том числе около 4% приходится на альбумин, поддерживающий коллоидно-осмотическое давление. В эритроцитах плотных веществ значительно больше (35-40%), из них 9/10 приходится на гемоглобин.

Исследование химического состава цельной крови широко используется для диагностики заболеваний и контроля за лечением. Для облегчения интерпретации результатов исследования вещества, входящие в состав крови, делят на несколько групп. В первую группу входят вещества (водородные ионы, натрий, калий, глюкоза и др.), имеющие постоянную концентрацию, которая необходима для правильного функционирования клеток. К ним применимо понятие постоянства внутренней среды (гомеостаза). Ко второй группе относятся вещества (гормоны, плазмоспецифические ферменты и др.), продуцируемые специальными видами клеток; изменение их концентрации свидетельствует о повреждении соответствующих органов. Третья группа включает вещества (некоторые из них токсичны), удаляемые из организма лишь специальными системами (мочевина, креатинин, билирубин и др.); накопление их в крови является симптомом повреждения этих систем. Четвертую группу составляют вещества (органоспецифические ферменты), которыми богаты лишь некоторые ткани; появление их в плазме служит признаком разрушения или повреждения клеток этих тканей. В пятую группу входят вещества, в норме продуцируемые в небольших количествах; в плазме они появляются при воспалении, новообразовании, нарушении обмена веществ и др. К шестой группе относятся токсические вещества экзогенного происхождения.

Для облегчения лабораторной диагностики разработано понятие нормы, или нормального состава, кровь -диапазон концентраций, не свидетельствующих о заболевании. Однако общепринятые нормальные величины удалось установить лишь для некоторых веществ. Сложность заключается в том, что в большинстве случаев индивидуальные различия значительно превышают колебания концентрации у одного и того же человека в разное время. Индивидуальные различия связаны с возрастом, полом, этнической принадлежностью (распространенностью генетически обусловленных вариантов нормального обмена веществ), географическими и профессиональными особенностями, с употреблением определенной пищи.

В плазме крови содержится более 100 различных белков, из которых около 60 выделено в чистом виде. Подавляющее большинство из них гликопротеиды. Плазматические белки образуются в основном в печени, которая у взрослого человека продуцирует их до 15-20 г в день. Плазматические белки служат для поддержания коллоидно-осмотического давления (и тем самым для удержания воды и электролитов), выполняют транспортные, регуляторные и защитные функции, обеспечивают свертывание крови (гемостаз) и могут служить резервом аминокислот. Различают 5 основных фракций белков крови: альбумины, ×a1-, a2-, b-, g-глобулины. Альбумины составляют относительно однородную группу, состоящую из альбумина и преальбумина. Больше всего в крови альбумина (около 60% всех белков). При содержании альбумина ниже 3% развиваются отеки. Определенное клиническое значение имеет отношение суммы альбуминов (более растворимых белков) к сумме глобулинов (менее растворимых)- так называемый альбумин-глобулиновый коэффициент, уменьшение которого служит показателем воспалительного процесса.

Глобулины неоднородны по химической структуре и функциям. В группу a1-глобулинов входят следующие белки: орозомукоид (a1-гликопротеид), a1-антитрипсин, a1-липопротеид и др. К числу a2-глобулинов относятся a2-макроглобулин, гаптоглобулин, церулоплазмин (медьсодержащий белок, обладающий свойствами фермента оксидазы), a2-липопротеид, тироксинсвязывающий глобулин и др. b-Глобулины очень богаты липидами, в них входят также трансферин, гемопексин, стероидсвязывающий b-глобулин, фибриноген и др. g-Глобулины - белки, ответственные за гуморальные факторы иммунитета, в их составе различают 5 групп иммуноглобулинов: lgA, lgD, lgE, lgM, lgG. В отличие от других белков, они синтезируются в лимфоцитах. Многие из перечисленных белков существуют в нескольких генетически обусловленных вариантах. Их присутствие в К. в одних случаях сопровождается заболеванием, в других - является вариантом нормы. Иногда присутствие нетипичного аномального белка приводит к незначительным нарушениям. Приобретенные заболевания могут сопровождаться накоплением специальных белков - парапротеинов, являющихся иммуноглобулинами, которых у здоровых людей значительно меньше. К ним относятся белок Бенс-Джонса, амилоид, иммуноглобулин класса М, J, А, а также криоглобулин. Среди ферментов плазмы К. обычно выделяют органоспецифические и плазмоспецифические. К первым относят те из них, которые содержатся в органах, а в плазму в значительных количествах попадают лишь при повреждении соответствующих клеток. Зная спектр органоспецифических ферментов в плазме, можно установить, из какого органа происходит данная комбинация ферментов и насколько значительно ею повреждение. К плазмоспецифическим относят ферменты, основная функция которых реализуется непосредственно в кровотоке; их концентрация в плазме всегда выше, чем в каком-либо органе. Функции плазмоспецифических ферментов разнообразны.

В плазме крови циркулируют все аминокислоты, входящие в состав белков, а также некоторые родственные им аминосоединения - таурин, цитруллин и др. Азот, входящий в состав аминогрупп, быстро обменивается путем переаминирования аминокислот, а также включения в состав белков. Общее содержание азота аминокислот плазмы (5-6 ммоль/л) примерно в два раза ниже, чем азота, входящего в состав шлаков. Диагностическое значение имеет в основном увеличение содержания некоторых аминокислот, особенно в детском возрасте, которое свидетельствует о недостаточности ферментов, осуществляющих их метаболизм.

К безазотистым органическим веществам относятся липиды, углеводы и органические кислоты. Липиды плазмы не растворимы в воде, поэтому переносятся кровь только в составе липопротеинов. Это вторая по величине группа веществ, уступающая белкам. Среди них больше всего триглицеридов (нейтральных жиров), затем идут фосфолипиды - главным образом лецитин, а также кефалин, сфингомиелин и лизолецитии. Для выявления и типирования нарушений жирового обмена (гиперлипидемий) большое значение имеет исследование содержания в плазме холестерина и триглицеридов.

Глюкоза крови (иногда ее не совсем правильно идентифицируют с сахаром крови) - основной источник энергии для многих тканей и единственный для головного мозга, клетки которого очень чувствительны к уменьшению ее содержания. Помимо глюкозы в крови присутствуют в небольших количествах другие моносахариды: фруктоза, галактоза, а также фосфорные эфиры сахаров - промежуточные продукты гликолиза.

Органические кислоты плазмы крови (не содержащие азота) представлены продуктами гликолиза (большая часть их фосфорилирована), а также промежуточными веществами цикла трикарбоновых кислот. Среди них особое место занимает молочная кислота, которая накапливается в больших количествах, если организм совершает более значительный объем работы, чем получает для этого кислорода (кислородный долг). Накопление органических кислот происходит также при различных видах гипоксии. b-Оксимасляная и ацетоуксусная кислоты, которые вместе с образующимся из них ацетоном относятся к кетоновым телам, в норме вырабатываются в сравнительно небольших количествах как продукты обмена углеводородных остатков некоторых аминокислот. Однако при нарушении углеводного обмена, например при голодании и сахарном диабете, вследствие недостатка щавелевоуксусной кислоты изменяется нормальная утилизация остатков уксусной кислоты в цикле трикарбоновых кислот, и поэтому кетоновые тела могут накапливаться в крови в больших количествах.

