Микроскоп гука, первый микроскоп. История создания микроскопа и его устройство Простейшие под микроскопом

До изобретения микроскопа самое маленькое, что люди могли видеть, было примерно такой же величины, как и человеческий волос. После изобретения микроскопа примерно в 1590 году мы внезапно узнали, что существует ещё удивительный микромир живых существ везде вокруг нас.

Правда до конца непонятно, кому стоит отдать лавры создания микроскопа. Некоторые учёные-историки утверждают, что это был Ханс Липперсгей, который известен за подачу первого патента на телескоп. Другие свидетельства указывают на Ханса и Захария Янссенов, отца и сына, настоящей команды изобретателей-энтузиастов, живших в том же городе, что и Липперсгей.

Липперсгей или Янссены?

Ханс Липперсгей родился в Везеле в Германии в 1570 году, но позже переехал в Голландию, которая затем стала местом инноваций в области искусства и науки, а эта эпоха была названа «Золотой век Голландии». Липперсгей поселился в Миддельбурге, где он изобрёл очки, бинокль и некоторые из самых ранних микроскопов и телескопов.

В Миддельбурге жили Ганс и Захарий Янссены. Часть историков приписывает изобретение микроскопа именно Янссенам, благодаря письмам голландского дипломата Уильяма Бореэля.

В 1650-х годах Бореэль написал письмо врачу французского короля, в котором он описал микроскоп. В своем письме Бореэль сказал, что Захарий Янссен начал писать ему о микроскопе в начале 1590-х годов, хотя Бореэль сам увидел микроскоп спустя годы. Некоторые историки утверждают, что Ханс Янссен помог построить микроскоп, поскольку Захария был подростком в 1590-х годах.

Ранние микроскопы

Ранние микроскопы Янссена были составными микроскопами, в которых использовались по меньшей мере две линзы. Линза объектива расположена близко к объекту и создает изображение, которое подбирается и увеличивается еще дальше второй линзой, называемой окуляром.

Музей Мидделбурга имеет один из первых микроскопов Янссена, датированный 1595 годом. Он имел три скользящих трубки для разных объективов без штатива и был способен увеличивать в три-девять раз истинные размеры объекта. Новости о микроскопах быстро распространились по всей Европе.

Галилео Галилей вскоре улучшил конструкцию сложного микроскопа в 1609 году. Галилей назвал свое устройство occhiolino или «маленький глаз».

Английский ученый Роберт Гук также улучшил микроскоп и исследовал структуру снежинок, блох, вшей и растений. Гук исследовал структуру пробкового дерева и придумал термин «клетка» из латинского cella, что означает «небольшая комната», потому что он сравнивал клетки, которые он видел у пробкового дерева, с небольшими комнатами, в которых жили монахи. В 1665 году он подробно описал свои наблюдения в книге «Микрография».

Микроскоп Гука около 1670-го года

Ранние составные микроскопы обеспечивали куда большее увеличение, чем микроскопы с одной линзой. Однако при этом они сильнее искажали изображение объекта. Голландский ученый Антуан ван Левенгук разработал мощные однообъективные микроскопы в 1670-х годах. Используя своё изобретение, он первым описал сперматозоиды собак и людей. Он также изучал дрожжи, эритроциты, бактерии из рта и простейших. Микроскопы Левенгука с одним объективом могут увеличивать в 270 раз фактические размеры рассматриваемого объекта. После ряда улучшений в 1830-х годах данный тип микроскопов стал очень популярным.

Ученые также разрабатывали новые способы подготовки и окраски образцов. В 1882 году немецкий врач Роберт Кох представил свое открытие микробактерии туберкулёза, бацилл, ответственных за туберкулез. Кох продолжил использовать свою методику окраски, чтобы изолировать бактерии, ответственные за холеру.

Самые лучшие микроскопы приближались к пределу увеличительной способности к началу 20-го века. Традиционный оптический (световой) микроскоп не способен увеличивать объекты, размер которых меньше длины волны видимого света. Но в 1931 году был преодолён этот теоретический барьер с помощью создания электронного микроскопа двумя учеными из Германии Эрнстом Руска и Максом Кноллом

Микроскопы развиваются

Эрнст Руска родился последним из пяти детей в Рождество 1906 года в Гейдельберге, Германия. Он изучал электронику в Техническом колледже в Мюнхене и продолжил изучать высоковольтные и вакуумные технологии в Техническом колледже в Берлине. Именно там Руска и его советник, доктор Макс Кнолл, сначала изобрели «линзу» магнитного поля и электрического тока. В 1933 году учёные смогли построить электронный микроскоп, который сумел превзойти предел увеличения светового микроскопа.

