Интенсивность звуковой волны формула. Основные количественные характеристики звука

Февраль 18, 2016

Мир домашних развлечений довольно разнообразен и может включать в себя: просмотр кино на хорошей домашней кинотеатральной системе; увлекательный и захватывающий игровой процесс или прослушивание музыкальных композиций. Как правило, каждый находит что-то своё в этой области, или сочетает всё сразу. Но какими бы не были цели человека по организации своего досуга и в какую бы крайность не ударялись - все эти звенья прочно связаны одним простым и понятным словом - "звук". Действительно, во всех перечисленных случаях нас будет вести за ручку звуковое сопровождение. Но вопрос этот не так прост и тривиален, особенно в тех случаях, когда появляется желание добиться качественного звучания в помещении или любых других условиях. Для этого не всегда обязательно покупать дорогостоящие hi-fi или hi-end компоненты (хотя будет весьма кстати), а бывает достаточным хорошее знание физической теории, которая способна устранить большинство проблем, возникающих у всех, кто задался целью получить озвучку высокого качества.

Далее будет рассмотрена теория звука и акустики с точки зрения физики. В данном случае я постараюсь сделать это максимально доступно для понимания любого человека, который, возможно, далёк от знания физических законов или формул, но тем не менее страстно грезит воплощением мечты создания совершенной акустической системы. Я не берусь утверждать, что для достижения хороших результатов в этой области в домашних условиях (или в автомобиле, например) необходимо знать эти теории досканально, однако понимание основ позволит избежать множество глупых и абсурдных ошибок, а так же позволит достичь максимального эффекта звучания от системы любого уровня.

Общая теория звука и музыкальная терминология

Что же такое звук ? Это ощущение, которое воспринимает слуховой орган "ухо" (само по себе явление существует и без участия «уха» в процессе, но так проще для понимания), возникающее при возбуждении барабанной перепонки звуковой волной. Ухо в данном случае выступает в роли "приёмника" звуковых волн различной частоты.
Звуковая волна же представляет собой по сути последовательный ряд уплотнений и разряжений среды (чаще всего воздушной среды в обычных условиях) различной частоты. Природа звуковых волн колебательная, вызываемая и производимая вибрацией любых тел. Возникновение и распространение классической звуковой волны возможно в трёх упругих средах: газообразных, жидких и твёрдых. При возникновении звуковой волны в одном из этих типов пространства неизбежно возникают некоторые изменения в самой среде, например, изменение плотности или давления воздуха, перемещение частиц воздушных масс и т.д.

Поскольку звуковая волна имеет колебательную природу, то у неё имеется такая характеристика, как частота. Частота измеряется в герцах (в честь немецкого физика Генриха Рудольфа Герца), и обозначает количество колебаний за период времени, равный одной секунде. Т.е. например, частота 20 Гц обозначает цикл в 20 колебаний за одну секунду. От частоты звука зависит и субъективное понятие его высоты. Чем больше звуковых колебаний совершается за секунду, тем «выше» кажется звучание. У звуковой волны так же имеется ещё одна важнейшая характеристика, имеющая название - длина волны. Длиной волны принято считать расстояние, которое проходит звук определённой частоты за период, равный одной секунде. Для примера, длина волны самого низкого звука в слышимом диапазоне для человека частотой 20 Гц составляет 16,5 метров, а длина волны самого высокого звука 20000 Гц составляет 1,7 сантиметра.

Человеческое ухо устроено таким образом, что способно воспринимать волны только в ограниченном диапазоне, примерно 20 Гц - 20000 Гц (зависит от особенностей конкретного человека, кто-то способен слышать чуть больше, кто-то меньше). Таким образом, это не означает, что звуков ниже или выше этих частот не существует, просто человеческим ухом они не воспринимаются, выходя за границу слышимого диапазона. Звук выше слышимого диапазона называется ультразвуком , звук ниже слышимого диапазона называется инфразвуком . Некоторые животные способны воспринимать ультра и инфра звуки, некоторые даже используют этот диапазон для ориентирования в пространстве (летучие мыши, дельфины). В случае, если звук проходит через среду, которая напрямую не соприкасается с органом слуха человека, то такой звук может быть не слышим или сильно ослабленным в последствии.

