История исследования кровообращения. Болезни системы кровообращения История открытия кровообращения

История открытия роли сердца и системы кровообращения

Эта капелька крови, то появлявшаяся,
то вновь исчезавшая, казалось,
колебалась между бытием и бездной,
и это был источник жизни.
Она красная! Она бьется. Это сердце!

У.Гарвей

Взгляд в прошлое

Врачей и анатомов древности интересовала работа сердца, его строение. Это подтверждается сведениями о строении сердца, приведенными в древних рукописях.

В папирусе Эберса* «Тайная книга врача» есть разделы «Сердце» и «Сосуды сердца».

Гиппократ (460–377 до н.э.) – великий греческий врач, которого называют отцом медицины, писал о мышечном строении сердца.

Греческий ученый Аристотель (384–322 до н.э.) утверждал, что самый важный орган человеческого тела – сердце, образующееся у плода раньше других органов. На основании наблюдений о наступлении смерти после остановки сердца он сделал вывод, что сердце является мыслительным центром. Он указывал, что сердце содержит воздух (так называемую «пневму» – таинственный носитель душевных процессов, проникающий в материю и оживляющий ее), распространяющийся по артериям. Мозгу Аристотель отводил второстепенную роль органа, предназначенного для образования жидкости, охлаждающей сердце.

Теории и учение Аристотеля нашли последователей среди представителей Александрийской школы, из которой вышли многие знаменитые врачи Древней Греции, в частности Эразистрат, описавший клапаны сердца, их назначение, а также сокращение сердечной мышцы.

Древнеримский врач Клавдий Гален (131–201 до н.э.) доказал, что в артериях течет кровь, а не воздух. Но кровь в артериях Гален находил только у живых животных. У мертвых артерии всегда были пусты. На основании данных наблюдений он создал теорию, согласно которой кровь зарождается в печени и через полые вены распределяется по нижней части тела. По сосудам кровь движется приливами: вперед–назад. Верхние части тела получают кровь из правого предсердия. Между правым и левым желудочками есть сообщение через стенки: в книге «О назначении частей человеческого тела» он привел сведения об овальном отверстии в сердце. Гален внес свою «лепту в копилку предрассудков» в учении о кровообращении. Подобно Аристотелю, он полагал, что кровь наделена «пневмой».

По теории Галена артерии не играют никакой роли в работе сердца. Однако несомненной его заслугой было открытие основ строения и работы нервной системы. Ему принадлежит первое указание на то, что мозг и позвоночный столб – источники деятельности нервной системы. Вопреки высказыванию Аристотеля и представителей его школы он утверждал, что «человеческий мозг есть обитель мысли и убежище души».

Авторитет ученых древности был неоспорим. Покушаться на установленные ими законы считалось святотатством. Если Гален утверждал, что кровь перетекает из правой половины сердца в левую, то это принималось за истину, хотя доказательств этому не было. Однако прогресс в науке остановить нельзя. Расцвет наук и искусств в эпоху Возрождения привел к пересмотру устоявшихся истин.

Важный вклад в изучение строения сердца внес и выдающийся ученый и художник Леонардо да Винчи (1452–1519). Он интересовался анатомией человеческого тела и собирался написать многотомный иллюстрированный труд о его строении, но, к сожалению, не закончил его. Однако Леонардо оставил после себя записи многолетних систематических исследований, снабдив их 800 анатомическими эскизами с подробными объяснениями. В частности, он выделил в сердце четыре камеры, описал атриовентрикулярные клапаны (предсердно-желудочковые), их сухожильные хорды и сосочковые мышцы.

Из многих выдающихся ученых Возрождения необходимо выделить и Андреаса Везалия (1514–1564), талантливого анатома и борца за прогрессивные идеи в науке. Изучая внутреннее строение человеческого тела, Везалий установил множество новых фактов, смело противопоставив их ошибочным взглядам, укоренившимся в науке и имевшим многовековую традицию. Свои открытия он изложил в книге «О строении человеческого тела» (1543), в которой содержится тщательное описание проведенных анатомических секций, строения сердца, а также его лекции. Везалий опроверг взгляды Галена и других своих предшественников на строение человеческого сердца и на механизм кровообращения. Он интересовался не только строением органов человека, но и функциями, причем больше всего внимания уделил работе сердца и мозга.

Большая заслуга Везалия состоит в освобождении анатомии от связывавших ее религиозных предрассудков, средневековой схоластики – религиозной философии, согласно которой все научные исследования должны подчинятся религии и слепо следовать трудам Аристотеля и других древних ученых.

Ренальдо Коломбо (1509(1511)–1553) – ученик Везалия – считал, что кровь из правого предсердия сердца попадает в левое.

Андреа Чезальпино (1519–1603) – также один из выдающихся ученых эпохи Возрождения, врач, ботаник, философ, предложил собственную теорию кровообращения человека. В своей книге «Перипатические рассуждения» (1571) он дал правильное описание малого круга кровообращения. Можно сказать, что ему, а не Уильяму Гарвею (1578–1657), выдающемуся английскому ученому и врачу, внесшему наибольший вклад в исследование работы сердца, должна принадлежать слава открытия кровообращения, а заслуга Гарвея состоит в развитии теории Чезальпино и ее доказательстве соответствующими опытами.

Ко времени появления на «арене» Гарвея знаменитый профессор Университета в Падуе Фабрициус Аквапенденте нашел в венах особые клапаны. Однако ответа на вопрос, для чего они нужны, он не дал. Гарвей взялся за разрешение этой загадки природы.

Первый опыт молодой медик поставил на себе. Он перевязал собственную руку и стал ждать. Прошло всего несколько минут, и рука стала отекать, жилы набухли и посинели, кожа стала темнеть.

Гарвей догадался, что повязка задерживает кровь. Но какую? Ответа пока не было. Он решил провести опыты на собаке. Заманив куском пирога уличную собаку в дом, он ловко накинул шнурок на лапу, захлестнул его и стянул. Лапа начала вздуваться, пухнуть ниже перевязанного места. Снова подманив доверчивого пса, Гарвей схватил его за другую лапу, которая также оказалась затянутой тугой петлей. Через несколько минут Гарвей опять подозвал собаку. Несчастное животное, надеясь на помощь, в третий раз доковыляло до своего мучителя, который сделал на лапе глубокий разрез.

Вздувшаяся вена ниже перевязки была перерезана и из нее закапала густая темная кровь. На второй лапе врач сделал разрез чуть выше перевязки, и из него ни одной капли крови не вытекло. Этими опытами Гарвей доказал, что кровь в венах движется в одном направлении.

Со временем Гарвей составил схему кровообращения по результатам секций, произведенных на 40 различных видах животных. Он пришел к выводам, что сердце – мышечный мешок, действующий как насос, нагнетающий кровь в кровеносные сосуды. Клапаны допускают ток крови только в одном направлении. Толчки сердца – это последовательные сокращения мышц его отделов, т.е. внешние признаки работы «насоса».

Гарвей пришел к совершенно новому выводу о том, что поток крови проходит через артерии и возвращается в сердце по венам, т.е. в организме кровь движется по замкнутому кругу. В большом круге она движется от центра (сердца) к голове, к поверхности тела и ко всем его органам. В малом круге кровь движется между сердцем и легкими. В легких состав крови изменяется. Но как? Гарвей не знал. Воздуха в сосудах нет. Микроскоп еще не был изобретен, поэтому проследить путь крови в капиллярах он не мог, как не мог и выяснить, как соединяются между собой артерии и вены.

Таким образом, Гарвею принадлежит доказательство того, что кровь в человеческом организме непрерывно обращается (циркулирует) всегда в одном и том же направлении и что центральной точкой кровообращения является сердце. Следовательно, Гарвей опроверг теорию Галена о том, что центром кровообращения является печень.

В 1628 г. Гарвей опубликовал трактат «Анатомическое исследование о движении сердца и крови у животных», в предисловии которого писал: «То, что я излагаю так ново, что я боюсь, не будут ли люди моими врагами, ибо раз принятые предрассудки и учения глубоко укореняются во всех».

В своей книге Гарвей точно описал работу сердца, а также малый и большой круги кровообращения, указал, что во время сокращения сердца кровь из левого желудочка поступает в аорту, а оттуда по сосудам все меньшего и меньшего сечения доходит до всех уголков тела. Гарвей доказал, что «сердце ритмически бьется до тех пор, пока в организме теплится жизнь». После каждого сокращения сердца наступает пауза в работе, во время который этот важный орган отдыхает. Правда, Гарвей не смог определить, зачем нужно кровообращение: для питания или для охлаждения организма?

Уильям Гарвей рассказывает Карлу I
о циркуляции крови у животных

Свой труд ученый посвятил королю, сравнив его с сердцем: «Король – сердце страны». Но эта маленькая хитрость не спасла Гарвея от нападок ученых. Только впоследствии труд ученого был оценен по достоинству. Заслуга Гарвея еще в том, что он догадался о сосуществовании капилляров и, собрав воедино разрозненные сведения, создал целостную, истинно научную теорию кровообращения.

В XVII в. в естественных науках произошли события, коренным образом изменившие многие прежние представления. Одним из них было изобретение микроскопа Антони ван Левенгуком. Микроскоп позволил ученым увидеть микромир и тонкое устройство органов растений и животных. Сам Левенгук с помощью микроскопа открыл микроорганизмы и клеточное ядро в красных кровяных тельцах лягушки (1680).