В 1986 году Эрнст был награждён Нобелевской премией по физике за своё изобретение. Увеличение разрешения электронного микроскопа достигалось за счёт того, что длина волны электрона была ещё меньше, чем длина волны видимого света, особенно при ускорении электронов в вакууме.

В XX веке развитие электронных и световых микроскопов не останавливалось. Сегодня лаборатории используют различные флуоресцентные метки, а также поляризованные фильтры для изучения образцов или использовать компьютеры для обработки изображений, которые не видны человеческому глазу. Имеются отражающие микроскопы, фазово-контрастные микроскопы, конфокальные микроскопы, а также ультрафиолетовые микроскопы. Современные микроскопы могут даже изображать один атом.


Открытие Галлилео Галлилея

Однажды Галилей соорудил очень длинную подзорную трубу. Дело происходило днем. Закончив работу, он навел трубу на окно, чтобы на свету проверить чистоту линз. Прильнув к окуляру, Галилей оторопел: все поле зрения занимала какая-то серая искрящаяся масса. Труба немного покачнулась, и ученый увидел огромную голову с выпуклыми черными глазами по бокам. У чудовища было черное, с зеленым отливом туловище, шесть коленчатых ног… Да ведь это … муха! Отняв трубу от глаза, Галилей убедился: на подоконнике действительно сидела муха.

Так появился на свет микроскоп - состоящий из двух линз прибор для увеличения изображения маленьких предметов. Свое название - «микроскопиум» - он получил от члена «Академиа деи линчеи» («академии рысьеглазых»)

И. Фабера в 1625 г. Это было научное общество, которое, кроме прочего, одобряло и поддерживало применение оптических приборов в науке.

А сам Галилей в 1624 г. вставил в микроскоп более короткофокусные (более выпуклые) линзы, благодаря чему труба стала короче.


Роберт Гук

Следующая страница в истории микроскопа связана с именем Роберта Гука. Это был очень одаренный человек и талантливый ученый. По окончании Оксфордского университета в 1657 г. Гук стал помощником Роберта Бойля. Это была отличная школа у одного из крупнейших ученых того времени. В 1663 г. Гук уже работал секретарем и демонстратором опытов Английского Королевского общества (академии наук). Когда там стало известно о микроскопе, Гуку поручили провести наблюдения на этом приборе. Имевшийся в его распоряжении микроскоп мастера Дреббеля являл собой полуметровую позолоченную трубу, расположенную строго вертикально. Работать приходилось в неудобной позе - изогнувшись дугой.


Роберт Гук

Прежде всего Гук сделал трубу - тубус - наклонной. Чтобы не зависеть от солнечных дней, которых в Англии бывает немного, он установил перед прибором масляную лампу оригинальной конструкции. Однако солнце светило все же гораздо ярче. Поэтому пришла мысль лучи света от лампы усилить, сконцентрировать. Так появилось очередное изобретение Гука - большой стеклянный шар, наполненный водой, а за ним специальная линза. Такая оптическая система в сотни раз усиливала яркость освещения.


Роберт Гук

Когда микроскоп был готов, Гук принялся за наблюдения. Их результаты он описал в своей книге «Микрография», изданной в 1665 г. За 300 лет она переиздавалась десятки раз. Помимо описаний, она содержала замечательные иллюстрации - гравюры самого Гука.


Открытие клетки Р.Гуком

Особый интерес в ней представляет наблюдение № 17 - «О схематизме, или строении пробки и о клетках и порах некоторых других пустых тел». Гук так описывает срез обыкновенной пробки: «Вся она перфорированная и пористая, подобно сотам, но поры ее неправильной формы, и в этом отношении она напоминает соты… Далее, эти поры, или клетки, неглубоки, но состоят из множества ячеек, разделенных перегородками».

В этом наблюдении бросается в глаза слово «клетка». Так Гук назвал то, что и сейчас называется клетками, например, клетки растений. В те времена люди не имели об этом ни малейшего представления. Гук первым наблюдал их и дал название, оставшееся за ними навсегда. Это было открытие громадной важности.