В музыкальной терминологии звука существуют такие важные обозначения, как октава, тон и обертон звука. Октава означает интервал, в котором соотношение частот между звуками составляет 1 к 2. Октава обычно очень хорошо различима на слух, в то время как звуки в пределах этого интервала могут быть очень похожими друг на друга. Октавой также можно назвать звук, который делает вдвое больше колебаний, чем другой звук, в одинаковый временной период. Например, частота 800 Гц, есть ни что иное, как более высокая октава 400 Гц, а частота 400 Гц в свою очередь является следующей октавой звука частотой 200 Гц. Октава в свою очередь состоит из тонов и обертонов. Переменные колебания в гармонической звуковой волне одной частоты воспринимаются человеческим ухом как музыкальный тон . Колебания высокой частоты можно интерпретировать как звуки высокого тона, колебания низкой частоты – как звуки низкого тона. Человеческое ухо способно чётко отличать звуки с разницей в один тон (в диапазоне до 4000 Гц). Несмотря на это, в музыке используется крайне малое число тонов. Объясняется это из соображений принципа гармонической созвучности, всё основано на принципе октав.

Рассмотрим теорию музыкальных тонов на примере струны, натянутой определённым образом. Такая струна, в зависимости от силы натяжения, будет иметь "настройку" на какую-то одну конкретную частоту. При воздействии на эту струну чем-либо с одной определённой силой, что вызовет её колебания, стабильно будет наблюдаться какой-то один определенный тон звука, мы услышим искомую частоту настройки. Этот звук называется основным тоном. За основной тон в музыкальной сфере официально принята частота ноты "ля" первой октавы, равная 440 Гц. Однако, большинство музыкальных инструментов никогда не воспроизводят одни чистые основные тона, их неизбежно сопровождают призвуки, именуемые обертонами . Тут уместно вспомнить важное определение музыкальной акустики, понятие тембра звука. Тембр - это особенность музыкальных звуков, которые придают музыкальным инструментам и голосам их неповторимую узнаваемую специфику звучания, даже если сравнивать звуки одинаковой высоты и громкости. Тембр каждого музыкального инструмента зависит от распределения звуковой энергии по обертонам в момент появления звука.

Обертоны формируют специфическую окраску основного тона, по которой мы легко можем определить и узнать конкретный инструмент, а так же чётко отличить его звучание от другого инструмента. Обертоны бывают двух типов: гармонические и негармонические. Гармонические обертоны по определению кратны частоте основного тона. Напротив, если обертоны не кратны и заметно отклоняются от величин, то они называются негармоническими . В музыке практически исключается оперирование некратными обертонами, поэтому термин сводится к понятию "обертон", подразумевая под собой гармонический. У некоторых инструментов, например фортепиано, основной тон даже не успевает сформироваться, за короткий промежуток происходит нарастание звуковой энергии обертонов, а затем так же стремительно происходит спад. Многие инструменты создают так называемый эффект "переходного тона", когда энергия определённых обертонов максимальна в определённый момент времени, обычно в самом начале, но потом резко меняется и переходит к другим обертонам. Частотный диапазон каждого инструмента можно рассмотреть отдельно и он обычно ограничивается частотами основных тонов, который способен воспроизводить данный конкретный инструмент.

В теории звука также присутствует такое понятие как ШУМ. Шум - это любой звук, которой создаётся совокупностью несогласованных между собой источников. Всем хорошо знаком шум листвы деревьев, колышимой ветром и т.д.

От чего зависит громкость звука? Очевидно, что подобное явление напрямую зависит от количества энергии, переносимой звуковой волной. Для определения количественных показателей громкости, существует понятие - интенсивность звука. Интенсивность звука определяется как поток энергии, прошедший через какую-то площадь пространства (например, см2) за единицу времени (например, за секунду). При обычном разговоре интенсивность составляет примерно 9 или 10 Вт/см2. Человеческое ухо способно воспринимать звуки достаточно широкого диапазона чувствительности, при этом восприимчивость частот неоднородна в пределах звукового спектра. Так наилучшим образом воспринимается диапазон частот 1000 Гц - 4000 Гц, который наиболее широко охватывает человеческую речь.