Печень человека продуцирует холевую, уродезоксихолевую и хенодезоксихолевую кислоты, которые выделяются с желчью в двенадцатиперстную кишку, где, эмульгируя жиры и активируя ферменты, способствуют пищеварению. В кишечнике под действием микрофлоры из них образуются дезоксихолевая и литохолевая кислоты. Из кишечника желчные кислоты частично всасываются в крови, где большая часть их находится в виде парных соединений с таурином или глицином (конъюгированные желчные кислоты).

Все продуцируемые эндокринной системой гормоны циркулируют в крови. Их содержание у одного и того же человека в зависимости от физиологического состояния может очень значительно изменяться. Для них характерны также суточные, сезонные, а у женщин и месячные циклы. В крови всегда присутствуют продукты неполного синтеза, а также распада (катаболизма) гормонов, которые часто обладают биологическим действием, поэтому в клинической практике широкое распространение имеет определение сразу целой группы родственных веществ, например 11-оксикортикостероидов, йодсодержащих органических веществ. Циркулирующие в К. гормоны быстро выводятся из организма; период их полувыведения обычно измеряется минутами, реже часами.

В крови содержатся минеральные вещества и микроэлементы. Натрий составляет 9/10 всех катионов плазмы, концентрация его поддерживается с очень большим постоянством. В составе анионов доминируют хлор и бикарбонат; их содержание менее постоянно, чем катионов, поскольку выделение угольной кислоты через легкие приводит к тому, что венозная кровь бывает богаче бикарбонатом, чем артериальная. В процессе дыхательного цикла хлор перемещается из эритроцитов в плазму и обратно. В то время как все катионы плазмы представлены минеральными веществами, примерно 1/6 часть всех содержащихся в ней анионов приходится на белок и органические кислоты. У человека и почти у всех высших животных электролитный состав эритроцитов резко отличается от состава плазмы: вместо натрия преобладает калий, содержание хлора также значительно меньше.

Железо плазмы крови полностью связано с белком трансферрином, в норме насыщая его на 30-40%. Поскольку одна молекула этого белка связывает два атома Fe3+, образовавшихся при распаде гемоглобина, двухвалентное железо предварительно окисляется до трехвалентного. В плазме содержится кобальт, входящий в состав витамина В12. Цинк находится преимущественно в эритроцитах. Биологическая роль таких микроэлементов, как марганец, хром, молибден, селен, ванадий и никель, полностью не ясна; количество этих микроэлементов в организме человека во многом зависит от содержания их в растительной пище, куда они попадают из почвы или с промышленными отходами, загрязняющими окружающую среду.

В крови могут появиться ртуть, кадмий и свинец. Ртуть и кадмий в плазме крови связаны с сульфгидрильными группами белков, в основном альбумина. Содержание свинца в крови служит показателем загрязненности атмосферы; согласно рекомендациям ВОЗ, оно не должно превышать 40 мкг%, то есть 0,5 мкмоль/л.

Концентрация гемоглобина в крови зависит от общего количества эритроцитов и содержания в каждом из них гемоглобина. Различают гипо-, нормо- и гиперхромную анемию в зависимости от того, сопряжено понижение гемоглобина крови с уменьшением или увеличением его содержания в одном эритроците. Допустимые концентрации гемоглобина, при изменении которых можно судить о развитии анемии, зависят от пола, возраста и физиологического состояния. Большую часть гемоглобина у взрослого человека составляет HbA, в небольших количествах присутствуют также HbA2 и фетальный HbF, который накапливается в крови у новорожденных, а также при ряде заболеваний крови. У некоторых людей генетически обусловлено наличие в крови аномальных гемоглобинов; всего их описано более сотни. Часто (но не всегда) это сопряжено с развитием заболевания. Небольшая часть гемоглобина существует в виде его дериватов - карбоксигемоглобина (связанного с СО) и метгемоглобина (в нем железо окислено до трехвалентного); при патологических состояниях появляются цианметгемоглобин, сульфгемоглобин и др. В небольших количествах в эритроцитах присутствуют лишенная железа простетическая группа гемоглобина (протопорфирин IX) и промежуточные продукты биосинтеза - копропорфирин, аминолевуленовая кислота и др.

ФИЗИОЛОГИЯ
Основной функцией крови является перенос различных веществ, в т.ч. тех, с помощью которых организм защищается от воздействия окружающей среды или регулирует функции отдельных органов. В зависимости от характера переносимых веществ различают следующие функции крови.

Дыхательная функция включает транспорт кислорода от легочных альвеол к тканям и углекислоты от тканей к легким. Питательная функция - перенос питательных веществ (глюкозы, аминокислот, жирных кислот, триглицеридов и др.) от органов, где эти вещества образуются или накапливаются, к тканям, в которых они подвергаются дальнейшим превращениям, этот перенос тесно связан с транспортом промежуточных продуктов обмена веществ. Экскреторная функция состоит в переносе конечных продуктов обмена веществ (мочевины, креатинина, мочевой кислоты и др.) в почки и другие органы (например, кожу, желудок) и участии в процессе образования мочи. Гомеостатическая функция - достижение постоянства внутренней среды организма благодаря перемещению крови, омыванию ею всех тканей, с межклеточной жидкостью которых ее состав уравновешивается. Регуляторная функция заключается в переносе гормонов, вырабатываемых железами внутренней секреции, и других биологически активных веществ, с помощью которых осуществляется регуляция функций отдельных клеток тканей, а также удаление этих веществ и их метаболитов после того, как их физиологическая роль выполнена. Терморегуляторная функция реализуется путем изменения величины кровотока в коже, подкожной клетчатке, мышцах и внутренних органах под влиянием изменения температуры окружающей среды: перемещение крови благодаря ее высокой теплопроводности и теплоемкости увеличивает потери тепла организмом, когда существует угроза перегревания, или, наоборот, обеспечивает сохранение тепла при понижении температуры окружающей среды. Защитную функцию выполняют вещества обеспечивающие гуморальную защиту организма от инфекции и попадающих в крови токсинов (например, лизоцим), а также лимфоциты, участвующие в образовании антител. Клеточную защиту осуществляют лейкоциты (нейтрофилы, моноциты), которые переносятся током крови в очаг инфекции, к месту проникновения возбудителя, и совместно с тканевыми макрофагами формируют защитный барьер. Током крови удаляются и обезвреживаются образующиеся при повреждении тканей продукты их деструкции. К защитной функции крови относится также ее способность к свертыванию, образованию тромба и прекращению кровотечения. В этом процессе принимают участие факторы свертывания крови и тромбоциты. При значительном снижении количества тромбоцитов (тромбоцитопении) наблюдается замедленное свертывание крови.