Антони ван Левенгук

Вскоре после Гука начал вести свои наблюдения голландец Антони ван Лсвенгук. Это была

интересная личность - он торговал тканями и зонтиками, но не получил никакого научного образования. Зато у него был пытливый ум, наблюдательность, настойчивость и добросовестность. Линзы, которые он сам шлифовал, увеличивали предмет в 200-300 раз, то есть в 60 раз лучше применявшихся тогда приборов. Все свои наблюдения он излагал в письмах, которые аккуратно посылал в Лондонское королевское общество. В одном из своих писем он сообщил об открытии мельчайших живых существ - анималькул, как Левенгук их назвал. Оказалось, что они присутствуют повсюду-в земле, растениях, теле животных. Это событие произвело революцию в науке - были открыты микроорганизмы.


Антони ван Левенгук

В 1698 г. Антони ван Левенгук встретился с российским императором Петром I и продемонстрировал ему свой микроскоп и анималькул. Император был так заинтересован всем, что он увидел и что объяснил ему голландский ученый, что закупил для России микроскопы голландских мастеров. Их можно увидеть в Кунсткамере в Петербурге.


Оптическая микроскопия

Теория получения изображения с помощью линз может быть представлена с точки зрения либо геометрической, либо физической оптики. Геометрическая оптика хорошо объясняет фокусирование и аберрацию, однако для понимания, почему изображение не совсем четкое и как получается контрастность, необходимо привлечь физическую оптику. В геометрической оптике существует два правила, которые следует постоянно помнить: 1) свет распространяется по прямой и 2) луч отклоняется от прямой (преломляется) на границе раздела между двумя прозрачными средами.



Объектив

Объективы микроскопов, как правило, тщательно стандартизируются по увеличению NA. Обычно NA увеличивается с уменьшением фокусного расстояния, поскольку увеличение растет с уменьшением диаметра линз


Окуляр

Окуляры Основная функция окуляра состоит в передаче изображения от объектива глазу. Существуют разнообразные системы окуляров: Рамсдена, Гюйгенса, Кельнера и компенсирующие. Три первых типа взаимозаменяемы и отличаются только способом нанесения сеток, указателей и других точек отсчета. Компенсирующий окуляр разработан для коррекции хроматической аберрации.

Регулировка микроскопа

Для подготовки микроскопа к работе необходимо провести следующую регулировку: 1) источник света и все его компоненты должны быть отцентрированы по оптической оси прибора; 2) объектив необходимо сфокусировать и 3) требуется отрегулировать освещение. В большинстве обычных (стандартных) микроскопов конденсор, объектив и окуляр коаксиальны, поэтому центрировать требуется только источник света. Это достигается путем фокусировки на микроскопном стекле, удаления окуляра и перемещения источника света с помощью регулировочного винта до тех пор, пока свет (при наблюдении в тубус) не будет находиться в центре объектива. Если регулируется и установка по центру конденсора, то конденсор вначале вынимают, источник света центрируют, как описано выше, затем конденсор ставят на место и с помощью регулировочного винта центрируют по источнику света. Затем конденсор фокусируют на объекте для критического освещения Для того чтобы избежать влияния рассеянного и отраженного света, полевую диафрагму следует уменьшить так, чтобы освещен был только объект. Если интенсивность освещения мешает удобному наблюдению, то ее можно уменьшить. Для уменьшения интенсивности ни в коем случае нельзя изменять апертуры, для этого либо вводят перед источником света нейтральные плотные фильтры, либо уменьшают напряжение, подаваемое на источник.


Контраст

Чтобы объект был видимым, его изображение должно отличаться по интенсивности от окружающего фона. Различие в интенсивно-стях объекта и фона называется контрастом. К сожалению, большинство биологических образцов (клетки и их компоненты) прозрачны, т. е. их контраст близок к нулю. В прошлом для решения этой проблемы образцы окрашивали, прибавляя окрашенные вещества, которые реагировали с определенными компонентами клеток.