Поскольку звуки столь сильно различаются по интенсивности, удобнее рассматривать её как логарифмическую величину и измерять в децибелах (в честь шотландского учёного Александра Грэма Белла). Нижний порог слуховой чувствительности человеческого уха составляет 0 Дб, верхний 120 Дб, он же ещё называется "болевой порог". Верхняя граница чувствительности так же воспринимается человеческим ухом не одинаково, а зависит от конкретной частоты. Звуки низких частот должны обладать гораздо бОльшей интенсивностью, чем высокие, чтобы вызвать болевой порог. Например, болевой порог на низкой частоте 31,5 Гц наступает при уровне силы звука 135 дБ, когда на частоте 2000 Гц ощущение боли появится при уже при 112 дБ. Имеется также понятие звукового давления, которое фактически расширяет привычное объяснение распространение звуковой волны в воздухе. Звуковое давление - это переменное избыточное давление, возникающее в упругой среде в результате прохождения через неё звуковой волны.

Волновая природа звука

Чтобы лучше понять систему возникновения звуковой волны, представим классический динамик, находящийся в трубе, наполненной воздухом. Если динамик совершит резкое движение вперёд, то воздух, находящийся в непосредственной близости диффузора на мгновение сжимается. После этого воздух расширится, толкая тем самым сжатую воздушную область вдоль по трубе.
Вот это волновое движение и будет впоследствии звуком, когда достигнет слухового органа и "возбудит" барабанную перепонку. При возникновении звуковой волны в газе создаётся избыточное давление, избыточная плотность и происходит перемещение частиц с постоянной скоростью. Про звуковые волны важно помнить то обстоятельство, что вещество не перемещается вместе со звуковой волной, а возникает лишь временное возмущение воздушных масс.

Если представить поршень, подвешенный в свободном пространстве на пружине и совершающий повторяющиеся движения "вперёд-назад", то такие колебания будут называться гармоническими или синусоидальными (если представить волну в виде графика, то получим в этом случае чистейшую синусойду с повторяющимися спадами и подъёмами). Если представить динамик в трубе (как и в примере, описанном выше), совершающий гармонические колебания, то в момент движения динамика "вперёд" получается известный уже эффект сжатия воздуха, а при движении динамика "назад" обратный эффект разряжения. В этом случае по трубе будет распространяться волна чередующихся сжатий и разрежений. Расстояние вдоль трубы между соседними максимумами или минимумами (фазами) будет называться длиной волны . Если частицы колеблются параллельно направлению распространения волны, то волна называется продольной . Если же они колеблются перпендикулярно направлению распространения, то волна называется поперечной . Обычно звуковые волны в газах и жидкостях – продольные, в твердых же телах возможно возникновение волн обоих типов. Поперечные волны в твердых телах возникают благодаря сопротивлению к изменению формы. Основная разница между этими двумя типами волн заключается в том, что поперечная волна обладает свойством поляризации (колебания происходят в определенной плоскости), а продольная – нет.

Скорость звука

Скорость звука напрямую зависит от характеристик среды, в которой он распространяется. Она определяется (зависима) двумя свойствами среды: упругостью и плотностью материала. Скорость звука в твёрдых телах соответственно напрямую зависит от типа материала и его свойств. Скорость в газовых средах зависит только от одного типа деформации среды: сжатие-разрежение. Изменение давления в звуковой волне происходит без теплообмена с окружающими частицами и носит название адиабатическое.
Скорость звука в газе зависит в основном от температуры - возрастает при повышении температуры и падает при понижении. Так же скорость звука в газообразной среде зависит от размеров и массы самих молекул газа, - чем масса и размер частиц меньше, тем "проводимость" волны больше и больше соответственно скорость.

В жидкой и твёрдой средах принцип распространения и скорость звука аналогичны тому, как волна распространяется в воздухе: путём сжатия-разряжения. Но в данных средах, помимо той же зависимости от температуры, достаточно важное значение имеет плотность среды и её состав/структура. Чем меньше плотность вещества, тем скорость звука выше и наоборот. Зависимость же от состава среды сложнее и определяется в каждом конкретном случае с учётом расположения и взаимодействия молекул/атомов.