Последнюю точку в разгадке тайны системы кругов кровообращения поставил итальянский врач Марчелло Мальпиги (1628–1694). Все началось с его участия в собраниях анатомов в доме профессора Борели, на которых проходили не только научные диспуты и чтения докладов, но и производились вскрытия животных. На одном из таких собраний Мальпиги вскрыл собаку и показал придворным дамам и кавалерам, посещавшим эти собрания, устройство сердца.

Герцог Фердинанд, интересовавшийся этими вопросами, попросил вскрыть живую собаку, чтобы посмотреть работу сердца. Просьба была выполнена. Во вскрытой грудной клетке левретки мерно сокращалось сердце. Сжималось предсердие – и резкая волна пробегала по желудочку, приподнимая его тупой конец. В толстой аорте также были видны сокращения. Мальпиги сопровождал вскрытие объяснениями: из левого предсердия кровь поступает в левый желудочек…, из него переходит в аорту…, из аорты – в тело. Одна из дам спросила: «А как кровь попадает в вены?» Ответа не было.

Мальпиги суждено было разгадать последнюю тайну кругов кровообращения. И он это сделал! Ученый принялся за исследования, начав с легких. Взял стеклянную трубку, приладил ее к бронхам кошки и принялся в нее дуть. Но сколько ни дул Мальпиги, воздух никуда из легких не пошел. Как же он попадает из легких в кровь? Вопрос оставался нерешенным.

Ученый наливает ртуть в легкое, надеясь, что своей тяжестью она прорвется в кровеносные сосуды. Ртуть растянула легкое, на нем появилась трещинка, и блестящие капельки покатились по столу. «Сообщения между дыхательными трубочками и кровеносными сосудами нет» – сделал вывод Мальпиги.

Теперь он принялся изучать артерии и вены с помощью микроскопа. Мальпиги первый использовал микроскоп в исследованиях кровообращения. При 180-кратном увеличении он увидел то, чего не мог увидеть Гарвей. Разглядывая препарат легких лягушки под микроскопом, он заметил пузырьки воздуха, окруженные пленкой, и мелкие кровеносные сосуды, разветвленную сеть капиллярных сосудов, соединявших артерии с венами.

Мальпиги не просто ответил на вопрос придворной дамы, но довел до конца работу, начатую Гарвеем. Ученый категорически отверг теорию Галена об охлаждении крови, но и сам сделал неправильный вывод о перемешивании крови в легких. В 1661 г. Мальпиги опубликовал результаты наблюдений над строением легкого, впервые дал описание капиллярных сосудов.

Последнюю точку в учении о капиллярах поставил наш соотечественник, анатом Александр Михайлович Шумлянский (1748–1795). Он доказал, что артериальные капилляры непосредственно переходят в некие «промежуточные пространства», как полагал Мальпиги, и что сосуды на всем протяжении – замкнуты.

Впервые о лимфатических сосудах и их связи с кровеносными сообщил итальянский исследователь Гаспар Азели (1581–1626).

В последующие годы анатомы открыли ряд образований. Евстахий обнаружил в устье нижней полой вены специальную заслонку, Л.Бартелло – проток, соединяющий во внутриутробном периоде левую легочную артерию с дугой аорты, Лоуэр – фиброзные кольца и межвенозный бугорок в правом предсердии, Тебезий – наименьшие вены и заслонку венечного синуса, Вьюсан написал ценный труд о структуре сердца.

В 1845 г. Пуркинье опубликовал исследования о специфических мышечных волокнах, проводящих возбуждение по сердцу (волокна Пуркинье), чем положил начало изучению его проводящей системы. В.Гис в 1893 г. описал предсердно-желудочковый пучок, Л.Ашоф в 1906 г. совместно с Таварой – атриовентрикулярный (предсердно-желудочковый) узел, А.Кис в 1907 г. совместно с Флексом описал синусно-предсердный узел, Ю.Тандмер в начале XX столетия провел исследования по анатомии сердца.

Большой вклад в изучение иннервации сердца внесли отечественные ученые. Ф.Т. Бидер в 1852 г. обнаружил в сердце лягушки скопления нервных клеток (узел Бидера). А.С. Догель в 1897–1890 гг. опубликовал итоги исследований строения нервных ганглиев сердца и нервных окончаний в нем. В.П. Воробьев в 1923 г. провел ставшие классическими исследования нервных сплетений сердца. Б.И. Лаврентьев изучил чувствительность иннервации сердца.

Серьезные исследования физиологии сердца начались спустя два века после открытия У.Гарвеем насосной функции сердца. Важнейшую роль сыграло создание К.Людвигом кимографа и разработка им метода графической регистрации физиологических процессов.

Важное открытие влияния блуждающего нерва на сердце было сделано братьями Веберами в 1848 г. Затем последовали открытия братьями Ционами симпатического нерва и исследование его влияния на сердце И.П. Павловым, выявление гуморального механизма передачи нервных импульсов на сердце О.Леви в 1921 г.

Все эти открытия позволили создать современную теорию строения сердца и кровообращения.

Сердце

Сердце – мощный мышечный орган, расположенный в грудной клетке между легкими и грудиной. Стенки сердца образованы мышцей, свойственной только сердцу. Сердечная мышца сокращается и иннервируется автономно и не подвержена утомлению. Сердце окружено перикардом – околосердечной сумкой (конусовидный мешок). Наружный слой перикарда состоит из нерастяжимой белой фиброзной ткани, внутренний – из двух листков: висцерального (от лат. viscera – внутренности, т.е относящийся к внутренним органам) и париетального (от лат. parietalis – стенной, пристеночный).

Висцеральный листок сращен с сердцем, париетальный – с фиброзной тканью. В щель между листками выделяется перикардиальная жидкость, уменьшающая трение между стенками сердца и окружающими тканями. Надо отметить, что неэластичный в целом перикард препятствует излишнему растяжению сердца и переполнению его кровью.

Сердце состоит из четырех камер: двух верхних – тонкостенных предсердий – и двух нижних – толстостенных желудочков. Правая половина сердца полностью отделена от левой.

Функция предсердий состоит в сборе и задержке крови на короткое время, пока она не перейдет в желудочки. Расстояние от предсердий до желудочков очень мало, следовательно, предсердиям не нужно сокращаться с большой силой.

В правое предсердие поступает дезоксигенированная (обедненная кислородом) кровь из системного круга, в левое – насыщенная кислородом кровь из легких.

Мышечные стенки левого желудочка приблизительно в три раза толще стенок правого желудочка. Эта разница объясняется тем, что правый желудочек снабжает кровью только легочный (малый) круг кровообращения, в то время как левый гонит кровь по системному (большому) кругу, снабжающему кровью все тело. Соответственно кровь, поступающая в аорту из левого желудочка, находится под значительно большим давлением (~105 мм рт. ст.), чем кровь, поступающая в легочную артерию (16 мм рт. ст).

При сокращении предсердий кровь выталкивается в желудочки. Происходит сокращение кольцевых мышц, расположенных при впадении легочных и полых вен в предсердия и перекрывающих устья вен. В результате кровь не может оттекать назад в вены.

Левое предсердие отделено от левого желудочка двустворчатым клапаном, а правое предсердие от правого желудочка – трехстворчатым клапаном.

К створкам клапанов со стороны желудочков прикреплены прочные сухожильные нити, другим концом прикрепленные к конусовидным сосочковым (папиллярным) мышцам – выростам внутренней стенки желудочков. При сокращении предсердий клапаны открываются. При сокращении желудочков створки клапанов плотно смыкаются, не давая крови возвратиться в предсердия. Одновременно сокращаются и сосочковые мышцы, натягивая сухожильные нити, не давая выворачиваться клапанам в сторону предсердий.

У оснований легочной артерии и аорты находятся соединительнотканные карманы – полулунные клапаны, пропускающие кровь в эти сосуды и препятствующие ее возвращению в сердце.

Продолжение следует

* Найден и опубликован в 1873 г. немецким египтологом и писателем Георгом Морисом Эберсом. Содержит около 700 магических формул и народных рецептов для лечения от различных болезней, а также избавления от мух, крыс, скорпионов и т.п. В папирусе удивительно точно описана кровеносная система.

Специальная транспортная система, снабжающая клетки необходимыми для жизни веществами, развивается уже у животных с незамкнутой кровеносной системой (большинство беспозвоночных, а также низшие хордовые); движение жидкости (гемолимфы) у этих организмов осуществляется благодаря сокращениям мышц тела или сосудов. У моллюсков и членистоногих появляется сердце. У животных с замкнутой кровеносной системой (некоторые беспозвоночные, все позвоночные и человек) дальнейшая эволюция кровообращения является в основном эволюцией . У рыб оно двухкамерное. При сокращении одной из камер - желудочка кровь поступает в брюшную аорту, затем в сосуды жабр, далее в спинную аорту, а оттуда ко всем органам и тканям.

Рис. 1. Схема кровообращения рыбы: 1 - сосуды жабр, 2 - сосуды тела, 3 - предсердие, 4 - желудочек сердца.

У земноводных кровь, нагнетаемая желудочком сердца в аорту, непосредственно поступает к органам и тканям. С переходом на , кроме основного, большого круга К., возникает специальный малый, или лёгочный, круг К.

Рис. 2. Схема кровообращения земноводного: А - малый круг, Б - большой круг; 1 - сосуды лёгких, 2 - правое предсердие, 3 - левое предсердие, 4 - желудочек сердца, 5 - сосуды тела.

У птиц, млекопитающих и у человека принципиальная схема кровообращения одинакова. Кровь, выбрасываемая левым желудочком в главную артерию - аорту, поступает далее в артерии, затем в артериолы и капилляры органов и тканей, где происходит обмен веществ между кровью и тканями. Из капилляров тканей по венулам и венам венозная кровь оттекает к сердцу, попадая в правое предсердие. Отделы сосудистой системы, находящиеся между левым желудочком и правым предсердием, составляют так называемый большой круг кровообращения.