Изготовление микропрепаратов

Изготовление срезов препаратов Как правило, толщина кусочков материала слишком велика, чтобы сквозь них могло пройти достаточное для исследования под микроскопом количество света. Обычно приходится срезать очень тонкий слой исследуемого материала, т. е. готовить срезы. Срезы можно делать бритвой или на микротоме. Вручную срезы готовятся с помощью остро отточенной бритвы. Для работы на обычном микроскопе срезы должны быть толщиной 8-12 мкм. Ткань закрепляют между двумя кусочками сердцевины бузины. Бритву смачивают жидкостью, в которой хранилась ткань; срез делают через бузину и ткань, причем бритву держат горизонтально и двигают ее к себе медленным скользящим движением, направленным чуть вкось. Быстро сделав несколько срезов, следует выбрать из них самый тонкий, содержащий характерные участки ткани. Срез с ткани, залитой в ту или иную среду, можно сделать на микротоме. Для светового микроскопа срезы толщиной в несколько микрометров можно сделать с залитой в парафин ткани с помощью специального стального ножа. На ультратоме изготавливают чрезвычайно тонкие срезы (20-100 нм) для электронного микроскопа. В этом случае необходим алмазный или стеклянный нож. Срезы для светового микроскопа можно приготовить, не заливая материал в среду; для этого используют замораживающий микротом. В процессе приготовления замороженного среза образец сохраняется в замороженном твердом состоянии.


Простейшие под микроскопом

Многих простейших вы можете увидеть своими глазами в поле зрения под микроскопом в любое время года. Чтобы иметь для наблюдения живых простейших, необходимо заранее заготовить питательную среду, в которой они могли бы развиваться продолжительное время. Для этого в 2-3 стеклянные банки накладывают слой (толщиной 2 см) нарезанных листьев или сенной трухи, а сверху наливают (13 банки) дождевую или водопроводную воду. Банки покрывают стеклом и ставят на окно, затеняя от прямых солнечных лучей. Через 3-4 суток заливают водой, взятой из стоячего водоема (пруда, канавы), на дне которого находится гниющая растительность (трава, листья, ветки). С водой следует захватить и немного ила со дна. Через несколько дней в сосудах появится пленка, отливающая металлическим блеском. Просматривая под микроскопом капли воды, можно убедиться, какими видами простейших богата вода из банок. При таком разведении простейших сначала появляются разные виды мелких инфузорий, затем амебы и, наконец (через 15 суток), инфузории-туфельки.


Анализ крови

Микроскоп давно стал незаменимым помощником человека во многих сферах. В объектив прибора можно увидеть то, что не видно невооруженным глазом. Интереснейший объект для исследований представляет собой кровь. Под микроскопом можно рассмотреть основные элементы состава крови человека: плазму и форменные элементы.

Впервые состав крови человека исследовал врач - итальянец Марчелло Мальпиги. Он принял плавающие в плазме форменные элементы за жировые шарики. Клетки крови еще не раз называли то воздушными шариками, то животными, принимая их за разумных существ. Термин «кровяные клетки» или «кровяные шарики» ввел в научный обиход Антоний Левенгук. Кровь под микроскопом – это своеобразное зеркало состояния человеческого организма.


Изобретатель : Захариус Йансен
Страна : Голландия
Время изобретения : 1595 г.

Сегодня трудно представить себе научную деятельность человека без микроскопа. Микроскоп широко применяется в большинстве лабораторий медицины и биологии, геологии и материаловедения.

Полученные с помощью микроскопа результаты необходимы при постановке точного диагноза, при контроле над ходом лечения. С использованием микроскопа происходит разработка и внедрение новых препаратов, делаются научные открытия.

Микроскоп (от греческого mikros — малый и skopeo — смотрю) — оптический прибор для получения увеличенного изображения мелких объектов и их деталей, не видимых невооруженным глазом.

Глаз человека способен различать детали объекта, отстоящие друг от друга не менее чем на 0,08 мм. С помощью светового микроскопа можно видеть детали, расстояние между которыми составляет до 0,2 мкм. Электронный микроскоп позволяет получить разрешение до 0,1-0,01 нм.

Изобретение микроскопа, столь важного для всей науки прибора обусловлено, прежде всего, влиянием развития оптики. Некоторые оптические свойства изогнутых поверхностей были известны еще Евклиду (300 лет до н.э.) и Птоломею (127-151 гг.), однако их увеличительная способность не нашла практического применения. В связи с этим первые очки были изобретены Сальвинио дели Арлеати в Италии только в 1285 г. В 16 веке Леонардо да Винчи и Мауролико показали, что малые объекты лучше изучать с помощью лупы.