Скорость звука в воздухе при t, °C 20: 343 м/с
Скорость звука в дистиллированной воде при t, °C 20: 1481 м/с
Скорость звука в стали при t, °C 20: 5000 м/с

Стоячие волны и интерференция

Когда динамик создаёт звуковые волны в ограниченном пространстве неизбежно возникает эффект отражения волн от границ. В результате этого чаще всего возникает эффект интерференции - когда две или более звуковых волн накладываются друг на друга. Особыми случаями явления интерференции являются образование: 1) Биений волн или 2) Стоячих волн. Биения волн - это случай, когда происходит сложение волн с близкими частотами и амплитудой. Картина возникновения биений: когда две похожие по частоте волны накладываются друг на друга. В какой-то момент времени при таком наложении, амплитудные пики могут совпадать "по фазе", а также могут совпадать и спады по "противофазе". Именно так и характеризуются биения звука. Важно помнить, что в отличие от стоячих волн, фазовые совпадения пиков происходят не постоянно, а через какие-то временные промежутки. На слух такая картина биений различается достаточно чётко, и слышится как периодическое нарастание и убывание громкости соответственно. Механизм возникновения этого эффекта предельно прост: в момент совпадения пиков громкость нарастает, в момент совпадения спадов громкость уменьшается.

Стоячие волны возникают в случае наложения двух волн одинаковой амлитуды, фазы и частоты, когда при "встрече" таких волн одна движется в прямом, а другая – в обратном направлении. В участке пространства (где образовалась стоячая волна) возникает картина наложения двух частотных амплитуд, с чередованием максимумов (т.н. пучностей) и минимумов (т.н. узлов). При возникновении этого явления крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения. В отличие от бегущих волн, в стоячей волне отсутствует перенос энергии вследствие того, что образующие эту волну прямая и обратная волны переносят энергию в равных количествах и в прямом и в противоположном направлениях. Для наглядного понимания возникновения стоячей волны, представим пример из домашней акустики. Допустим, у нас есть напольные акустические системы в некотором ограниченном пространстве (комнате). Заставив их играть какую-нибудь композицию с большим количеством баса, попробуем изменить местоположение слушателя в помещении. Таким образом слушатель, попав в зону минимума (вычитания) стоячей волны ощутит эффект того, что баса стало очень мало, а если слушатель попадает в зону максимума (сложения) частот, то получается обратный эффект существенного увеличения басовой области. При этом эффект наблюдается во всех октавах базовой частоты. Например, если базовая частота составляет 440 Гц, то явление "сложения" или "вычитания" будет наблюдаться также на частотах 880 Гц, 1760 Гц, 3520 Гц и т.д.

Явление резонанса

У большинства твёрдых тел имеется собственная частота резонанса. Понять этот эффект достаточно просто на примере обычной трубы, открытой только с одного конца. Представим ситуацию, что с другого конца трубы подсоединяется динамик, который может играть какую-то одну постоянную частоту, её также впоследствии можно менять. Так вот, у трубы имеется собственная частота резонанса, говоря простым языком - это частота, на которой труба "резонирует" или издаёт свой собственный звук. Если частота динамика (в результате регулировки) совпадёт с частотой резонанса трубы, то возникнет эффект увеличения громкости в несколько раз. Это происходит потому, что громкоговоритель возбуждает колебания воздушного столба в трубе со значительной амплитудой до тех пор, пока не найдётся та самая «резонансная частота» и произойдёт эффект сложения. Возникшее явление можно описать следующим образом: труба в этом примере "помогает" динамику, резонируя на конкретной частоте, их усилия складываются и "выливаются" в слышимый громкий эффект. На примере музыкальных инструментов легко прослеживается это явление, поскольку в конструкции большинства присутствуют элементы, называемые резонаторами. Нетрудно догадаться, что служит цели усилить определённую частоту или музыкальный тон. Для примера: корпус гитары с резонатором ввиде отверстия, сопрягаемого с объёмом; Конструкция трубки у флейты (и все трубы вообще); Циллиндрическая форма корпуса барабана, который сам по себе является резонатором определённой частоты.