Рис. 3. Схема кровообращения человека: 1 - сосуды головы и шеи, 2 - верхней конечности, 3 - аорта, 4 - лёгочная вена, 5 - сосуды лёгкого, 6 - желудка, 7 - селезёнки, 8 - кишечника, 9 - нижних конечностей, 10 - почки, 11 - печени, 12 - нижняя полая вена, 13 - левый желудочек сердца, 14 - правый желудочек сердца, 15 - правое предсердие, 16 - левое предсердие, 17 - лёгочная артерия, 18 - верхняя полая вена.

Из правого предсердия кровь поступает в правый желудочек, при сокращении которого выбрасывается в лёгочную артерию. Затем через артериолы она попадает в капилляры альвеол, где отдаёт углекислый газ и обогащается кислородом, превращаясь из венозной в артериальную. Артериальная кровь из лёгких по лёгочным венам возвращается к сердцу - в его левое предсердие. , по которым кровь течёт из правого желудочка в левое предсердие, составляют малый круг кровообращения. Из левого предсердия кровь поступает в левый желудочек и вновь - в аорту.

Рис. 4. Кровообращение. Выраженная асимметрия крупных артерий, появляющаяся в ходе развития зародыша человека: 1 - правая подключичная артерия, 2 - лёгочный проток, 3 - восходящая аорта, 4 и 8 - правая и левая лёгочная артерия, 5 и 6 - правая и левая сонная артерия, 7 - дуга аорты, 9 - нисходящая аорта.

Движение крови по сосудам возникает вследствие нагнетательной функции сердца. Количество крови, выбрасываемой сердцем в 1 минуту, называется минутным объёмом (МО).

Рис. 5. Кровообращение. Симметричная закладка крупных артерий у зародыша человека: 1 - спинная аорта, 2 - артериальный проток, 3 - 8 - аортальные дуги.

МО можно измерить непосредственно с помощью специальных расходомеров. У человека МО определяют косвенными методами. Измерив, например, разницу в содержании CO 2 в 100 мл артериальной и венозной крови [(A - В) СО 2 ], а также количество CO2 , выделяемое лёгкими в 1 мин (I’ CO 2), вычисляют объём крови, протекающий через лёгкие в 1 мин, - МО по формуле Фика:

Вместо CO 2 можно определять содержание O 2 или специально введённых в кровь безвредных красок, газов или других индикаторов. МО у человека в покое равен 4-5 л, а при физических или эмоциональных напряжениях возрастает в 3-5 раз. Величина его, как и линейная скорость кровотока, время кругооборота крови, и т. д., - важный показатель состояния кровообращения. Основные данные, характеризующие законы движения крови по сосудам и состояние К. в различных участках сосудистой системы:

Характеристика сосудистого русла и движения крови в различных участках сердечно-сосудистой системы

Аорта Артериолы Капилляры Венулы Вены полые (верхняя и нижняя)
Диаметр сосуда 2,5 см 30 мкм 8 мкм 20 мкм по 3 см
Суммарный просвет, см 2 4,5 400 4500 700 10
Линейная скорость кровопотока 120-0
(ср.40)
см / сек
4 мм / сек 0,5 мм / сек - 20 см / сек
Давление крови, мм. рт. ст. 120 / 70 70-30 30-15 15-0
Объем крови в данном участке сосудистого русла (% от общего объема крови)* 10** 5 5 Все вены большого круга 50

Примечания:

* Объём крови в полостях сердца - 15%; объем крови в малого круга - 18%.

** Включая артерии большого круга.

Аорта и артерии тела представляют собой напорный резервуар, в котором кровь находится под высоким давлением (для человека в норме около 120 / 70 мм рт. ст.). Сердце выбрасывает кровь в артерии отдельными порциями. При этом обладающие эластичностью стенки артерий растягиваются. Таким образом, во время диастолы аккумулированная ими энергия поддерживает крови в артериях на определённом уровне, что обеспечивает непрерывность кровотока в капиллярах. Уровень давления крови в артериях определяется соотношением между МО и сопротивлением периферических сосудов. Последнее, в свою очередь, зависит от тонуса артериол, представляющих собой, по выражению российского ученого и мыслителя-материалиста, создателя физиологической школы Ивана Михайловича Сеченова , «краны кровеносной системы». Повышение тонуса артериол затрудняет отток крови из артерий и повышает артериальное давление; снижение их тонуса вызывает противоположный эффект. В различных участках тела тонус артериол может изменяться неодинаково. С уменьшением тонуса в каком-либо участке возрастает количество протекающей крови. В других участках при этом может возникать одновременно повышение тонуса артериол, приводящее к снижению кровотока. Суммарное сопротивление всех артериол тела и, следовательно, величина так называемого среднего артериального давления при этом могут не изменяться. Таким образом, кроме регуляции среднего уровня артериального давления, тонус артериол определяет величину кровотока через капилляры различных органов и тканей.

Гидростатическое давление крови в капиллярах способствует фильтрации жидкости из капилляров в ткани; этому процессу препятствует онкотическое давление плазмы крови.

Двигаясь вдоль капилляра, кровь испытывает сопротивление, на преодоление которого тратится энергия. Вследствие этого давление крови по ходу капилляра падает. Это приводит к поступлению жидкости из межклеточных пространств в полость капилляра. Часть жидкости оттекает из межклеточных щелей по лимфатическим сосудам (нажмите на картинку для увеличения ):

Рис. 6. Соотношение давлений, обеспечивающее движение жидкости в капиллярах, межклеточном пространстве и лимфатических сосудах. * Отрицательное давление в межклеточном пространстве, возникающее благодаря отсасыванию жидкости лимфатическими сосудами; ** результирующее давление, обеспечивающее движение жидкости из капилляра к ткани; *** результирующее давление, обеспечивающее движение жидкости из тканей в капилляр.

Непосредственное измерение давления жидкости в межклеточных пространствах тканей путём введения микроканюль, соединённых с чувствительными электроманометрами, показало, что это давление не равно атмосферному, а ниже его на 5 - 10 мм рт. ст. Этот, казалось бы, парадоксальный факт объясняется тем, что в тканях происходит активное откачивание жидкости. Периодическое сдавливание тканей пульсирующими артериями и артериолами и сокращающимися мышцами приводит к проталкиванию тканевой жидкости в лимфатические сосуды, клапаны которых препятствуют обратному поступлению её в ткани. Тем самым образуется помпа, поддерживающая отрицательное (по отношению к атмосферному) давление в межклеточных щелях. Помпы, откачивающие жидкость из межклеточных пространств, создают постоянный вакуум, способствуя непрерывному поступлению жидкости в ткани даже при значительных колебаниях капиллярного давления. Этим обеспечивается б?льшая надёжность основной функции кровообращения - обмена веществ между кровью и тканями. Эти же помпы одновременно гарантируют достаточный отток жидкости по лимфатической системе в случаях резкого падения онкотического давления плазмы крови (и возникающего вследствие этого уменьшения обратного всасывания тканевой жидкости в кровь). Таким образом, указанные помпы представляют собой подлинное «периферическое сердце», функция которого зависит от степени эластичности артерий и от периодической деятельности мышц.

Из тканей кровь оттекает по венулам и венам. Вены большого круга кровообращения содержат более половины всей крови организма. Сокращения скелетных мышц и дыхательные движения облегчают приток крови в правое предсердие. Мышцы сдавливают расположенные между ними вены, выжимая кровь по направлению к сердцу (обратный ток крови при этом невозможен из-за наличия в венах клапанов:

Рис. 7. Действие скелетных мышц, помогающее движению крови по венам: А - мышца в покое; Б - при её сокращении кровь по вене проталкивается вверх - к сердцу; нижний клапан препятствует обратному току крови; В - после расслабления мышцы вена расширяется, наполняясь новой порцией крови; верхний клапан препятствует её обратному току; 1 - мышца; 2 - клапаны; 3 - вена.

Увеличение отрицательного давления в грудной клетке во время каждого вдоха способствует присасыванию крови к сердцу. Кровообращение отдельных органов - сердца, лёгких, мозга, селезёнки - отличается рядом особенностей, обусловленных специфическими функциями этих органов.

Существенными особенностями обладает и коронарное кровообращение.

Рис. 8. Схема кровообращения зародыша человека: 1 - пупочный канатик, 2 - пупочная вена, 3 - сердце, 4 - аорта, 5 - верхняя полая вена, 6 - вены мозга, 7 - артерии мозга, 8 - дуга аорты, 9 - артериальный проток, 10 - лёгочная артерия, 11 - нижняя полая вена, 12 - нисходящая аорта, 13 - пупочные артерии.

Регуляция кровообращения

Интенсивность деятельности различных органов и тканей непрерывно меняется, в связи с чем меняется и их потребность в различных веществах. При неизменном уровне кровотока доставка кислорода и глюкозы тканям может увеличиться втрое за счёт более полной утилизации этих веществ из протекающей крови. При этих же условиях доставка жирных кислот может возрасти в 28 раз, аминокислот в 36 раз, углекислого газа в 25 раз, продуктов белкового обмена в 480 раз и т. д. Следовательно, наиболее «узкое» место системы кровообращения - транспорт кислорода и глюкозы. Поэтому, если величина кровотока достаточна для обеспечения тканей кислородом и глюкозой, она оказывается более чем достаточной для транспорта всех других веществ. В тканях, как правило, имеются значительные запасы глюкозы, депонированные в виде гликогена; запасы же кислорода практически отсутствуют (исключение составляют лишь весьма небольшие количества кислорода, связанного с миоглобином мышц). Поэтому основной фактор, определяющий интенсивность кровотока в тканях, - потребность их в кислороде. Работа механизмов, регулирующих К., направлена в первую очередь на то, чтобы удовлетворить именно эту потребность.