Первый микроскоп был создан лишь в 1595 году Захариусом Йансеном (Z. Jansen). Изобретение заключалось в том, что Захариус Йансен смонтировал две выпуклые линзы внутри одной трубки, тем самым, заложив основы для создания сложных микроскопов. Фокусировка на исследуемом объекте достигалось за счет выдвижного тубуса. Увеличение микроскопа составляло от 3 до 10 крат. И это был настоящий прорыв в области микроскопии! Каждый свой следующий микроскоп он значительно совершенствовал.

В этот период (XVI в.) датские, английские и итальянские исследовательские приборы постепенно начали свое развитие, закладывая фундамент современной микроскопии.

Быстрое распространение и совершенствование микроскопов началось после того, как Галилей (G. Galilei), совершенствуя сконструированную им , стал использовать ее как своеобразный микроскоп (1609-1610), изменяя расстояние между объективом и окуляром.

Позднее, в 1624 г., добившись изготовления более короткофокусных линз, Галилей значительно уменьшил габариты своего микроскопа.

В 1625 г. членом Римской «Академии зорких» («Akudemia dei lincei») И. Фабером был предложен термин «микроскоп». Первые успехи, связанные с применением микроскопа в научных биологических исследованиях, были достигнуты Гуком (R. Hooke), который первым описал растительную клетку (около 1665 г.). В своей книге «Micrographia» Гук описал устройство микроскопа.

В 1681 г. Лондонское королевское общество на своем заседании подробно обсуждало своеобразное положение. Голландец Левенгук (A. van Leenwenhoek) описывал изумительные чудеса, которые открывал своим микроскопом в капле воды, в настое перца, в иле реки, в дупле собственного зуба. Левенгук с помощью микроскопа обнаружил и зарисовал сперматозоиды различных простейших, детали строения костной ткани (1673-1677). Он писал:»С величайшим изумлением я увидел в капле великое множество зверюшек, оживленно двигающихся во всех направлениях, как щука в воде. Самое мелкое из этих крошечных животных в тысячу раз меньше глаза взрослой вши.»

Лучшие лупы Левенгука увеличивали в 270 раз. С ними он увидел впервые кровеносные тельца, движение крови в капиллярных сосудах хвоста головастика, полосатость мускулов. Он открыл инфузории. Он впервые погрузился в мир микроскопических одноклеточных водорослей, где лежит граница между животным и растением; где движущееся животное, как зеленое растение, обладает хлорофиллом и питается, поглощая свет; где растение, еще прикрепленное к субстрату, потеряло хлорофилл и заглатывает бактерии. Наконец, он видел даже бактерии и в великом разнообразии. Но, разумеется, тогда не было еще и отдаленной возможности понять ни значение бактерий для человека, ни смысла зеленого вещества — хлорофилла, ни границы между растением н животным.

Открывался новый мир живых существ, более разнообразный и бесконечно более оригинальный, чем видимый нами мир.

В 1668 г. Е. Дивини, присоединив к окуляру полевую линзу, создал окуляр современного типа. В 1673 г. Гавелий ввел микрометрический винт, а Гертель предложил под столик микроскопа поместить зеркало. Таким образом, микроскоп стали монтировать из тех основных деталей, которые входят в состав современного биологического микроскопа.

В середине 17 столетия Ньютон открыл сложный состав белого света и разложил его призмой. Рёмер доказал, что свет распространяется с конечной скоростью, и измерил ее. Ньютон высказал знаменитую гипотезу — неверную, как вам известно,- о том, что свет есть поток летящих частиц такой необычайной мелкости и частоты, что они проникают через прозрачные тела, как стекло через хрусталик глаза, и, поражая ретину ударами, производят физиологическое ощущение света. Гюйгенс впервые заговорил о волнообразной природе света и доказал, как естественно она объясняет и законы простого отражения и преломления, и законы двойного лучепреломления в исландском шпате. Мысли Гюйгенса и Ньютона встретились в резком контрасте. Таким образом, в XVII в. в остром споре действительно встала проблема о сущности света.

Как разгадка вопроса сущности света, так и усовершенствование микроскопа подвигались вперед медленно. Спор между идеями Ньютона и Гюйгенса продолжался целое столетие. К представлению о волновой природе света примкнул знаменитый Эйлер. Но решен был вопрос лишь через сто с лишним лет Френелем талантливым исследователем, какого знала наука.