Группы крови.
Количество крови в организме - величина довольно постоянная и тщательно регулируемая. В течение всей жизни человека не меняется также его группа крови - иммуногенетические признаки К. позволяющие объединять крови людей в определенные группы по сходству антигенов. Принадлежность крови к той или иной группе и наличие нормальных или изоиммунных антител предопределяют биологически благоприятное или, наоборот, неблагоприятное совместимое сочетание К. различных лиц. Это может иметь место при поступлении эритроцитов плода в организм матери во время беременности или при переливании крови. При разных группах К. у матери и плода и при наличии у матери антител к антигенам К. плода у плода или новорожденного развивается гемолитическая болезнь.

Переливание реципиенту крови не той группы в связи с наличием у него антител к вводимым антигенам донора приводит к несовместимости и повреждению перелитых эритроцитов с тяжелыми последствиями для реципиента. Поэтому основным условием при переливании К. является учет групповой принадлежности и совместимости крови донора и реципиента.

Генетические маркеры крови- свойственные форменным элементам и плазме крови признаки, используемые в генетических исследованиях для типирования индивидов. К генетическим маркерам крови относят групповые факторы эритроцитов, антигены лейкоцитов, ферментные и другие белки. Различают также генетические маркеры клеток крови - эритроцитов (групповые антигены эритроцитов, кислая фосфатаза, глюкозо-6-фосфатдегидрогеназа и др.), лейкоцитов (антигены HLA) и плазмы (иммуноглобулины, гаптоглобин, трансферрин и др.). Изучение генетических маркеров крови оказалось весьма перспективным при разработке таких важных проблем медицинской генетики, молекулярной биологии и иммунологии, как выяснение механизмов мутаций и генетического кода, молекулярной организации.

Особенности крови у детей. Количество крови у детей изменяется в зависимости от возраста и массы ребенка. У новорожденного на 1 кг массы тела приходится около 140 мл крови, у детей первого года жизни - около 100 мл. Удельный вес крови у детей, особенно раннего детского возраста, выше (1,06-1,08), чем у взрослых (1,053-1,058).

У здоровых детей химический состав крови отличается определенным постоянством и сравнительно мало меняется с возрастом. Между особенностями морфологического состава крови и состоянием внутриклеточного обмена существует тесная связь. Содержание таких ферментов крови, как амилаза, каталаза и липаза, у новорожденных понижено, у здоровых детей первого года жизни отмечается повышение их концентраций. Общий белок сыворотки крови после рождения постепенно уменьшается до 3-го месяца жизни и после 6-го месяца достигает уровня подросткового возраста. Характерны выраженная лабильность глобулиновых и альбуминовых фракций и стабилизация белковых фракций после 3-го месяца жизни. Фибриноген в плазме крови обычно составляет около 5% общего белка.

Антигены эритроцитов (А и В) достигают активности только к 10-20 годам, а агглютинабельность эритроцитов новорожденных составляет 1/5 часть агглютинабельности эритроцитов взрослых. Изоантитела (a и b) начинают вырабатываться у ребенка на 2-3-м месяце после рождения, и титры их остаются низкими до года. Изогемагглютинины обнаруживаются у ребенка с 3-6-месячного возраста и только к 5-10 годам достигают уровня взрослого человека.

У детей средние лимфоциты в отличие от малых в 11/2 раза больше эритроцита, цитоплазма их шире, в ней чаще содержится азурофильная зернистость, ядро менее интенсивно окрашивается. Большие лимфоциты почти вдвое больше малых лимфоцитов, ядро их окрашивается в нежные тона, располагается несколько эксцентрично и имеет часто почковидную форму из-за вдавления сбоку. В цитоплазме голубого цвета могут содержаться азурофильная зернистость и иногда вакуоли.

Изменения крови у новорожденных и детей первых месяцев жизни обусловлены наличием красного костного мозга без очагов жирового, большой регенераторной способностью красного костного мозга и при необходимости мобилизацией экстрамедуллярных очагов кроветворения в печени и селезенке.

Снижение у новорожденных содержания протромбина, проакцелерина, проконвертина, фибриногена, а также тромбопластической активности крови способствует изменениям в свертывающей системе и склонности к геморрагическим проявлениям.

Изменения в составе крови у грудных детей менее выражены, чем у новорожденных. К 6-му месяцу жизни количество эритроцитов уменьшается в среднем до 4,55×1012/л, гемоглобина - до 132,6 г/л; диаметр эритроцитов становится равным 7,2-7,5 мкм. Содержание ретикулоцитов в среднем равно 5%. Количество лейкоцитов составляет около 11×109/л. В лейкоцитарной формуле преобладают лимфоциты, выражен умеренный моноцитоз и часто встречаются плазматические клетки. Количество тромбоцитов у грудных детей равно 200-300×109/л. Морфологический состав крови ребенка со 2-го года жизни до момента полового созревания постепенно приобретает черты, характерные для взрослых.

Заболевания крови.
Частота заболеваний самой К. относительно невелика. Однако изменения в крови возникают при многих патологических процессах. Среди болезней крови выделяют несколько основных групп: анемии (самая многочисленная группа), лейкозы, геморрагические диатезы.

С нарушением гемоглобинообразования связано возникновение метгемоглобинемии, сульфгемоглобинемии, карбоксигемоглобинемии. Известно, что для синтеза гемоглобина необходимы железо, белки и порфирины. Последние образуются эритробластами и нормобластами костного мозга и гепатоцитами. Отклонения в порфириновом обмене могут вызывать заболевания, получившие название порфирий. Генетические дефекты эритроцитопоэза лежат в основе наследственных эритроцитозов, протекающих с повышенным содержанием эритроцитов и гемоглобина.

Значительное место среди болезней крови занимают гемобластозы - заболевания опухолевой природы, среди которых выделяют миелопролиферативные и лимфопролиферативные процессы. В группе гемобластозов выделяют лейкозы. Парапротеинемические гемобластозы рассматривают как лимфопролиферативные заболевания в группе хронических лейкозов. Среди них различают болезнь Вальденстрема, болезнь тяжелых и легких цепей, миеломную болезнь. Отличительной особенностью этих заболеваний является способность опухолевых клеток синтезировать патологические иммуноглобулины. К гемобластозам относят также лимфосаркомы и лимфомы, характеризующиеся первичной локальной злокачественной опухолью, исходящей из лимфоидной ткани.

К заболеваниям системы крови относятся болезни моноцитарно-макрофагальной системы: болезни накопления и гистиоцитозы X.

Нередко патология в системе крови проявляется агранулоцитозом. Причиной его развития может быть иммунный конфликт или воздействие миелотоксических факторов. Соответственно различают иммунный и миелотоксический агранулоцитоз. В некоторых случаях нейтропения представляет собой следствие генетически обусловленных дефектов гранулоцитопоэза (см. Нейтропении наследственные).