В сложной системе регуляции кровообращения пока исследованы лишь общие принципы и детально изучены только некоторые звенья. Значительный прогресс в этой области достигнут, в частности, благодаря исследованию регуляции основной функции сердечно-сосудистой системы - К. - методами математического и электрического моделирования. К. регулируется рефлекторными и гуморальными механизмами, обеспечивающими органы и ткани в каждый данный момент нужным им количеством кислорода, а также одновременное поддержание на необходимом уровне основных параметров гемодинамики - кровяного давления, МО, периферического сопротивления и т. д.

Процессы регуляции К. осуществляются изменением тонуса артериол и величины МО. Тонус артериол регулируется сосудодвигательным центром, расположенным в продолговатом мозге. Этот центр посылает импульсы гладким мышцам сосудистой стенки через центры вегетативной нервной системы. Необходимое давление крови в артериальной системе поддерживается лишь при условии постоянного тонического сокращения мышц артериол, для чего необходимо непрерывное поступление к этим мышцам нервных импульсов по сосудосуживающим волокнам симпатической нервной системы. Эти импульсы следуют с частотой 1-2 импульса в 1 секунду. Повышение частоты приводит к увеличению тонуса артериол и возрастанию артериального давления, урежение импульсов вызывает противоположный эффект. Деятельность сосудо-двигательного центра регулируется сигналами, поступающими от барорецепторов или механорецепторов сосудистых рефлексогенных зон (важнейшая из них - каротидный синус). Повышение давления в этих зонах вызывает увеличение частоты импульсов, возникающих в барорецепторах. что приводит к снижению тонуса сосудодвигательного центра, а следовательно, и к урежению ответных импульсов, поступающих из него к гладким мышцам артериол. Это приводит к снижению тонуса мышечной стенки артериол, урежению сердцебиений (снижению МО) и, как следствие, - к падению артериального давления. Падение давления в указанных зонах вызывает противоположную реакцию:

Рис. 9. Схема одного из звеньев механизма регуляций артериального давления.

Таким образом, вся система представляет собой сервомеханизм, работающий по принципу обратной связи и поддерживающий величину артериального давления на относительно постоянном уровне (см. депрессорные рефлексы, каротидные рефлексы). Аналогичные реакции возникают и при раздражении барорецепторов сосудистого русла малого круга кровообращения. Тонус сосудо-двигательного центра зависит и от импульсов, возникающих в хеморецепторах сосудистого русла и тканей, а также под влиянием биологически активных веществ крови. Кроме того, состояние сосудодвигательного центра определяется и сигналами, приходящими от других отделов центральной нервной системы. Благодаря этому адекватные изменения кровообращения наступают при изменениях функционального состояния любого органа, системы или всего организма.

Помимо тонуса артериол, под находится также величина МО, зависящая от количества крови, притекающей к сердцу по , и от энергии сердечных сокращений. Количество крови, притекающей к сердцу, зависит от тонуса гладких мышц венозной стенки, определяющего ёмкость венозной системы, от сократительной деятельности скелетных мышц, облегчающей возврат крови к сердцу, а также от общего объёма крови и тканевой жидкости в организме. Тонус вен и сократительной деятельность скелетных мышц обусловливаются импульсами, поступающими к этим органам соответственно из сосудодвигательного центра и центров, управляющих движением тела. Общий объём крови и тканевой жидкости регулируется посредством рефлексов, возникающих в рецепторах растяжения правого и левого предсердий. Увеличение притока крови к правому предсердию возбуждает эти рецепторы, вызывая рефлекторное угнетение выработки надпочечниками гормона Альдостерон. Недостаток в альдостероне приводит к усиленному выделению с мочой ионов Na и Cl и вследствие этого к снижению общего количества воды в крови и тканевой жидкости, а следовательно, и к уменьшению объёма циркулирующей крови. Усиленное растяжение кровью левого предсердия также вызывает уменьшение объёма циркулирующей крови и тканевой жидкости. Однако в этом случае включается другой механизм: сигналы от рецепторов растяжения тормозят выделение гипофизом гормона вазопрессина, что приводит к усиленному выделению воды . Величина МО зависит также от силы сокращений сердечной мышцы, регулируемой рядом внутрисердечных механизмов, действием гуморальных агентов, а также центральной нервной системой.

Помимо описанных центральных механизмов регуляции кровообращения, существуют и периферические механизмы. Один из них - изменения «базального тонуса» сосудистой стенки, осуществляющиеся даже после полного выключения всех центральных сосудодвигательных влияний. Растяжение сосудистых стенок избыточным количеством крови вызывает через небольшой промежуток времени падение тонуса гладких мышц сосудистой стенки и увеличение объёма сосудистого русла. Уменьшение объёма крови приводит к противоположному эффекту. Таким образом, изменение «базального тонуса» сосудов обеспечивает в известных пределах автоматическое поддержание так называемого среднего давления в сердечно-сосудистой системе, что играет важную роль в регуляции минутного объема. Причины непосредственных изменений «базального тонуса» сосудов изучены ещё недостаточно.

Итак, общая регуляция К. обеспечивается сложными и многообразными механизмами, нередко дублирующими друг друга, что определяет высокую надёжность регулирования общего состояния этой важнейшей для организма системы.

Наряду с общими механизмами регуляции К., существуют центральные и местные механизмы, управляющие локальным кровообращением, т. е. К. в отдельных органах и тканях. Исследования с помощью микроэлектродной техники, изучение сосудистого тонуса отдельных областей тела (резистография) и другие работы показали, что сосудодвигательный центр избирательно включает нейроны, регулирующие тонус определённых сосудистых областей. Это позволяет понижать тонус одних сосудистых областей, одновременно повышая тонус других. Местное расширение сосудов осуществляется не только вследствие снижения частоты сосудосуживающих импульсов, но в ряде случаев и в результате сигналов, приходящих по специальным сосудорасширяющим волокнам. Ряд органов снабжен сосудорасширяющими волокнами парасимпатической нервной системы, а скелетные мышцы и иннервируются сосудорасширяющими волокнами симпатической системы. Расширение сосудов какого-либо органа или ткани возникает при усилении рабочей активности этого органа и далеко не всегда сопровождается общими изменениями К. Периферические механизмы регуляции кровообращения обеспечивают увеличение кровотока через орган или ткань при возрастании их рабочей активности. Полагают, что главная причина этих реакций - накопление в тканях продуктов обмена, обладающих местным сосудорасширяющим действием (это мнение разделяется не всеми исследователями). Значительная роль в общей и местной регуляции К. играют биологически активные вещества. К ним относятся гормоны - адреналин, ренин и, возможно, вазопрессин и так называемые местные, или тканевые, гормоны - серотонин, брадикинин и другие кинины, простагландины и др. вещества. Роль их в регуляции К. изучается.

Система регуляции кровообращения не является замкнутой. В неё непрерывно поступает информация из других отделов центральной нервной системы и, в частности, из центров, регулирующих движения тела, центров, определяющих возникновение эмоционального напряжения, из коры головного мозга. Благодаря этому изменения К. возникают при любых изменениях состояния и деятельности организма, при эмоциях, и т. д. Эти изменения К. носят приспособительный, адаптивный характер. Перестройка функции К. нередко предшествует переходу организма на новый режим, как бы заранее подготавливая его к предстоящей деятельности.

Расстройства кровообращения

Расстройства кровообращения могут носить местный и общий характер. Местные - проявляются артериальной и венозной гиперемией или и обусловлены нарушениями нервной регуляции К., эмболиями, а также воздействием на сосуды внешних повреждающих факторов; местные нарушения К. лежат в основе , эндартериита облитерирующего и другие.

Общие расстройства проявляются недостаточностью кровообращения - состоянием, при котором система К. не доставляет органам и тканям необходимого количества крови. Различают недостаточность К. сердечного (центрального) происхождения, если её причиной является нарушение функции сердца; сосудистого (периферического), - если причина связана с первичными нарушениями сосудистого тонуса; общую . При К. отмечается венозный застой, поскольку выбрасывает в артерии меньше крови, чем к нему притекает по венам. Сосудистая недостаточность характеризуется понижением венозного и артериального давления: уменьшается венозный приток к сердцу вследствие несоответствия между ёмкостью сосудистого русла и объёмом циркулирующей в нём крови. Ее причинами могут быть , вызывающие развитие сердечной недостаточности: , гипоксия и нарушения обмена веществ тканей. При застойной недостаточности характерны гипертрофия миокарда, повышение венозного давления, увеличение массы циркулирующей крови, отёки, замедление кругооборота крови. При недостаточности, связанной с первичным , 1927;

  • Парин В. В., Роль легочных сосудов в рефлекторной регуляции кровообращения, М., 1946;
  • Уиггерс К., Динамика кровообращения, пер. с англ., М., 1957;
  • Савицкий Н. Н., Биофизические основы кровообращения и клинические методы изучения гемодинамики, 2 изд., Л., 1963;
  • Хаютин В. М., Сосудо-двигательные рефлексы, М., 1964;
  • Парин В. В. и Меерсон Ф. З., Очерки клинической физиологии кровообращения, 2 изд., М., 1965;
  • Гаитон А., Физиология кровообращения. Минутный объем сердца и его регуляция, пер. с англ., М., 1969;
  • Адольф Э., Развитие физиологических регуляций, пер. с англ., М., 1971;
  • Guyton A., Textbook of medical physiology, 2 ed., Phil. - L., 1961;
  • Handbook of physiology, sect. 2, Circulation, v. 1 - 3, Wash., 1962 - 1965.
  • Кровообращение - это движение крови по сосудистой системе (по артериям, капиллярам, венам).