Частотный спектр звука и АЧХ

Поскольку на практике практически не встречаются волны одной частоты, то возникает необходимость разложения всего звукового спектра слышимого диапазона на обертоны или гармоники. Для этих целей существуют графики, которые отображают зависимость относительной энергии звуковых колебаний от частоты. Такой график называется графиком частотного спектра звука. Частотный спектр звука бывает двух типов: дискретный и непрерывный. Дискретный график спектра отображает частоты по отдельности, разделённые пустыми промежутками. В непрерывном спектре присутствуют сразу все звуковые частоты.
В случае с музыкой или акустикой чаще всего используется обычный график Амплитудно-Частотой Характеристики (сокращённо "АЧХ"). На таком графике представлена зависимость амплитуды звуковых колебаний от частоты на протяжении всего спектра частот (20 Гц - 20 кГц). Глядя на такой график легко понять, например, сильные или слабые стороны конкретного динамика или акустической системы в целом, наиболее сильные участки энергетической отдачи, частотные спады и подъёмы, затухания, а так же проследить крутизну спада.

Распространение звуковых волн, фаза и противофаза

Процесс распространения звуковых волн происходит во всех направлениях от источника. Простейший пример для понимания этого явления: камешек, брошенный в воду.
От места, куда упал камень, начинают расходиться волны по поверхности воды во всех направлениях. Однако, представим ситуацию с использованием динамика в неком объёме, допустим закрытом ящике, который подключён к усилителю и воспроизводит какой-то музыкальный сигнал. Несложно заметить (особенно при условии, если подать мощный НЧ сигнал, например бас-бочку), что динамик совершает стремительное движение "вперёд", а потом такое же стремительное движение "назад". Остаётся понять, что когда динамик совершает движение вперёд, он излучает звуковую волну, которую мы слышим впоследствии. А вот что происходит, когда динамик совершает движение назад? А происходит парадоксально тоже самое, динамик совершает тот же звук, только распространяется он в нашем примере всецело в пределах объёма ящика, не выходя за его пределы (ящик закрыт). В целом, на приведённом выше примере можно наблюдать достаточно много интересных физических явлений, наиболее значимым из которых является понятие фазы.

Звуковая волна, которую динамик, находясь в объёме, излучает в направлении слушателя - находится "в фазе". Обратная же волна, которая уходит в объём ящика, будет соответственно противофазной. Остаётся только понять, что подразумевают эти понятия? Фаза сигнала – это уровень звукового давления в текущий момент времени в какой-то точке пространства. Фазу проще всего понять на примере воспроизведения музыкального материала обычной напольной стерео-парой домашних акустических систем. Представим, что две такие напольные колонки установлены в неком помещении и играют. Обе акустические системы в этом случае воспроизводят синхронный сигнал переменного звукового давления, притом звуковое давление одной колонки складывается со звуковым давлением другой колонки. Происходит подобный эффект за счёт синхронности воспроизведения сигнала левой и правой АС соответственно, другими словами, пики и спады волн, излучаемых левыми и правыми динамиками совпадают.

А теперь представим, что давления звука по-прежнему меняются одинаковым образом (не претерпели изменений), но только теперь противоположно друг другу. Подобное может произойти, если подключить одну акустическую систему из двух в обратной полярности ("+" кабель от усилителя к "-" клемме акустической системе, и "-" кабель от усилителя к "+" клемме акустической системы). В этом случае противоположный по направлению сигнал вызовет разницу давлений, которую можно представить в виде чисел следующим образом: левая акустическая система будет создавать давление "1 Па", а правая акустическая система будет создавать давление "минус 1 Па". В результате, суммарная громкость звука в точке размещения слушателя будет равна нулю. Это явление называется противофазой. Если рассматривать пример более детально для понимания, то получается, что два динамика, играющие "в фазе" - создают одинаковые области уплотнения и разряжения воздуха, чем фактически помогают друг другу. В случае же с идеализированной противофазой, область уплотнения воздушного пространства, созданная одним динамиком, будет сопровождаться областью разряжения воздушного пространства, созданной вторым динамиком. Выглядит это примерно, как явление взаимного синхронного гашения волн. Правда, на практике падения громкости до нуля не происходит, и мы услышим сильно искажённый и ослабленный звук.