Методы лабораторного исследования крови разнообразны. Одним из наиболее распространенных методов является изучение количественного и качественного состава крови. Эти исследования применяют в целях диагностики, изучения динамики патологического процесса, эффективности терапии и прогнозирования заболевания. Внедрение в практику унифицированных методов лабораторных исследований средств и методов контроля качества проводимых анализов, а также использование гематологических и биохимических автоанализаторов обеспечивают современный уровень проведения лабораторных исследований, преемственность и сопоставимость данных различных лабораторий. Лабораторные методы исследования крови включают световую, люминесцентную, фазово-контрастную, электронную и сканирующую микроскопию, а также цитохимические методы исследования крови (визуальную оценку специфических цветных реакций), цитоспектрофотометрию (выявление количества и локализацию химических компонентов в клетках крови по изменению величины поглощения света с определенной длиной волны), клеточный электрофорез (количественную оценку величины поверхностного заряда мембраны клеток крови), радиоизотопные методы исследования (оценку временной циркуляции клеток крови), голографию (определение размеров и формы клеток крови), иммунологические методы (выявление антител к тем или иным клеткам крови).

Чтобы организм оптимально функционировал, все компоненты и органы должны быть в определённой пропорции. Кровь – один из видов тканей с характерным составом. Постоянно перемещаясь, кровь осуществляет массу важнейших для организма функций, а также переносит по системе кровообращения газы и элементы.

Из каких компонентов состоит?

Если говорить кратко про состав крови, плазма и входящие в неё клетки являются определяющими субстанциями. Плазма – светлая жидкость, составляющая около 50% объема крови. Плазму, лишенную фибриногена, называют сывороткой.

В крови имеются форменные элементы трёх типов:

  • Эритроциты – красные клетки. Свой цвет эритроциты получили за счёт гемоглобина, в них содержащегося. Количество гемоглобина периферической крови составляет приблизительно 130 – 160 г/л (муж.) и 120 – 140 г/л (жен.);
  • – белые клетки;
  • – кровяные пластины.

Для артериальной крови характерен ярко-алый цвет. Проникая из легких в сердце, артериальная кровь распространяется по органам, обогащая их кислородом, а затем – возвращается к сердцу по венам. При недостатке кислорода кровь темнеет.

Кровеносная система взрослого человека содержит 4 – 5 л крови, 55% которой приходится на плазму, а 45% – на форменные элементы, причем эритроциты представляют большинство (примерно 90%).

Вязкость крови пропорциональна содержащимся в ней белкам и эритроцитам, причём их качество влияет на показатели кровяного давления. Клетки крови передвигаются либо группами, либо поодиночке. Эритроциты имеют возможность передвигаться поодиночке или «стайками», образуя поток в центральной части сосуда. Лейкоциты обычно двигаются поодиночке, придерживаясь стенок.

Функции крови

Это жидкая соединительная ткань, состоящая из разных элементов, осуществляет важнейшие миссии:

  1. Защитную функцию. Лейкоциты занимают пальму первенства, защищая человеческий организм от инфицирования, сосредотачиваясь в поврежденной части организма. Их назначение – слияние с микроорганизмами (фагоцитоз). Ещё лейкоциты содействуют выведению из организма измененных и отмерших тканей. Лимфоциты производят антитела от опасных агентов.
  2. Транспортировочная функция. Снабжение кровью влияет фактически на все процессы функционирования организма.

Кровь облегчает перемещение:

  • Кислорода от легких к тканям;
  • Углекислого газа от тканей к легким;
  • Органических веществ от кишечника к клеткам;
  • Конечных продуктов, выводимых почками;
  • Гормонов;
  • Других активных веществ.
Перемещение кислорода к тканям
  1. Регулирование температурного баланса. Кровь нужна людям для поддержания температуры тела в пределах 36. 4° — 37°C.

Из чего состоит кровь?

Плазма

В крови находится светло-жёлтая плазма. Её цвет можно объяснить низким содержанием желчного пигмента и прочих частичек.

Каков состав плазмы? Около 90% плазмы состоит из воды, а оставшиеся 10% принадлежат растворённым органическим элементам и минералам.

В плазму включены такие растворённые вещества:

  • Органические – состоят из глюкозы (0. 1%) и белков (приблизительно 7%);
  • Жиры, аминокислоты, молочная и мочевая кислоты и проч. составляют примерно 2% плазмы;
  • Минеральные вещества — до 1%.

Следует помнить: состав крови изменяется в зависимости от употребляемых продуктов и поэтому является непостоянной величиной.


Объём крови составляет:


Если человек пребывает в спокойном состоянии, то кровоток становится намного ниже, поскольку кровь частично остаётся в венулах и венах печени, селезенки, лёгких.

Объём крови остаётся сравнительно стабильным в организме. Стремительная утрата 25 – 50% крови способна спровоцировать гибель организма – вот почему в подобных случаях медики прибегают к неотложному переливанию.

Белки, входящие в плазму, принимают интенсивное участие в водообмене. Антитела образуют определенный процент белков, обезвреживающие чуждые элементы.

Фибриноген (растворимый белок) влияет на свертываемость крови и трансформируется в фибрин, неспособный растворяться. В плазме имеются гормоны, вырабатывающие железы внутренней секреции и прочие биоактивные элементы, очень нужные для организма.

Эритроциты

Наиболее множественные клетки, составляющие 44% – 48% объема крови. Своё название эритроциты получили от греческого слова «красный».

Такой цвет им обеспечил сложнейший по строению гемоглобин, обладающий способностью взаимодействовать с кислородом. В гемоглобине есть белковая и небелковая части.

Белковая часть содержит железо, за счёт которого гемоглобин присоединяет молекулярный кислород.

По строению эритроциты напоминают дважды вогнутые посередине диски диаметром по 7. 5 мкм. За счёт такого строения обеспечиваются эффективные процессы, а благодаря вогнутости, плоскость эритроцита возрастает – всё это необходимо для газообмена. В зрелых клетках эритроцитов ядер нет. Транспортировка кислорода из легких в ткани – основная миссия эритроцитов.

Эритроциты вырабатываются костным мозгом.

Полностью созревая за 5 суток, эритроцит плодотворно функционирует примерно 4 месяца. Эритроциты распадаются в селезенке и печени, а гемоглобин расщепляется на глобин и гем.

Пока что наука не в состоянии точно ответить на вопрос: какие трансформации затем претерпевает глобин, а вот высвобождающиеся из гема ионы железа, вновь производят эритроциты. Трансформируясь в билирубин (жёлчный пигмент), гем попадает с жёлчью в ЖКТ. Недостаточное количество эритроцитов провоцирует малокровие.

Бесцветные клетки, которые защищают организм от инфицирования и болезненного перерождения клеток. Белые тельца бывают зернистыми (гранулоциты) и незернистыми (агранулоциты).