    Кровообращение обеспечивает между тканями организма и внешней средой, обмен веществ, гуморальную регуляцию обмена, а также перенос образующегося в организме тепла. Кровообращение необходимо для нормальной деятельности всех систем организма. Для движения крови по сосудам необходима энергия. Основным ее источником является деятельность сердца. Часть кинетической энергии, получающейся при систоле желудочков, расходуется на передвижение крови, остальная энергия переходит в потенциальную форму и расходуется на растяжение стенок артериальных сосудов. Вытеснение крови из артериальной системы, непрерывный ток крови в капиллярах и передвижение ее в венозное русло обеспечиваются за счет артериального давления. Течение крови по венам обусловливается в основном работой сердца, а также периодическими колебаниями давления в грудной и брюшной полостях вследствие работы дыхательной мускулатуры и изменения внешнего давления на стенки периферических вен со стороны скелетных мышц. Немаловажную роль в венозном кровообращении играют венозные клапаны, препятствующие обратному току крови по венам. Схема кровообращения человека - см. рис. 7.

    Рис. 7. Схема кровообращения человека: 1 - капиллярные сети области головы и шеи; 2 - аорта; 3 - капиллярная сеть верхней конечности; 4 - легочная вена; 5 - капиллярная сеть легкого; 6 - капиллярная сеть желудка; 7 - капиллярная сеть ; 8 - капиллярная сеть кишечника; 9 - капиллярная сеть нижней конечности; 10 - капиллярная сеть ; 11 - воротная вена; 12 - капиллярная сеть печени; 13 - нижняя полая вена; 14 - левый желудочек сердца; 15 - правый желудочек сердца; 16 - правое предсердие; 17 - левое предсердие; 18 - легочный ствол; 19 - верхняя полая вена.


    Рис. 8. Схема портального кровообращения:
    1 - селезеночная вена; 2 - нижняя брыжеечная вена; 3 - верхняя брыжеечная вена; 4 - воротная вена; 5 - разветвление сосудов в печени; 6 - печеночная вена; 7 - нижняя полая вена.

    Кровообращение регулируется многообразными рефлекторными механизмами, среди которых наиболее важными являются депрессорные рефлексы, возникающие при раздражении особых кардиоаортальных и синокаротидных рецепторных зон. Импульсация из этих зон поступает в сосудодвигательный центр и центр регуляции сердечной деятельности, лежащие в продолговатом мозге. Повышение давления крови в аорте и синусе сонной артерии приводит к рефлекторному снижению частоты импульсации в симпатических и усилению ее в парасимпатических нервах. Это ведет к уменьшению частоты и силы сердечных сокращений и снижению сосудов (в особенности артериол), что в конечном итоге приводит к падению артериального давления. Значительную роль в регуляции кровообращения играют рефлексы с хеморецепторных зон аорты. Адекватным раздражением для них являются изменения парциального давления кислорода, и концентрации водородных ионов крови. Снижение содержания кислорода и повышение уровня углекислоты и водородных ионов вызывает рефлекторную стимуляцию работы сердца. Координация кровообращения осуществляется центральной нервной системой. Важное место в регуляции кровообращения принадлежит высшим вегетативным и бульбарным центрам регуляции сердечной деятельности и сосудистого тонуса. К числу приспособительных изменений кровообращения относится использование кровяных депо. Кровяные депо - это органы, которые содержат в своих сосудах значительное количество эритроцитов, не принимающих участия в циркуляции. При ситуациях, требующих повышения снабжения тканей кислородом, из сосудов этих органов поступают в общий кровоток.

    Приспособительным механизмом в системе кровообращения является коллатеральное кровообращение. Коллатеральное кровообращение - кровоснабжение органа (минуя выключенные сосуды) за счет формирования новой или значительного развития имеющейся сосудистой сети. К числу других приспособительных механизмов относится повышение минутного объема крови и изменение регионарного кровообращения. Минутный объем - количество крови в литрах, поступающее в 1 минуту из левого желудочка сердца в аорту и равное произведению систолического объема на число сокращений сердца за 1 минуту. Систолический объем - количество крови, выбрасываемое желудочком сердца при каждой систоле (сокращении). Регионарное кровообращение - это кровообращение в определенных органах и тканях. Примером регионарного кровообращения может служить портальное кровообращение печени (воротное кровообращение). Портальное кровообращение - система снабжения кровью внутренних органов брюшной полости (рис. 8). Артериальной кровью органы брюшной полости снабжаются чревной, мезентериальной и селезеночной артериями. Далее кровь, проходя через капилляры кишечника, желудка, поджелудочной железы и селезенки, направляется в воротную вену. Из воротной вены, пройдя через систему печеночного кровообращения, кровь направляется в нижнюю полую вену. Система портального кровообращения является важнейшим кровяным депо в организме.

    Расстройства кровообращения многообразны. Они сводятся к тому, что система кровообращения становится неспособной обеспечить органы и ткани необходимым количеством крови. Эта диспропорция между кровообращением и обменом веществ нарастает с увеличением активности жизненных процессов - при мышечном напряжении, беременности и т. п. Различают три вида недостаточности кровообращения - центральную, периферическую и общую. Центральная недостаточность кровообращения связана с нарушением функции или структуры сердечной мышцы. Периферическая недостаточность кровообращения возникает при нарушении функционального состояния сосудистой системы. И, наконец, общая сердечно-сосудистая недостаточность кровообращения является результатом расстройства деятельности всей в целом.

    В человеческом организме кровеносная система устроена так, чтобы полностью отвечать его внутренним потребностям. Немаловажную роль в продвижении крови играет наличие замкнутой системы, в которой разделены артериальный и венозный кровяные потоки. И осуществляется это с помощью наличия кругов кровообращения.

    Историческая справка

    В прошлом, когда под рукой у ученых еще не было информативных приборов, способных изучать физиологические процессы на живом организме, величайшие деятели науки вынуждены были заниматься поиском анатомических особенностей у трупов. Естественно, что у умершего человека сердце не сокращается, поэтому некоторые нюансы приходилось домысливать самостоятельно, а иногда и попросту фантазировать. Так, еще во втором веке нашей эры Клавдий Гален, обучающийся по трудам самого Гиппократа, предполагал, что артерии содержат в своем просвете воздух вместо крови. На протяжении дальнейших столетий было выполнено немало попыток объединить и связать воедино имеющиеся анатомические данные с позиции физиологии. Все ученые знали и понимали, как устроена система кровообращения, но вот как это работает?

    Колоссальный вклад в систематизацию данных по работе сердца внесли ученые Мигель Сервет и Уильям Гарвей в 16-м веке. Гарвей, ученый, впервые описавший большой и малый круги кровообращения, в 1616 году определил наличие двух кругов, но вот как связаны между собой артериальное и венозное русло, он объяснить в своих трудах не мог. И лишь впоследствии, в 17-м веке, Марчелло Мальпиги, один из первых начавший использовать микроскоп в своей практике, открыл и описал наличие мельчайших, невидимых невооруженным глазом капилляров, которые служат связующим звеном в кругах кровообращения.

    Филогенез, или эволюция кругов кровообращения

    В связи с тем, что по мере эволюции животные класса позвоночных становились все более прогрессивными в анатомо-физиологическом отношении, им требовалось сложное устройство и сердечно-сосудистой системы. Так, для более быстрого движения жидкой внутренней среды в организме позвоночного животного появилась необходимость замкнутой системы циркуляции крови. По сравнению с иными классами животного царства (например, с членистоногими или с червями), у хордовых появляются зачатки замкнутой сосудистой системы. И если у ланцетника, к примеру, отсутствует сердце, но существует брюшная и спинная аорта, то у рыб, амфибий (земноводных), рептилий (пресмыкающихся) появляется двух- и трехкамерное сердце соответственно, а у птиц и млекопитающих – четырехкамерное сердце, особенностью которого является средоточие в нем двух кругов кровообращения, не смешивающихся между собой.

    Таким образом, наличие у птиц, млекопитающих и человека, в частности, двух разделенных кругов кровообращения – это не что иное, как эволюция кровеносной системы, необходимая для лучшего приспособления к условиям окружающей среды.

    Анатомические особенности кругов кровообращения

    Круги кровообращения – это совокупность кровеносных сосудов, представляющая собой замкнутую систему для поступления во внутренние органы кислорода и питательных веществ посредством газообмена и обмена нутриентами, а также для выведения из клеток двуокиси углерода и иных продуктов метаболизма. Для организма человека характерны два круга – системный, или большой круг, а также легочной, называемый также малым кругом.

    Видео: круги кровообращения, мини-лекция и анимация


    Большой круг кровообращения

    Основной функцией большого круга является обеспечение газообмена во всех внутренних органах, кроме легких. Он начинается в полости левого желудочка; представлен аортой и ее ответвлениями, артериальным руслом печени, почек, головного мозга, скелетной мускулатуры и других органов. Далее данный круг продолжается капиллярной сетью и венозным руслом перечисленных органов; и посредством впадения полой вены в полость правого предсердия заканчивается в последнем.