Чем отличается поток распространяющихся волн — идея Гюйгенса — от потока несущихся мелких частиц — идея Ньютона? Двумя признаками:

1. Встретившись, волны могут взаимно уничтожиться, если горб одной ляжет на долину другой. Свет + свет, сложившись вместе, могут дать темноту. Это явление интерференции, это кольца Ньютона, непонятые самим Ньютоном; с потоками частиц этого быть не может. Два потока частиц — это всегда двойной поток, двойной свет.

2. Через отверстие поток частиц проходит прямо, не расходясь в стороны, а поток волн непременно расходится, рассеивается. Это дифракция.

Френель доказал теоретически, что расхождение во все стороны ничтожно, если волна мала, но все же и эту ничтожную дифракцию он обнаружил и измерил, а по ее величине определил длину волны света. Из явлений интерференции, которые так хорошо известны оптикам, полирующим до «одного цвета», до «двух полос», он также измерил длину волны — это полмикрона (половина тысячной доли миллиметра). И отсюда стали неоспоримыми волновая теория и исключительная тонкость и острота проникновения в сущность живого вещества. С тех пор все мы в разных модификациях подтверждаем и применяем мысли Френеля. Но и не зная этих мыслей, можно усовершенствовать микроскоп.

Так это и было в XVIII столетии, хотя события развивались очень медленно. Сейчас трудно даже представить себе, что первая труба Галилея, в которую он наблюдал мир Юпитера, и микроскоп Левенгука были простыми неахроматическими линзами.

Огромным препятствием в деле ахроматизации было отсутствие хорошего флинта. Как известно, ахроматизация требует двух стекол: крона и флинта. Последний представляет стекло, в котором одной из основных частей является тяжелая окись свинца, обладающая непропорционально большой дисперсией.

В 1824 г. громадный успех микроскопа дала простая практическая идея Саллига, воспроизведенная французской фирмой Шевалье. Объектив, раньше состоявший из одной линзы, расчленен на части, его начали изготовлять из многих ахроматических линз. Так умножено число параметров, дана возможность исправления ошибок системы, и стало впервые возможным говорить о настоящих больших увеличениях — в 500 и даже 1000 раз. Граница предельного видения передвинулась от двух к одному микрону. Далеко позади оставлен микроскоп Левенгука.

В 70-х годах 19 века победоносное шествие микроскопии связано с именем немецкого физика-оптика и астронома Эрнста Карла Аббе (Ernst Karl Abbe).

Достигнуто было следующее:

Во-первых, предельное разрешение передвинулось от полумикрона до одной десятой микрона.

Во-вторых, в построении микроскопа вместо грубой эмпирики введена высокая научность.

В-третьих, наконец, показаны пределы возможного с микроскопом, и эти пределы завоеваны.

Сформирован штаб ученых, оптиков и вычислителей, работающих при фирме Цейсса. В капитальных сочинениях учениками Аббе дана теория микроскопа и вообще оптических приборов. Выработана система измерений, определяющих качество микроскопа.

Когда выяснилось, что существующие сорта стекол не могут удовлетворить научным требованиям, планомерно созданы были новые сорта. Вне тайн наследников Гинана — Пара-Мантуа (наследники Бонтана) в Париже и Ченсов в Бирмингаме — созданы были вновь методы плавки , и дело практической оптики развито до такой степени, что можно сказать: Аббе оптическим снаряжением армии почти выиграл мировую войну 1914-1918 гг.

Наконец, призвав на помощь основы волновой теории света, Аббе впервые ясно показал, что каждой остроте инструмента соответствует свой предел возможности. Тончайший же из всех инструментов — это длина волны. Нельзя видеть объекты меньше полудлины волны — утверждает дифракционная теория Аббе,- и нельзя получить изображения меньше полудлины волны, т.е. меньше 1/4 микрона. Или с разными ухищрениями иммерсии, когда мы применяем среды, в которых длина волны меньше,- до 0,1 микрона. Волна лимитирует нас. Правда, лимиты очень мелкие, но все же это лимиты для деятельности человека.

Физик-оптик чувствует, когда на пути световой волны вставлен объект толщиной в тысячную, в десятитысячную, в отдельных случаях даже в одну стотысячную длину волны. Сама длина волны измерена физиками с точностью до одной десятимиллионной своей величины. Можно ли думать, что оптики, соединившие свои усилия с цитологами, не овладеют той сотой длины волны, которая стоит в поставленной ими задаче? Найдутся десятки способов обойти предел, поставленный длиной волны.