К гранулоцитам относят:

  • Нейтрофилы;
  • Базофилы;
  • Эозинофилы.

Отличающиеся реагированием на различные красители.

К агранулоцитам:

  • Моноциты;

Зернистые лейкоциты обладают гранулой в цитоплазме и ядром с несколькими разделами. Агранулоциты незернистые, включают округлое ядро.

Гранулоциты вырабатываются костным мозгом. О созревании гранулоцитов свидетельствует их зернистая структура и наличие сегментов.

Гранулоциты проникают в кровь, перемещаясь по стенкам амебоидными движениями. Могут оставлять сосуды и сосредотачиваться в очагах инфицирования.

Моноциты

Выполняют роль фагоцитоза . Это более объёмные клетки, которые образуются в костном мозге, лимфоузлах и селезенке.

Более мелкие клетки, подразделяющиеся на 3 вида (В-, 0- и Т). Каждым видом клеток выполняется определенная функция:

  • Вырабатываются антитела;
  • Интерфероны;
  • Активизируются макрофаги;
  • Ликвидируются онкологические клетки.

Прозрачные пластинки небольшого размера, не содержащие ядер. Это частички клеток мегакариоцитов, сосредоточенные в костном мозге.

Тромбоциты могут быть:

  • Овальными;
  • Сферическими;
  • Палочкообразными.

Они функционируют до 10 суток, исполняя важную функцию в организме – участие в свертываемости крови.

Тромбоцитами выделяются вещества, которые участвуют в реакциях, запускаемых при повреждениях кровеносных сосудов.

Вот почему фибриноген трансформируется в нитях фибрина, где могут образовывать тромбы.

Какие бывают функциональные нарушения тромбоцитов? Периферическая кровь взрослого человека должна содержать 180 — 320 х 109/л. Наблюдаются суточные колебания: в дневное время число тромбоцитов увеличивается по отношению к ночному. Их сокращение в организме называют тромбоцитопенией, а возрастание - тромбоцитозом.

Тромбоцитопении бывают в случаях:

  1. Костный мозг производит мало тромбоцитов, или если тромбоциты подвергаются быстрому разрушению.

Отрицательное влияние на вырабатывание кровяных пластин могут оказать:

  1. При тромбоцитопении отмечается предрасположенность к возникновению лёгких синяков (гематом), которые образуются после минимального нажатия на кожный покров или вовсе беспричинно.
  2. Кровоточивость во время незначительных травм или хирургического вмешательства.
  3. Значительные потери крови в период месячных.

Если имеется хоть один из перечисленных симптомов, есть повод сразу же обратиться к доктору.


Тромбоцитоз вызывает противоположный эффект: увеличение тромбоцитов провоцирует образование кровяных сгустков (тромбов), закупоривающих кровоток сосудов.
Это достаточно небезопасно, так как способно спровоцировать инфаркт, инсульт или тромбофлебит конечностей (как правило, нижних).

В определенных случаях тромбоциты, даже при их нормальном количестве, неспособны полностью функционировать и поэтому провоцируют повышенную кровоточивость. Такие патологии функций тромбоцитов бывают врожденными и приобретенными. К этой же группе относятся патологии, которые были спровоцированы длительным употреблением медицинских препаратов: к примеру, неоправданно частым приемом болеутоляющих лекарств, содержащих анальгин.

Краткий итог

В составе крови присутствует жидкая плазма и форменные элементы – взвешенные клетки. Своевременное обнаружение изменённого процентного соотношения состава крови, предоставляют возможность выявления заболевания на начальном периоде.

Видео — из чего состоит кровь

Чтобы организм оптимально функционировал, все компоненты и органы должны быть в определённой пропорции. Кровь – один из видов тканей с характерным составом. Постоянно перемещаясь, кровь осуществляет массу важнейших для организма функций, а также переносит по системе кровообращения газы и элементы.

Из каких компонентов состоит?

Если говорить кратко про состав крови, плазма и входящие в неё клетки являются определяющими субстанциями. Плазма – светлая жидкость, составляющая около 50% объема крови. Плазму, лишенную фибриногена, называют сывороткой.

В крови имеются форменные элементы трёх типов:

  • Эритроциты – красные клетки. Свой цвет эритроциты получили за счёт гемоглобина, в них содержащегося. Количество гемоглобина периферической крови составляет приблизительно 130 – 160 г/л (муж.) и 120 – 140 г/л (жен.);
  • – белые клетки;
  • – кровяные пластины.

Для артериальной крови характерен ярко-алый цвет. Проникая из легких в сердце, артериальная кровь распространяется по органам, обогащая их кислородом, а затем – возвращается к сердцу по венам. При недостатке кислорода кровь темнеет.

Кровеносная система взрослого человека содержит 4 – 5 л крови, 55% которой приходится на плазму, а 45% – на форменные элементы, причем эритроциты представляют большинство (примерно 90%).

Вязкость крови пропорциональна содержащимся в ней белкам и эритроцитам, причём их качество влияет на показатели кровяного давления. Клетки крови передвигаются либо группами, либо поодиночке. Эритроциты имеют возможность передвигаться поодиночке или «стайками», образуя поток в центральной части сосуда. Лейкоциты обычно двигаются поодиночке, придерживаясь стенок.

Функции крови

Это жидкая соединительная ткань, состоящая из разных элементов, осуществляет важнейшие миссии:

  1. Защитную функцию. Лейкоциты занимают пальму первенства, защищая человеческий организм от инфицирования, сосредотачиваясь в поврежденной части организма. Их назначение – слияние с микроорганизмами (фагоцитоз). Ещё лейкоциты содействуют выведению из организма измененных и отмерших тканей. Лимфоциты производят антитела от опасных агентов.
  2. Транспортировочная функция. Снабжение кровью влияет фактически на все процессы функционирования организма.

Кровь облегчает перемещение:

  • Кислорода от легких к тканям;
  • Углекислого газа от тканей к легким;
  • Органических веществ от кишечника к клеткам;
  • Конечных продуктов, выводимых почками;
  • Гормонов;
  • Других активных веществ.
Перемещение кислорода к тканям
  1. Регулирование температурного баланса. Кровь нужна людям для поддержания температуры тела в пределах 36. 4° — 37°C.

Из чего состоит кровь?

Плазма

В крови находится светло-жёлтая плазма. Её цвет можно объяснить низким содержанием желчного пигмента и прочих частичек.

Каков состав плазмы? Около 90% плазмы состоит из воды, а оставшиеся 10% принадлежат растворённым органическим элементам и минералам.

В плазму включены такие растворённые вещества:

  • Органические – состоят из глюкозы (0. 1%) и белков (приблизительно 7%);
  • Жиры, аминокислоты, молочная и мочевая кислоты и проч. составляют примерно 2% плазмы;
  • Минеральные вещества — до 1%.