    Итак, как уже сказано, начало большого круга – это полость левого желудочка. Сюда направляется артериальный кровяной поток, содержащий в себе большую часть кислорода, нежели двуокиси углерода. Этот поток в левый желудочек попадает непосредственно из кровеносной системы легких, то есть из малого круга. Артериальный поток из левого желудочка посредством аортального клапана проталкивается в крупнейший магистральный сосуд – в аорту. Аорту образно можно сравнить со своеобразным деревом, которое имеет множество ответвлений, потому что от нее отходят артерии ко внутренним органам (к печени, почкам, желудочно-кишечному тракту, к головному мозгу – через систему сонных артерий, к скелетным мышцам, к подкожно-жировой клетчатке и др). Органные артерии, также имеющие многочисленные разветвления и носящие соответственные анатомии названия, несут кислород в каждый орган.

    В тканях внутренних органов артериальные сосуды подразделяются на сосуды все меньшего и меньшего диаметра, и в результате формируется капиллярная сеть. Капилляры – это наимельчайшие сосуды, практически не имеющие среднего мышечного слоя, а представленные внутренней оболочкой – интимой, выстланной эндотелиальными клетками. Просветы между этими клетками на микроскопическом уровне настолько велики по сравнению с другими сосудами, что позволяют беспрепятственно проникать белкам, газам и даже форменным элементам в межклеточную жидкость окружающих тканей. Таким образом, между капилляром с артериальной кровью и жидкой межклеточной средой в том или ином органе происходит интенсивный газообмен и обмен других веществ. Кислород проникает из капилляра, а углекислота, как продукт метаболизма клеток – в капилляр. Осуществляется клеточный этап дыхания.

    После того, как в ткани перешло большее количество кислорода, а из тканей была удалена вся углекислота, кровь становится венозной. Весь газообмен осуществляется с каждым новым притоком крови, и за тот промежуток времени, пока она движется по капилляру в сторону венулы – сосудика, собирающего венозную кровь. То есть с каждым сердечным циклом в том или ином участке организма осуществляется поступление кислорода в ткани и удаление из них двуокиси углерода.

    Указанные венулы объединяются в вены покрупнее, и формируется венозное русло. Вены, аналогично артериям, носят те названия, в каком органе они располагаются (почечные, мозговые и др). Из крупных венозных стволов формируются притоки верхней и нижней полой вены, а последние затем впадают в правое предсердие.

    Особенности кровотока в органах большого круга

    Некоторые из внутренних органов имеют свои особенности. Так, например, в печени существует не только печеночная вена, «относящая» венозный поток от нее, но и воротная, которая наоборот, приносит кровь в печеночную ткань, где выполняется очищение крови, и только потом кровь собирается в притоки печеночной вены, чтобы попасть к большому кругу. Воротная вена приносит кровь от желудка и кишечника, поэтому все, что человек съел или выпил, должно пройти своеобразную «очистку» в печени.

    Кроме печени, определенные нюансы существуют и в других органах, например, в тканях гипофиза и почек. Так, в гипофизе отмечается наличие так называемой «чудесной» капиллярной сети, потому что артерии, приносящие кровь в гипофиз из гипоталамуса, разделяются на капилляры, которые затем собираются в венулы. Венулы, после того, как кровь с молекулами релизинг-гормонов собрана, вновь разделяются на капилляры, а затем уже формируются вены, относящие кровь от гипофиза. В почках дважды на капилляры разделяется артериальная сеть, что связано с процессами выделения и обратного всасывания в клетках почек – в нефронах.

    Малый круг кровообращения

    Его функцией является осуществление газообменных процессов в легочной ткани с целью насыщения «отработанной» венозной крови кислородными молекулами. Он начинается в полости правого желудочка, куда из право-предсердной камеры (из «конечной точки» большого круга) поступает венозный кровяной поток с крайне незначительным количеством кислорода и с большим содержанием углекислоты. Эта кровь посредством клапана легочной артерии продвигается в один из крупных сосудов, называемый легочным стволом. Далее венозный поток двигается по артериальному руслу в легочной ткани, которое также распадается на сеть из капилляров. По аналогии с капиллярами в других тканях, в них осуществляется газообмен, вот только в просвет капилляра поступают молекулы кислорода, а в альвеолоциты (клетки альвеол) проникает углекислота. В альвеолы при каждом акте дыхания поступает воздух из окружающей среды, из которого кислород через клеточные мембраны проникает в плазму крови. С выдыхаемым воздухом при выдохе поступившая в альвеолы углекислота выводится наружу.

    После насыщения молекулами O 2 кровь приобретает свойства артериальной, протекает по венулам и в конечном итоге добирается до легочных вен. Последние в составе четырех или пяти штук открываются в полость левого предсердия. В результате, через правую половину сердца протекает венозный кровяной поток, а через левую половину – артериальный; и в норме эти потоки смешиваться не должны.

    В ткани легких имеется двойная сеть капилляров. При помощи первой осуществляются газообменные процессы с целью обогащения венозного потока молекулами кислорода (взаимосвязь непосредственно с малым кругом), а во второй осуществляется питание самой легочной ткани кислородом и нутриентами (взаимосвязь с большим кругом).


    Дополнительные круги кровообращения

    Данными понятиями принято выделять кровоснабжение отдельных органов. Так, например, к сердцу, которое больше других нуждается в кислороде, артериальный приток осуществляется из ответвлений аорты в самом ее начале, которые получили название правой и левой коронарных (венечных) артерий. В капиллярах миокарда происходит интенсивный газообмен, а венозный отток осуществляется в коронарные вены. Последние собираются в коронарный синус, который открывается прямо в право-предсердную камеру. Таким путем осуществляется сердечный, или коронарный круг кровообращения.

    венечный (коронарный) круг кровообращения в сердце

    Виллизиев круг представляет собой замкнутую артериальную сеть из мозговых артерий. Мозговой круг обеспечивает дополнительное кровоснабжение мозга при нарушении мозгового кровотока по другим артериям. Это защищает столь важный орган от недостатка кислорода, или гипоксии. Мозговой круг кровообращения представлен начальным сегментом передней мозговой артерии, начальным сегментом задней мозговой артерии, передними и задними соединительными артериями, внутренними сонными артериями.

    виллизиев круг в мозге (классический вариант строения)

    Плацентарный круг кровообращения функционирует только во время вынашивания плода женщиной и осуществляет функцию «дыхания» у ребенка. Плацента формируется, начиная с 3-6 недели беременности, и начинает функционировать в полную силу с 12-й недели. В связи с тем, что легкие плода не работают, поступление кислорода в его кровь осуществляется посредством потока артериальной крови в пупочную вену ребенка.

    кровообращение плода до рождения

    Таким образом, всю кровеносную систему человека можно условно разделить на отдельные взаимосвязанные участки, выполняющие свои функции. Правильное функционирование таких участков, или кругов кровообращения, является залогом здоровой работы сердца, сосудов и всего организма в целом.

    Это непрерывное движение крови по замкнутой сердечно-сосудистой системе, обеспечивающее обмен газов в легких и тканях тела.

    Помимо обеспечения тканей и органов кислородом и удаления из них углекислоты, кровообращение доставляет к клеткам питательные вещества, воду, соли, витамины, гормоны и удаляет конечные продукты обмена веществ, а также поддерживает постоянство температуры тела, обеспечивает гуморальную регуляцию и взаимосвязь органов и систем органов в организме.

    Система органов кровообращения состоит из сердца и кровеносных сосудов , пронизывающих все органы и ткани тела.

    Кровообращение начинается в тканях, где совершается обмен веществ через стенки капилляров. Кровь, отдавшая кислород органам и тканям, поступает в правую половину сердца и направляется им в малый (легочной) круг кровообращения, где кровь насыщается кислородом, возвращается к сердцу, поступая в левую его половину, и вновь разносится по всему организму (большому кругу кровообращения).

    Сердце - главный орган системы кровообращения. Оно представляет собой полый мышечный орган, состоящий из четырех камер: двух предсердий (правого и левого), разделенных межпредсердной перегородкой, и двух желудочков (правого и левого), разделенных межжелудочковой перегородкой. Правое предсердие сообщается с правым желудочком через трехстворчатый, а левое предсердие с левым желудочком - через двустворчатый клапан. Масса сердца взрослого человека в среднем около 250 г у женщин и около 330 г у мужчин. Длина сердца 10-15 см, поперечный размер 8-11 см и переднезадний - 6-8,5 см. Объем сердца у мужчин в среднем равен 700-900 см 3 , а у женщин - 500-600 см 3 .

    Наружные стенки сердца образованы сердечной мышцей, которая по структуре сходна с поперечнополосатыми мышцами. Однако сердечная мышца отличается способностью автоматически ритмично сокращаться благодаря импульсам, возникающим в самом сердце независимо от внешних воздействий (автоматия сердца).

    Функция сердца состоит в ритмичном нагнетании в артерии крови, приходящей к нему по венам. Сердце сокращается около 70-75 раз в минуту в состоянии покоя организма (1 раз за 0,8 с). Более половины этого времени оно отдыхает - расслабляется. Непрерывная деятельность сердца складывается из циклов, каждый из которых состоит из сокращения (систола) и расслабления (диастола).

    Различают три фазы сердечной деятельности:

    • сокращение предсердий - систола предсердий - занимает 0,1 с
    • сокращение желудочков - систола желудочков - занимает 0,3 с
    • общая пауза - диастола (одновременное расслабление предсердий и желудочков) - занимает 0,4 с

    Таким образом, в течение всего цикла предсердия работают 0,1 с и отдыхают 0,7 с, желудочки работают 0,3 с и отдыхают 0,5 с. Этим объясняется способность сердечной мышцы работать, не утомляясь, в течение всей жизни. Высокая работоспособность сердечной мышцы обусловлена усиленным кровоснабжением сердца. Примерно 10 % крови, выбрасываемой левым желудочком в аорту, поступает в отходящие от нее артерии, которые питают сердце.