Вам известен один из таких обходов, так называемый метод ультрамикроскопии. Если невидимые в микроскоп микробы расставлены далеко друг от друга, то можно осветить их сбоку ярким светом. Как бы они малы ни были, они заблестят, как звезда на темном фоне. Форму их нельзя определить, можно лишь констатировать их присутствие, но и это часто чрезвычайно важно. Этим методом широко пользуется бактериология.

Труды английского оптика Дж. Сиркса (1893) положили начало интерференционной микроскопии. В 1903 г. Р. Жигмонди (R. Zsigmondy) и Зидентопф (Н. Siedentopf) создали ультрамикроскоп, в 1911 г. Саньяком (М. Sagnac) был описан первый двухлучевой интерференционный микроскоп, в 1935 г. Зернике (F. Zernicke) предложил использовать метод фазового контраста для наблюдения в микроскопах прозрачных, слабо рассеивающих свет объектов. В середине XX в. был изобретен электронный микроскоп, в 1953 г. финским физиологом Вильской (A. Wilska) был изобретен аноптральный микроскоп.

Большой вклад в разработку проблем теоретической и прикладной оптики, усовершенствование оптических систем микроскопа и микроскопической техники внесли М.В. Ломоносов, И.П. Кулибин, Л.И. Мандельштам, Д.С. Рождественский, А.А. Лебедев, С.И. Вавилов, В.П. Линник, Д.Д. Максутов и др.

Микроскопы представляют собой оптические приборы, используемые для многократного увеличения рассматриваемых объектов. С помощью этих приборов определяются размеры, форма и строение мельчайших частиц, которые невозможно увидеть невооруженным глазом.

Микроскопы – незаменимое оптическое оборудование для таких сфер деятельности, как медицина, биология, ботаника, электроника и геология, так как на результатах исследований основываются научные открытия, ставится правильный диагноз и разрабатываются новые препараты.

Создатель телескопа Галилей в 1610 году обнаружил, что в сильно раздвинутом состоянии его зрительная труба позволяет сильно увеличить мелкие предметы.

Рисунок 118. Первые микроскопы:Янсена,А. Левенгука, Роберта Гука

Его можно считать изобретателем микроскопа, состоящего из положительной и отрицательной линз. Более совершенным инструментом для наблюдения микроскопических предметов является простой микроскоп. Когда появились эти приборы, в точности неизвестно. В самом начале XVII века несколько таких микроскопов изготовил очковый мастер Захария Янсен из Миддельбурга.

Первые выдающиеся открытия были сделаны как раз с помощью простого микроскопа. В середине XVII века блестящих успехов добился голландский естествоиспытатель Антони Ван Левенгук. В течение многих лет Левенгук совершенствовался в изготовлении крохотных (иногда меньше 1 мм в диаметре) двояковыпуклых линзочек, которые он изготавливал из маленького стеклянного шарика, в свою очередь получавшегося в результате расплавления стеклянной палочки в пламени. Затем этот стеклянный шарик подвергался шлифовке на примитивном шлифовальном станке. На протяжении своей жизни Левенгук изготовил не менее 400 подобных микроскопов. Один из них, хранящийся в университетском музее в Утрехте, дает более чем 300-кратное увеличение, что для XVII века было огромным успехом.

В начале XVII века появились сложные микроскопы, составленные из двух линз. Изобретатель такого сложного микроскопа точно не известен, но многие факты говорят о том, что им был голландец Корнелий Дребель, живший в Лондоне и находившийся на службе у английского короля Иакова I. В сложном микроскопе было два стекла: одно - объектив - обращенное к предмету, другое - окуляр - обращенное к глазу наблюдателя. В первых микроскопах объективом служило двояковыпуклое стекло, дававшее действительное, увеличенное, но обратное изображение. Это изображение и рассматривалось при помощи окуляра, который играл, таким образом, роль лупы, но только лупа эта служила для увеличения не самого предмета, а его изображения. В1663 году микроскоп Дребеля был усовершенствован английским физиком Робертом Гуком, который ввел в него третью линзу, получившую название коллектива. Этот тип микроскопа приобрел большую популярность, и большинство микроскопов конца XVII - первой половины VIII века строились по его схеме.