Следует помнить: состав крови изменяется в зависимости от употребляемых продуктов и поэтому является непостоянной величиной.


Объём крови составляет:


Если человек пребывает в спокойном состоянии, то кровоток становится намного ниже, поскольку кровь частично остаётся в венулах и венах печени, селезенки, лёгких.

Объём крови остаётся сравнительно стабильным в организме. Стремительная утрата 25 – 50% крови способна спровоцировать гибель организма – вот почему в подобных случаях медики прибегают к неотложному переливанию.

Белки, входящие в плазму, принимают интенсивное участие в водообмене. Антитела образуют определенный процент белков, обезвреживающие чуждые элементы.

Фибриноген (растворимый белок) влияет на свертываемость крови и трансформируется в фибрин, неспособный растворяться. В плазме имеются гормоны, вырабатывающие железы внутренней секреции и прочие биоактивные элементы, очень нужные для организма.

Эритроциты

Наиболее множественные клетки, составляющие 44% – 48% объема крови. Своё название эритроциты получили от греческого слова «красный».

Такой цвет им обеспечил сложнейший по строению гемоглобин, обладающий способностью взаимодействовать с кислородом. В гемоглобине есть белковая и небелковая части.

Белковая часть содержит железо, за счёт которого гемоглобин присоединяет молекулярный кислород.

По строению эритроциты напоминают дважды вогнутые посередине диски диаметром по 7. 5 мкм. За счёт такого строения обеспечиваются эффективные процессы, а благодаря вогнутости, плоскость эритроцита возрастает – всё это необходимо для газообмена. В зрелых клетках эритроцитов ядер нет. Транспортировка кислорода из легких в ткани – основная миссия эритроцитов.

Эритроциты вырабатываются костным мозгом.

Полностью созревая за 5 суток, эритроцит плодотворно функционирует примерно 4 месяца. Эритроциты распадаются в селезенке и печени, а гемоглобин расщепляется на глобин и гем.

Пока что наука не в состоянии точно ответить на вопрос: какие трансформации затем претерпевает глобин, а вот высвобождающиеся из гема ионы железа, вновь производят эритроциты. Трансформируясь в билирубин (жёлчный пигмент), гем попадает с жёлчью в ЖКТ. Недостаточное количество эритроцитов провоцирует малокровие.

Бесцветные клетки, которые защищают организм от инфицирования и болезненного перерождения клеток. Белые тельца бывают зернистыми (гранулоциты) и незернистыми (агранулоциты).

К гранулоцитам относят:

  • Нейтрофилы;
  • Базофилы;
  • Эозинофилы.

Отличающиеся реагированием на различные красители.

К агранулоцитам:

  • Моноциты;

Зернистые лейкоциты обладают гранулой в цитоплазме и ядром с несколькими разделами. Агранулоциты незернистые, включают округлое ядро.

Гранулоциты вырабатываются костным мозгом. О созревании гранулоцитов свидетельствует их зернистая структура и наличие сегментов.

Гранулоциты проникают в кровь, перемещаясь по стенкам амебоидными движениями. Могут оставлять сосуды и сосредотачиваться в очагах инфицирования.

Моноциты

Выполняют роль фагоцитоза . Это более объёмные клетки, которые образуются в костном мозге, лимфоузлах и селезенке.

Более мелкие клетки, подразделяющиеся на 3 вида (В-, 0- и Т). Каждым видом клеток выполняется определенная функция:

  • Вырабатываются антитела;
  • Интерфероны;
  • Активизируются макрофаги;
  • Ликвидируются онкологические клетки.

Прозрачные пластинки небольшого размера, не содержащие ядер. Это частички клеток мегакариоцитов, сосредоточенные в костном мозге.

Тромбоциты могут быть:

  • Овальными;
  • Сферическими;
  • Палочкообразными.

Они функционируют до 10 суток, исполняя важную функцию в организме – участие в свертываемости крови.

Тромбоцитами выделяются вещества, которые участвуют в реакциях, запускаемых при повреждениях кровеносных сосудов.

Вот почему фибриноген трансформируется в нитях фибрина, где могут образовывать тромбы.

Какие бывают функциональные нарушения тромбоцитов? Периферическая кровь взрослого человека должна содержать 180 — 320 х 109/л. Наблюдаются суточные колебания: в дневное время число тромбоцитов увеличивается по отношению к ночному. Их сокращение в организме называют тромбоцитопенией, а возрастание - тромбоцитозом.

Тромбоцитопении бывают в случаях:

  1. Костный мозг производит мало тромбоцитов, или если тромбоциты подвергаются быстрому разрушению.

Отрицательное влияние на вырабатывание кровяных пластин могут оказать:

  1. При тромбоцитопении отмечается предрасположенность к возникновению лёгких синяков (гематом), которые образуются после минимального нажатия на кожный покров или вовсе беспричинно.
  2. Кровоточивость во время незначительных травм или хирургического вмешательства.
  3. Значительные потери крови в период месячных.

Если имеется хоть один из перечисленных симптомов, есть повод сразу же обратиться к доктору.


Тромбоцитоз вызывает противоположный эффект: увеличение тромбоцитов провоцирует образование кровяных сгустков (тромбов), закупоривающих кровоток сосудов.
Это достаточно небезопасно, так как способно спровоцировать инфаркт, инсульт или тромбофлебит конечностей (как правило, нижних).

В определенных случаях тромбоциты, даже при их нормальном количестве, неспособны полностью функционировать и поэтому провоцируют повышенную кровоточивость. Такие патологии функций тромбоцитов бывают врожденными и приобретенными. К этой же группе относятся патологии, которые были спровоцированы длительным употреблением медицинских препаратов: к примеру, неоправданно частым приемом болеутоляющих лекарств, содержащих анальгин.

Краткий итог

В составе крови присутствует жидкая плазма и форменные элементы – взвешенные клетки. Своевременное обнаружение изменённого процентного соотношения состава крови, предоставляют возможность выявления заболевания на начальном периоде.

Видео — из чего состоит кровь

Кроме транспортировки различных питательных веществ и кислорода от одних органов к другим, с помощью циркуляции крови в организме осуществляется перенос продуктов обмена веществ и угольной к тем органам, через которые происходит вывод продуктов жизнедеятельности: почкам, кишечнику, легким и коже. Кровь также выполняет и защитные функции – белые и белковые вещества, содержащиеся в плазме, участвуют в нейтрализации токсинов и поглощении микробов, попадающих в организм. Посредством крови эндокринная система осуществляет регуляцию всех жизненных функций и процессов, поскольку , вырабатываемые железами внутренней секреции, также транспортируются кровотоком.

Лимфа, тканевая жидкость и кровь составляют внутреннюю среду организма, постоянство ее состава и физико-химических характеристик поддерживается механизмами регуляции и являются показателем здоровья. В случае возникновения патологических или воспалительных процессов, связанных с тем или иным заболеванием, изменяется и состав крови, поэтому ее – первое, что потребуется врачу для постановки диагноза.