    Артерии - кровеносные сосуды, несущие обогащенную кислородом кровь от сердца к органам и тканям (лишь легочная артерия несет венозную кровь).

    Стенка артерии представлена тремя слоями: наружной соединительнотканной оболочкой; средней, состоящей из эластических волокон и гладких мышц; внутренней, образованной эндотелием и соединительной тканью.

    У человека диаметр артерий колеблется от 0,4 до 2,5 см. Общий объем крови в артериальной системе составляет в среднем 950 мл. Артерии постепенно древовидно ветвятся на все более мелкие сосуды - артериолы, которые переходят в капилляры.

    Капилляры (от лат. "капиллюс" - волос) - мельчайшие сосуды (средний диаметр не превышает 0,005 мм, или 5 мкм), пронизывающие органы и ткани животных и человека, имеющих замкнутую кровеносную систему. Они соединяют мелкие артерии - артериолы с мелкими венами - венулами. Через стенки капилляров, состоящие из клеток эндотелия, происходит обмен газов и других веществ между кровью и различными тканями.

    Вены - кровеносные сосуды, несущие насыщенную углекислым газом, продуктами обмена веществ, гормонами и другими веществами кровь от тканей и органов к сердцу (исключение легочные вены, несущие артериальную кровь). Стенка вены значительно тоньше и эластичнее стенки артерии. Мелкие и средние вены снабжены клапанами, препятствующими обратному току крови в этих сосудах. У человека объем крови в венозной системе составляет в среднем 3200 мл.

    Круги кровообращения

    Движение крови по сосудам впервые было описано в 1628 г. английским врачом В. Гарвеем.

    У человека и млекопитающих кровь движется по замкнутой сердечно-сосудистой системе, состоящей из большого и малого кругов кровообращения (рис.).

    Большой круг начинается от левого желудочка, через аорту разносит кровь по всему телу, в капиллярах отдает тканям кислород, забирает углекислый газ, превращается из артериальной в венозную и по верхней и нижней полым венам возвращается в правое предсердие.

    Малый круг кровообращения начинается от правого желудочка, через легочную артерию разносит кровь к легочным капиллярам. Здесь кровь отдает углекислый газ, насыщается кислородом и по легочным венам течет к левому предсердию. Из левого предсердия через левый желудочек кровь вновь поступает в большой круг кровообращения.

    Малый круг кровообращения - легочной круг - служит для обогащения крови кислородом в легких. Он начинается от правого желудочка и заканчивается левым предсердием.

    Из правого желудочка сердца венозная кровь поступает в легочной ствол (общая легочная артерия), которая вскоре делится на две ветви,- несущие кровь к правому и левому легкому.

    В легких артерии разветвляются на капилляры. В капиллярных сетях, оплетающих легочные пузырьки, кровь отдает углекислоту и получает взамен новый запас кислорода (легочное дыхание). Насыщенная кислородом кровь приобретает алый цвет, становится артериальной и поступает из капилляров в вены, которые, слившись в четыре легочные вены (по две с каждой стороны), впадают в левое предсердие сердца. В левом предсердии заканчивается малый (легочный) круг кровообращения, а поступившая в предсердие артериальная кровь переходит через левое атриовентрикулярное отверстие в левый желудочек, где начинается большой круг кровообращения. Следовательно, в артериях малого круга кровообращения течет венозная кровь, а в его венах - артериальная.

    Большой круг кровообращения - телесный - собирает венозную кровь от верхней и нижней половины туловища и аналогично распределяет артериальную; начинается от левого желудочка и заканчивается правым предсердием.

    Из левого желудочка сердца кровь поступает в самый крупный артериальный сосуд - аорту. Артериальная кровь содержит необходимые для жизнедеятельности организма питательные вещества и кислород и имеет ярко-алый цвет.

    Аорта разветвляется на артерии, которые идут ко всем органам и тканям тела и переходят в толще их в артериолы и далее в капилляры. Капилляры в свою очередь собираются в венулы и далее в вены. Через стенку капилляров происходит обмен веществ и газообмен между кровью и тканями тела. Протекающая в капиллярах артериальная кровь отдает питательные вещества и кислород и взамен получает продукты обмена и углекислоту (тканевое дыхание). Вследствие этого поступающая в венозное русло кровь бедна кислородом и богата углекислотой и потому имеет темную окраску - венозная кровь; при кровотечении по цвету крови можно определить, какой сосуд поврежден - артерия или вена. Вены сливаются в два крупных ствола - верхнюю и нижнюю полые вены, которые впадают в правое предсердие сердца. Этим отделом сердца заканчивается большой (телесный) круг кровообращения.

    Дополнением к большому кругу является третий (сердечный) круг кровообращения , обслуживающий само сердце. Он начинается выходящими из аорты венечными артериями сердца и заканчивается венами сердца. Последние сливаются в венечный синус, впадающий в правое предсердие, а остальные вены открываются в полость предсердия непосредственно.

    Движение крови по сосудам

    Любая жидкость течет от места, где давление выше, туда, где оно ниже. Чем больше разность давлений, тем выше скорость течения. Кровь в сосудах большого и малого круга кровообращений также движется благодаря разности давлений, которую создает сердце своими сокращениями.

    В левом желудочке и аорте давление крови выше, чем в полых венах (отрицательное давление) и в правом предсердии. Разность давлений в этих участках обеспечивает движение крови в большом круге кровообращения. Высокое давление в правом желудочке и легочной артерии и низкое в легочных венах и левом предсердии обеспечивают движение крови в малом круге кровообращения.

    Самое высокое давление в аорте и крупных артериях (артериальное давление). Артериальное кровяное давление не является постоянной величиной [показать]

    Кровяное давление - это давление крови на стенки кровеносных сосудов и камер сердца, возникающее в результате сокращения сердца, нагнетающего кровь в сосудистую систему, и сопротивления сосудов. Наиболее важным медицинским и физиологическим показателем состояния кровеносной системы является величина давления в аорте и крупных артериях - артериальное давление.

    Артериальное кровяное давление не является постоянной величиной. У здоровых людей в состоянии покоя различают максимальное, или систолическое, давление крови - уровень давления в артериях во время систолы сердца около 120 мм ртутного столба, и минимальное, или диастолическое,- уровень давления в артериях во время диастолы сердца около 80 мм ртутного столба. Т.е. артериальное кровяное давление пульсирует в такт сокращений сердца: в момент систолы оно повышается до 120-130 мм рт. ст., а во время диастолы снижается до 80-90 мм рт. ст. Эти пульсовые колебания давления происходят одновременно с пульсовыми колебаниями артериальной стенки.

    По мере продвижения крови по артериям часть энергии давления используется на преодоление трения крови о стенки сосудов, поэтому давление постепенно падает. Особенно значительное падение давления происходит в самых мелких артериях и капиллярах - они оказывают наибольшее сопротивление движению крови. В венах кровяное давление продолжает постепенно снижаться, и в полых венах оно равно атмосферному давлению или даже ниже его. Показатели кровообращения в разных отделах кровеносной системы приведены в табл. 1.

    Скорость движения крови зависит не только от разности давлений, но и от ширины кровеносного русла. Хотя аорта - самый широкий сосуд, но в организме она одна и через нее протекает вся кровь, которая выталкивается левым желудочком. Поэтому скорость здесь максимальная - 500 мм/с (см. табл. 1). По мере разветвления артерий их диаметр уменьшается, однако общая площадь поперечного сечения всех артерий возрастает и скорость движения крови уменьшается, достигая в капиллярах 0,5 мм/с. Благодаря столь малой скорости течения крови в капиллярах кровь успевает отдать кислород и питательные вещества тканям и принять продукты их жизнедеятельности.

    Замедление тока крови в капиллярах объясняется их огромным количеством (около 40 млрд.) и большим суммарным просветом (в 800 раз больше просвета аорты). Движение крови в капиллярах осуществляется за счет изменения просвета подводящих мелких артерий: их расширение усиливает кровоток в капиллярах, а сужение - уменьшает.

    Вены на пути от капилляров по мере приближения к сердцу укрупняются, сливаются, их количество и суммарный просвет кровяного русла уменьшается, а скорость движения крови по сравнению с капиллярами возрастает. Из табл. 1 также видно, что 3/4 всей крови находится в венах. Это связано с тем, что тонкие стенки вен способны легко растягиваться, поэтому они мoгут содержать значительно больше крови, чем соответствующие артерии.

    Основной причиной движения крови по венам служит разность давлений в начале и конце венозной системы, поэтому движение крови по венам происходит в направлении к сердцу. Этому способствуют присасывающее действие грудной клетки ("дыхательный насос") и сокращение скелетной мускулатуры ("мышечный насос"). Во время вдоха давление в грудной клетке уменьшается. При этом разность давлений в начале и в конце венозной системы увеличивается, и кровь по венам направляется к сердцу. Скелетные мышцы, сокращаясь, сжимают вены, что также способствует передвижению крови к сердцу.

    Соотношение между скоростью движения крови, шириной кровеносного русла и давлением крови иллюстрирует рис. 3. Количество крови, протекающее за единицу времени через сосуды, равно произведению скорости движения крови на площадь поперечного сечения сосудов. Эта величина одинакова для всех частей кровеносной системы: сколько крови выталкивает сердце в аорту, столько ее протекает через артерии, капилляры и вены и столько же возвращается назад к сердцу, и равна минутному объему крови.