Самым доступным образом можно описать это явление так: два сигнала с одинаковыми колебаниями (частотой), но сдвинутые по времени. Ввиду этого, удобнее представить эти явления смещения на примере обычных круглых стрелочных часов. Представим, что на стене висит несколько одинаковых круглых часов. Когда секундные стрелки этих часов бегут синхронно, на одних часах 30 секунд и на других 30, то это пример сигнала, который находится в фазе. Если же секундные стрелки бегут со смещением, но скорость по-прежнему одинакова, например, на одних часах 30 секунд, а на других 24 секунды, то это и есть классический пример смещения (сдвига) по фазе. Таким же образом фаза измеряется в градусах, в пределах виртуальной окружности. В этом случае, при смещении сигналов относительно друг друга на 180 градусов (половина периода), и получается классическая противофаза. Нередко на практике возникают незначительные смещения по фазе, которые так же можно определить в градусах и успешно устранить.

Волны бывают плоские и сферические. Плоский волновой фронт распространяется только в одном направлении и редко встречается на практике. Сферический волновой фронт представляет собой волны простого типа, которые исходят из одной точки и распространяется во всех направлениях. Звуковые волны обладают свойством дифракции , т.е. способностью огибать препятствия и объекты. Степень огибания зависит от отношения длины звуковой волны к размерам препятствия или отверстия. Дифракция возникает и в случае, когда на пути звука оказывается какое-либо препятствие. В этом случае возможны два варианта развития событий: 1) Если размеры препятствия намного больше длины волны, то звук отражается или поглощается (в зависимости от степени поглощения материала, толщины препятствия и т.д.), а позади препятствия формируется зона "акустической тени". 2) Если же размеры препятствия сравнимы с длиной волны или даже меньше её, тогда звук дифрагирует в какой-то мере во всех направлениях. Если звуковая волна при движении в одной среде попадает на границу раздела с другой средой (например воздушная среда с твёрдой средой), то может возникнуть три варианта развития событий: 1) волна отразится от поверхности раздела 2) волна может пройти в другую среду без изменения направления 3) волна может пройти в другую среду с изменением направления на границе, это называется "преломление волны".

Отношением избыточного давления звуковой волны к колебательной объёмной скорости называется волновое сопротивление. Говоря простыми словами, волновым сопротивлением среды можно назвать способность поглощать звуковые волны или "сопротивляться" им. Коэффициенты отражения и прохождения напрямую зависят от соотношения волновых сопротивлений двух сред. Волновое сопротивление в газовой среде гораздо ниже, чем в воде или твёрдых телах. Поэтому если звуковая волна в воздухе падает на твердый объект или на поверхность глубокой воды, то звук либо отражается от поверхности, либо поглощается в значительной мере. Зависит это от толщины поверхности (воды или твёрдого тела), на которую падает искомая звуковая волна. При низкой толщине твёрдой или жидкой среды, звуковые волны практически полностью "проходят", и наоборот, при большой толщине среды волны чаще отражается. В случае отражения звуковых волн, происходит этот процесс по хорошо известному физическому закону: "Угол падения равен углу отражения". В этом случае, когда волна из среды с меньшей плотностью попадает на границу со средой большей плотности - происходит явление рефракции . Оно заключается в изгибе (преломлении) звуковой волны после "встречи" с препятствием, и обязательно сопровождается изменением скорости. Рефракция зависит также от температуры среды, в которой происходит отражение.

В процессе распространения звуковых волн в пространстве неизбежно происходит снижение их интенсивности, можно сказать затухание волн и ослабление звука. На практике столкнуться с подобным эффектом достаточно просто: например, если два человека встанут в поле на некотором близком расстоянии (метр и ближе) и начнут что-то говорить друг другу. Если впоследствии увеличивать расстояние между людьми (если они начнут отдаляться друг от друга), тот же самый уровень разговорной громкости будет становиться всё менее и менее слышимым. Подобный пример наглядно демонстрирует явление снижения интенсивности звуковых волн. Почему это происходит? Причиной тому различные процессы теплообмена, молекулярного взаимодействия и внутреннего трения звуковых волн. Наиболее часто на практике происходит превращение звуковой энергии в тепловую. Подобные процессы неизбежно возникают в любой из 3-ёх сред распространения звука и их можно охарактеризовать как поглощение звуковых волн .