Опасным для человека является быстрое снижение количества крови, например, в случае открытой раны, являющееся причиной резкого падения кровяного .

Поскольку по своему составу кровь , в которой во взвешенном состоянии находятся форменные элементы, ее состав определяется методом центрифугирования. В крови человека составляет порядка 55-58%, а остальные форменные элементы - от 42 до 45%, причем в крови их немного больше, чем в крови .


крови содержится в теле человека

В настоящее время количество крови, циркулирующей в теле человека, определяется с достаточно высокой степенью точности. Для этого используется метод, когда в кровь вводится дозированное количество -либо вещества, которое не сразу выводится из ее состава. После того как оно через какое-то время равномерно распределяется по всей кровеносной системе, берут пробу и определяют его концентрацию в крови. Чаще всего в качестве такого вещества используется безвредный для организма коллоидный краситель, например, конго-рот. Еще одним способом для определения количества крови в теле человека является введение в кровь искусственных радиоактивных изотопов. После некоторых манипуляций с кровью, удается подсчитать количество эритроцитов, в которые проникли изотопы, а затем по значению радиоактивности крови и ее объем.

Если в крови образуется излишек жидкости, она перераспределяется в кожу и мышечные ткани, а также выводится через почки.

Как было выяснено, в среднем количество крови составляет около 7% от веса, если ваш вес составляет 60 кг, объем крови будет равен 4,2 литра, 5-ти литровый объем циркулирует в теле человека, весящего 71,5 кг. Объем ее может колебаться от 5 до 9%, но, как правило, эти колебания носят кратковременный характер и связаны с потерей жидкости или, наоборот, введением ее в кровь, а также с обильными кровотечениями. Но механизмы регулирования, действующие в организме, поддерживают количество общего объема крови в нем постоянным.

Кровь относится к жидким соединительным тканям. Она выполняет множество функций для организма и необходима для поддержания жизнедеятельности. Потеря большого количества крови опасна для жизни.

Зачем нужна кровь

Кровь вместе с лимфой и межтканевой жидкостью составляет внутреннюю среду организма. Она несет тканям кислород и питательные вещества, удаляет углекислый газ и продукты обмена, вырабатывает антитела, гормоны, регулирующие различных систем.

Кровь обеспечивает постоянство состава внутренней среды. В зависимости от того, какие вещества она переносит, различают дыхательную, питательную, выделительную, регуляторную, гомеостатическую, терморегуляторную и защитную функции крови.

Связываясь с кислородом и доставляя его от к тканям и органам, а углекислый газ – от периферических тканей к легким, кровь выполняет дыхательную функцию. В транспорте продуктов обмена ( , и других) к выделительным органам (почкам, кишечнику, коже) заключается выделительная функция крови. Перемещением глюкозы, аминокислот и прочих питательных веществ к тканям и органам кровь осуществляет питание организма.

Гомеостаз – это постоянство внутренней среды. Гомеостатическая функция крови заключается в равномерном распределении крови между тканями и органами, поддержании постоянного осмотического давления и уровня pH. Без переноса кровью , выработанных железами внутренней секреции, к органам-мишеням было бы невозможно осуществление гуморальной регуляции.

Защитная роль крови заключается в формировании антител, обезвреживании микроорганизмов и их токсинов, удалении продуктов распада тканей, образовании тромбов, препятствующих кровопотере. Терморегуляторная функция реализуется путем равномерного распределения тепла в организме и переноса тепла из внутренних органов к сосудам кожи.


Кровь обладает высокой теплоемкостью и теплопроводностью, что позволяет сохранять тепло в теле и при перегреве отводить его наружу – к поверхности кожи.

Определение понятия системы крови

Система крови (по Г.Ф. Лангу, 1939) — совокупность собственно крови, органов кроветворения, кроверазрушения (красный костный мозг, тимус, селезенка, лимфатические узлы) и нейрогуморальных механизмов регуляции, благодаря которым сохраняются постоянство состава и функции крови.

В настоящее время систему крови функционально дополняют органами синтеза белков плазмы (печень), доставки в кровоток и выведения воды и электролитов (кишечник, ночки). Важнейшими особенностями крови как функциональной системы являются следующие:

  • она может выполнять свои функции, только находясь в жидком агрегатном состоянии и в постоянном движении (по кровеносным сосудам и полостям сердца);
  • все ее составные части образуются за пределами сосудистого русла;
  • она объединяет работу многих физиологических систем организма.

Состав и количество крови в организме

Кровь — это жидкая соединительная ткань, которая состоит из жидкой части - и взвешенных в ней клеток - : (красных клеток крови), (белых клеток крови), (кровяных пластинок). У взрослого человека форменные элементы крови составляют около 40-48%, а плазма — 52-60%. Это соотношение получило название гематокритного числа (от греч.haima - кровь,kritos - показатель). Состав крови приведен на рис. 1.

Рис. 1. Состав крови

Общее количество крови (сколько крови) в организме взрослого человека в норме составляет 6-8% массы тела, т.е. примерно 5-6 л.

Физико-химические свойства крови и плазмы

Сколько крови в организме человека?

На долю крови у взрослого человека приходится 6-8% массы тела, что соответствует приблизительно 4,5-6,0 л (при средней массе 70 кг). У детей и у спортсменов объем крови в 1,5-2,0 раза больше. У новорожденных он составляет 15% от массы тела, у детей 1-го года жизни — 11%. У человека в условиях физиологического покоя не вся кровь активно циркулирует по сердечно-сосудистой системе. Часть ее находится в кровяных депо — венулах и венах печени, селезенки, легких, кожи, скорость кровотока в которых значительно снижена. Общее количество крови в организме сохраняется на относительно постоянном уровне. Быстрая потеря 30-50% крови может привести организм к гибели. В этих случаях необходимо срочное переливание препаратов крови или кровезамещающих растворов.

Вязкость крови обусловлена наличием в ней форменных элементов, прежде всего эритроцитов, белков и липопротеинов. Если вязкость воды принять за 1, то вязкость цельной крови здорового человека составит около 4,5 (3,5-5,4), а плазмы — около 2,2 (1,9-2,6). Относительная плотность (удельный вес) крови зависит в основном от количества эритроцитов и содержания белков в плазме. У здорового взрослого человека относительная плотность цельной крови составляет 1,050- 1,060 кг/л, эритроцитарной массы — 1,080-1,090 кг/л, плазмы крови — 1,029-1,034 кг/л. У мужчин она несколько больше, чем у женщин. Самая высокая относительная плотность цельной крови (1,060-1,080 кг/л) отмечается у новорожденных. Эти различия объясняются разницей в количестве эритроцитов в крови людей разного пола и возраста.

Показатель гематокрита — часть объема крови, приходящаяся на долю форменных элементов (прежде всего, эритроцитов). В норме показатель гематокрита циркулирующей крови взрослого человека составляет в среднем 40-45% (у муж- чип — 40-49%, у женщин — 36-42%). У новорожденных он приблизительно на 10% выше, а у маленьких детей — примерно на столько же ниже, чем у взрослого человека.