    Перераспределение крови в организме

    Если артерия, отходящая от аорты к какому-нибудь органу, благодаря расслаблению своих гладких мышц расширится, то орган будет получать больше крови. В то же время другие органы получат за счет этого меньше крови. Так происходит перераспределение крови в организме. Вследствие перераспределения к работающим органам притекает больше крови за счет органов, которые в данное время пребывают в покое.

    Перераспределение крови регулируется нервной системой: одновременно с расширением сосудов в работающих органах кровеносные сосуды неработающих суживаются и артериальное давление остается неизменным. Но если расширятся все артерии, это приведет к падению артериального давления и к уменьшению скорости движения крови в сосудах.

    Время кругооборота крови

    Время кругооборота крови - это время, необходимое для того, чтобы кровь прошла через весь круг кровообращения. Для измерения времени кругооборота крови применяется ряд способов [показать]

    Принцип измерения времени кругооборота крови заключается в том, что в вену вводят какое-либо вещество, не встречающееся обычно в организме, и определяют, через какой промежуток времени оно появляется в одноименной вене другой стороны или вызывает характерное для него действие. Например, в локтевую вену вводят раствор алкалоида лобелина, действующего через кровь на дыхательный центр продолговатого мозга, и определяют время от момента введения вещества до момента, когда появляется кратковременная задержка дыхания или кашель. Это происходит, когда молекулы лобелина, совершив кругооборот в кровеносной системе, подействуют на дыхательный центр и вызовут изменение дыхания или кашель.

    В последние годы скорость кругооборота крови по обоим кругам кровообращения (или только по малому, или только по большому кругу) определяют с помощью радиоактивного изотопа натрия и счетчика электронов. Для этого несколько таких счетчиков помещают на разных частях тела вблизи крупных сосудев и в области сердца. После введения в локтевую вену радиоактивного изотопа натрия определяют время появления радиоактивного излучения в области сердца и исследуемых сосудов.

    Время кругооборота крови у человека составляет в среднем примерно 27 систол сердца. При 70-80 сокращениях сердца в минуту полный кругооборот крови происходит приблизительно за 20-23 секунды. Не надо забывать, однако, что скорость течения крови по оси сосуда больше, чем у его стенок, а также, что не все сосудистые области имеют одинаковую протяженность. Поэтому не вся кровь совершает кругооборот так быстро, и указанное выше время является кратчайшим.

    Исследования на собаках показали, что 1/5 времени полного кругооборота крови приходится на малый круг кровообращения и 4/5 - на большой круг.

    Регуляция кровообращения

    Иннервация сердца . Сердце, как и другие внутренние органы, иннервируетея вегетативной нервной системой и получает двойную иннервацию. К сердцу подходят симпатические нервы, которые усиливают и ускоряют его сокращения. Вторая группа нервов - парасимпатические - действует на сердце противоположным образом: замедляет и ослабляет сердечные сокращения. Эти нервы регулируют работу сердца.

    Кроме того, на работу сердца влияет гормон надпочечников - адреналин, который с кровью поступает в сердце и усиливает его сокращения. Регуляция работы органов с помощью веществ, переносимых кровью, называется гуморальной.

    Нервная и гуморальная регуляции сердца в организме действуют согласованно и обеспечивают точное приспособление деятельности сердечно-сосудистой системы к потребностям организма и условиям окружающей среды.

    Иннервация кровеносных сосудов. Кровеносные сосуды иниервируются симпатическими нервами. Возбуждение, распространяющееся по ним, вызывает сокращение гладких мышц в стенках сосудов и суживает сосуды. Если перерезать симпатические нервы, идущие к определенной части тела, соответствующие сосуды расширятся. Следовательно, по симпатическим нервам к кровеносным сосудам все время поступает возбуждение, которое держит эти сосуды в состоянии некоторого сужения - сосудистого тонуса. Когда возбуждение усилнвается, частота нервных импульсов возрастает и сосуды суживаются сильнее - сосудистый тонус повышается. Наоборот, при уменьшении частоты нервных импульсов вследствие торможения симпатических нейронов сосудистый тонус снижается и кровеносные сосуды расширяются. К сосудам некоторых органов (скелетных мышц, слюнных желез) кроме сосудосуживающих подходят также сосудорасширяющие нервы. Эти нервы возбуждаются и расширяют кровеносные сосуды органов во время их работы. На просвет сосудов влияют также вещества, которые разносятся кровью. Адреналин суживает кровеносные сосуды. Другое вещество - ацетилхолин, - выделяемое окончаниями некоторых нервов, расширяет их.

    Регуляция деятельности сердечно-сосудистой системы. Кровоснабжение органов изменяется в зависимости от их потребностей благодаря описанному перераспределению крови. Но это перераспределение может быть эффективным только при условии, что давление в артериях не изменяется. Одной из основных функций нервной регуляции кровообращения является поддержание постоянного кровяного давления. Эта функция осуществляется рефлекторно.

    В стенке аорты и сонных артерий имеются рецепторы, которые раздражаются сильнее, если кровяное давление превышает нормальный уровень. Возбуждение от этих рецепторов идет к сосудодвигательному центру, расположенному в продолговатом мозге, и тормозит его работу. От центра по симпатическим нервам к сосудам и сердцу начинает поступать более слабое возбуждение, чем раньше, и кровеносные сосуды расширяются, а сердце ослабляет свою работу. Вследствие этих изменений кровяное давление снижается. А если давление почему-либо упало ниже нормы, то раздражение рецепторов прекращается совсем и сосудо-двигательный центр, не получая тормозных влияний от рецепторов, усиливает свою деятельность: посылает к сердцу и сосудам больше нервных импульсов в секунду, сосуды суживаются, сердце сокращается, чаще и сильнее, кровяное давление повышается.

    Гигиена сердечной деятельности

    Нормальная деятельность человеческого организма возможна лишь при наличии хорошо развитой сердечно-сосудистой системы. Скорость кровотока будет определять степень кровоснабжения органов и тканей и скорость удаления продуктов жизнедеятельности. При физической работе потребность органов в кислороде возрастает одновременно с усилением и учащением сердечных сокращений. Такую работу может обеспечить только сильная сердечная мышца. Чтобы быть выносливым к разнообразной трудовой деятельности, важно тренировать сердце, увеличивать силу его мышцы.

    Физический труд, физкультура развивают сердечную мышцу. Для обеспечения нормальной функции сердечно-сосудистой системы человек должен начинать свой день с утренней зарядки, особенно люди, профессии которых не связаны с физическим трудом. Для обогащения крови кислородом физические упражнения лучше выполнять на свежем воздухе.

    Необходимо помнить, что чрезмерные физические и психические напряжения могут вызвать нарушение нормальной работы сердца, его заболевания. Особенно вредное влияние на сердечно-сосудистую систему оказывают алкоголь, никотин, наркотики. Алкоголь и никотин отравляют сердечную мышцу и нервную систему, вызывают резкие нарушения регуляции сосудистого тонуса и деятельности сердца. Они ведут к развитию тяжелых заболеваний сердечно-сосудистой системы и могут стать причиной внезапной смерти. У курящих и употребляющих алкоголь молодых людей чаще, чем у других, возникают спазмы сосудов сердца, вызывающие тяжелые сердечные приступы, иногда и смерть.

    Первая помощь при ранениях и кровотечениях

    Травмы часто сопровождаются кровотечением. Различают капиллярное, венозное и артериальное кровотечения.

    Капиллярное кровотечение возникает даже при незначительном ранении и сопровождается медленным вытеканием крови из раны. Такую рану следует обработать раствором бриллиантового зеленого (зеленкой) для обеззараживания и наложить чистую марлевую повязку. Повязка останавливает кровотечение, способствует образованию тромба и не дает возможности микробам попасть в рану.

    Венозное кровотечение характеризуется значительно большей скоростью вытекания крови. Вытекающая кровь имеет темный цвет. Для остановки кровотечения необходимо наложить тугую повязку ниже раны, т. е. дальше от сердца. После остановки кровотечения рану обрабатывают дезинфицирующим средством (3% р-р перекиси водорода, водка), перевязывают стерильной давящей повязкой.

    При артериальном кровотечении из раны фонтанирует алая кровь. Это наиболее опасное кровотечение. При повреждении артерии конечности нужно поднять конечность как можно выше, согнуть ее и прижать пальцем раненную артерию в том месте, где она близко подходит к поверхности тела. Необходимо также выше места ранения, т. е. ближе к сердцу, наложить резиновый жгут (можно использовать для этого бинт, веревку) и туго его затянуть, чтобы полностью остановить кровотечение. Жгут нельзя держать затянутым более 2 ч. При его наложении необходимо прикрепить записку, в которой следует указать время наложения жгута.

    Следует помнить, что венозное, а еще в большей степени артериальное кровотечение может привести к значительной потере крови и даже к смерти. Поэтому при ранении необходимо как можно скорее остановить кровотечение, а затем доставить пострадавшего в больницу. Сильная боль или испуг могут привести к тому, что человек потеряет сознание. Потеря сознания (обморок) является следствием торможения сосудодвигательного центра, падения кровяного давления и недостаточного снабжения головного мозга кровью. Потерявшему сознание необходимо дать понюхать какое-нибудь нетоксичное с сильным запахом вещество (например, нашатырный спирт), смочить лицо холодной водой или слегка похлопать его по щекам. При раздражении обонятельных или кожных рецепторов возбуждение от них поступает в головной мозг и снимает торможение сосудодвигательного центра. Кровяное давление повышается, головной мозг получает достаточное питание, и сознание возвращается.



    Похожие публикации