На вопрос интересные факты о истории создании микроскопа заданный автором Николай лучший ответ это Сегодня трудно представить себе научную деятельность человека без микроскопа. Микроскоп широко применяется в большинстве лабораторий медицины и биологии, геологии и материаловедения.
Полученные с помощью микроскопа результаты необходимы при постановке точного диагноза, при контроле над ходом лечения. С использованием микроскопа происходит разработка и внедрение новых препаратов, делаются научные открытия.
Микроскоп - (от греческого mikros - малый и skopeo - смотрю) , оптический прибор для получения увеличенного изображения мелких объектов и их деталей, не видимых невооруженным глазом.
Глаз человека способен различать детали объекта, отстоящие друг от друга не менее чем на 0,08 мм. С помощью светового микроскопа можно видеть детали, расстояние между которыми составляет до 0,2 мкм. Электронный микроскоп позволяет получить разрешение до 0,1-0,01 нм.
Изобретение микроскопа, столь важного для всей науки прибора обусловлено, прежде всего, влиянием развития оптики. Некоторые оптические свойства изогнутых поверхностей были известны еще Евклиду (300 лет до н. э.) и Птоломею (127-151 гг.) , однако их увеличительная способность не нашла практического применения. В связи с этим первые очки были изобретены Сальвинио дели Арлеати в Италии только в 1285 г. В 16 веке Леонардо да Винчи и Мауролико показали, что малые объекты лучше изучать с помощью лупы.
Первый микроскоп был создан лишь в 1595 году Захариусом Йансеном (Z. Jansen). Изобретение заключалось в том, что Захариус Йансен смонтировал две выпуклые линзы внутри одной трубки, тем самым, заложив основы для создания сложных микроскопов. Фокусировка на исследуемом объекте достигалось за счет выдвижного тубуса. Увеличение микроскопа составляло от 3 до 10 крат. И это был настоящий прорыв в области микроскопии! Каждый свой следующий микроскоп он значительно совершенствовал.
В этот период (XVI в.) датские, английские и итальянские исследовательские приборы постепенно начали свое развитие, закладывая фундамент современной микроскопии.
Быстрое распространение и совершенствование микроскопов началось после того, как Галилей (G. Galilei), совершенствуя сконструированную им зрительную трубу, стал использовать ее как своеобразный микроскоп (1609-1610), изменяя расстояние между объективом и окуляром.
Позднее, в 1624 г. , добившись изготовления более короткофокусных линз, Галилей значительно уменьшил габариты своего микроскопа.
В 1625 г. членом Римской "Академии зорких" ("Akudemia dei lincei") И. Фабером был предложен термин "микроскоп". Первые успехи, связанные с применением микроскопа в научных биологических исследованиях, были достигнуты Гуком (R. Hooke), который первым описал растительную клетку (около 1665 г.) . В своей книге "Micrographia" Гук описал устройство микроскопа.
В 1681 г. Лондонское королевское общество в своем заседании подробно обсуждало своеобразное положение. Голландец Левенгук (A. van Leenwenhoek) описывал изумительные чудеса, которые открывал своим микроскопом в капле воды, в настое перца, в иле реки, в дупле собственного зуба. Левенгук с помощью микроскопа обнаружил и зарисовал сперматозоиды различных простейших, детали строения костной ткани (1673-1677).
"С величайшим изумлением я увидел в капле великое множество зверюшек, оживленно двигающихся во всех направлениях, как щука в воде. Самое мелкое из этих крошечных животных в тысячу раз меньше глаза взрослой вши. "

Источник:

Ответ от силосовать [новичек]
Первый микроскоп был сконструирован отнюдь не профессиональным ученым, а «любителем» , торговцем мануфактурой Антони Ван Левенгуком, жившим в Голландии в XVII веке. Именно этот пытливый самоучка первым взглянул через сделанный им самим прибор на капельку воды и увидел тысячи мельчайших существ, названных им латинским словом animalculus («маленькие звери») . За свою жизнь Левенгук успел описать более двухсот видов «зверушек» , а изучая тонкие срезы мяса, фруктов и овощей, он открыл клеточную структуру живой ткани. За заслуги перед наукой Левенгук в 1680 году был избран действительным членом Королевского общества, а чуть позже стал академиком и Французской Академии наук.



Похожие публикации