Плазма крови: состав и свойства

Осмотическое давление крови, лимфы и тканевой жидкости определяет обмен воды между кровью и тканями. Изменение осмотического давления жидкости, окружающей клетки, ведет к нарушению в них водного обмена. Это видно на примере эритроцитов, которые в гипертоническом растворе NaCl (много соли) теряют воду и сморщиваются. В гипотоническом растворе NaCl (мало соли) эритроциты, наоборот, набухают, увеличиваются в объеме и могут лопнуть.

Осмотическое давление крови зависит от растворенных в ней солей. Около 60% этого давления создается NaCl. Осмотическое давление крови, лимфы и тканевой жидкости приблизительно одинаково (примерно 290-300 мосм/л, или 7,6 атм) и отличается постоянством. Даже в случаях, когда в кровь поступает значительное количество воды или соли, осмотическое давление не претерпевает значительных изменений. При избыточном поступлении в кровь вода быстро выводится почками и переходит в ткани, что восстанавливает исходную величину осмотического давления. Если же в крови повышается концентрация солей, то в сосудистое русло переходит вода из тканевой жидкости, а почки начинают усиленно выводить соль. Продукты переваривания белков, жиров и углеводов, всасывающиеся в кровь и лимфу, а также низкомолекулярные продукты клеточного метаболизма могут изменять осмотическое давление в небольших пределах.

Поддержание постоянства осмотического давления играет очень важную роль в жизнедеятельности клеток.

Концентрация водородных ионов и регуляция рН крови

Кровь имеет слабощелочную среду: рН артериальной крови равен 7,4; рН венозной крови вследствие большого содержания в ней углекислоты составляет 7,35. Внутри клеток рН несколько ниже (7,0-7,2), что обусловлено образованием в них при метаболизме кислых продуктов. Крайними пределами изменений рН, совместимыми с жизнью, являются величины от 7,2 до 7,6. Смещение рН за эти пределы вызывает тяжелые нарушения и может привести к смерти. У здоровых людей колеблется в пределах 7,35-7,40. Длительное смещение рН у человека даже на 0,1 -0,2 может оказаться гибельным.

Так, при рН 6,95 наступает потеря сознания, и если эти сдвиги в кратчайший срок не ликвидируются, то неминуем летальный исход. Если рН становится равен 7,7, то наступают тяжелейшие судороги (тетания), что также может привести к смерти.

В процессе обмена веществ ткани выделяют в тканевую жидкость, а следовательно, и в кровь «кислые» продукты обмена, что должно приводить к сдвигу рН в кислую сторону. Так, в результате интенсивной мышечной деятельности в кровь человека может поступать в течение нескольких минут до 90 г молочной кислоты. Если это количество молочной кислоты прибавить к объему дистиллированной воды, равному объему циркулирующей крови, то концентрация ионов возрастет в ней в 40 000 раз. Реакция же крови при этих условиях практически не изменяется, что объясняется наличием буферных систем крови. Кроме того, в организме рН сохраняется за счет работы почек и легких, удаляющих из крови углекислый газ, избыток солей, кислот и щелочей.

Постоянство рН крови поддерживается буферными системами: гемоглобиновой, карбонатной, фосфатной и белками плазмы.

Буферная система гемоглобина самая мощная. На ее долю приходится 75% буферной емкости крови. Эта система состоит из восстановленного гемоглобина (ННb) и его калиевой соли (КНb). Буферные свойства ее обусловлены тем, что при избытке Н + КНb отдает ионы К+, а сам присоединяет Н+ и становится очень слабо диссоциирующей кислотой. В тканях система гемоглобина крови выполняет функцию щелочи, предотвращая закисление крови вследствие поступления в нее углекислого газа и Н+ -ионов. В легких гемоглобин ведет себя как кислота, предотвращая защелачивание крови после выделения из нее углекислоты.

Карбонатная буферная система (Н 2 СО 3 и NaHC0 3) по своей мощности занимает второе место после системы гемоглобина. Она функционирует следующим образом: NaHCO 3 диссоциирует на ионы Na + и НС0 3 - . При поступлении в кровь более сильной кислоты, чем угольная, происходит реакция обмена ионами Na+ с образованием слабо диссоциирующей и легко растворимой Н 2 СО 3 Таким образом, предотвращается повышение концентрации Н + -ионов в крови. Увеличение в крови содержания угольной кислоты приводит к ее распаду (под влиянием особого фермента, находящегося в эритроцитах, — карбоангидразы) на воду и углекислый газ. Последний поступает в легкие и выделяется в окружающую среду. В результате этих процессов поступление кислоты в кровь приводит лишь к небольшому временному повышению содержания нейтральной соли без сдвига рН. В случае поступления в кровь щелочи, она реагирует с угольной кислотой, образуя гидрокарбонат (NaHC0 3) и воду. Возникающий при этом дефицит угольной кислоты немедленно компенсируется уменьшением выделения углекислого газа легкими.

Фосфатная буферная система образована дигидрофосфатом (NaH 2 P0 4) и гидрофосфатом (Na 2 HP0 4) натрия. Первое соединение слабо диссоциирует и ведет себя как слабая кислота. Второе соединение обладает щелочными свойствами. При введении в кровь более сильной кислоты она реагируете Na,HP0 4 , образуя нейтральную соль и увеличивая количество мало диссоциирующего дигидрофосфата натрия. В случае введения в кровь сильной щелочи она взаимодействует с ди гидрофосфатом натрия, образуя слабощелочной гидрофосфат натрия; рН крови при этом изменяется незначительно. В обоих случаях избыток ди гидрофосфата и гидрофосфата натрия выделяется с мочой.

Белки плазмы играют роль буферной системы благодаря своим амфотерным свойствам. В кислой среде они ведут себя как щелочи, связывая кислоты. В щелочной среде белки реагируют как кислоты, связывающие щелочи.

Важная роль в поддержании рН крови отводится нервной регуляции. При этом преимущественно раздражаются хеморецепторы сосудистых рефлексогенных зон, импульсы от которых поступают в продолговатый мозг и другие отделы ЦНС, что рефлекторно включает в реакцию периферические органы — почки, легкие, потовые железы, желудочно-кишечный тракт, деятельность которых направлена на восстановление исходных величин рН. Так, при сдвиге рН в кислую сторону почки усиленно выделяют с мочой анион Н 2 Р0 4 -. При сдиге рН в щелочную сторону увеличивается выделение почками анионов НР0 4 -2 и НС0 3 -. Потовые железы человека способны выводить избыток молочной кислоты, а легкие — СО2.

При различных патологических состояниях может наблюдаться сдвиг рН как в кислую, так и в щелочную среду. Первый из них носит название ацидоз, второй - алкалоз.



Похожие публикации