Интенсивность и степень поглощения звуковых волн зависит от многих факторов, таких как: давление и температура среды. Также поглощение зависит от конкретной частоты звука. При распространении звуковой волны в жидкостях или газах возникает эффект трения между разными частицами, которое называется вязкостью. В результате этого трения на молекулярном уровне и происходит процесс превращения волны из звуковой в тепловую. Другими словами, чем выше теплопроводность среды, тем меньше степень поглощения волн. Поглощение звука в газовых средах зависит ещё и от давления (атмосферное давление меняется с повышением высоты относительно уровня моря). Что касательно зависимости степени поглощения от частоты звука, то принимая во внимание вышеназванные зависимости вязкости и теплопроводности, поглощение звука тем выше, чем выше его частота. Для примера, при нормальной температуре и давлении, в воздухе поглощение волны частотой 5000 Гц составляет 3 Дб/км, а поглощение волны частотой 50000 Гц составит уже 300 Дб/м.

В твёрдых средах сохраняются все вышеназванные зависимости (теплопроводность и вязкость), однако к этому добавляется ещё несколько условий. Они связаны с молекулярной структурой твёрдых материалов, которая может быть разной, со своими неоднородностями. В зависимости от этого внутреннего твёрдого молекулярного строения, поглощение звуковых волн в данном случае может быть различным, и зависит от типа конкретного материала. При прохождении звука через твёрдое тело, волна претерпевает ряд преобразований и искажений, что чаще всего приводит к рассеиванию и поглощению звуковой энергии. На молекулярном уровне может возникнуть эффект дислокаций, когда звуковая волна вызывает смещение атомных плоскостей, которые затем возвращаются в исходное положение. Либо же, движение дислокаций приводит к столкновению с перпендикулярными им дислокациями или дефектами кристаллического строения, что вызывает их торможение и как следствие некоторое поглощение звуковой волны. Однако, звуковая волна может и резонировать с данными дефектами, что приведет к искажению исходной волны. Энергия звуковой волны в момент взаимодействия с элементами молекулярной структуры материала рассеивается в результате процессов внутреннего трения.

В я постараюсь разобрать особенности слухового восприятия человека и некоторые тонкости и особенности распространения звука.

Для периодич. звука усреднение производится либо за промежуток времени, большой по сравнению с периодом, либо за целое число периодов. Для плоской синусоидальной бегущей волны И. з. I равна:

В сферической бегущей волне И. з. обратно пропорциональна квадрату расстояния от источника. В стоячей волне I=0, т. е. потока звук. энергии в среднем нет.

И. з. измеряется в СИ в Вт/м2 (в системе ед. СГС - в эрг/(с см)2) И. з. оценивается также уровнем интенсивности по шкале ; число децибел N=10lg(I/I0), где I - интенсивность данного звука, I0=10-12 Вт/м2.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ИНТЕНСИВНОСТЬ ЗВУКА

(сила звука) - средняя по времени энергия, переносимая звуковой волной через единичную площадку, перпендикулярную к направлению распространения волны, в единицу времени. Для периодич. звука усреднение производится либо за промежуток времени, больший по сравнению с периодом, либо за целое число периодов. I=pv/2=p 2 /2rc = v 2 rc/2, где р - амплитуда звукового давления, v - амплитуда колебат. скорости частиц, r - плотность среды, с - звука в ней. В сферич. бегущей волне И. з. обратно пропорц. квадратурасстояния от источника. В стоячей волне I=0, т. е. потока звуковой энергии в среднем нет. И. з. в гармонич. плоской бегущей волне равна плотности энергии звуковой волны, умноженной на скорость звука. мощность излучателя, т. е. излучаемую , отнесённую к единице площади излучающей поверхности. В. А. Красилъников.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ИНТЕНСИВНОСТЬ ЗВУКА" в других словарях:

    - (абсолютная) величина, равная отношению потока звуковой энергии dP через поверхность, перпендикулярную направлению распространения звука, к площади dS этой поверхности: Единица измерения ватт на квадратный метр (Вт/м2). Для плоской волны… … Википедия

    - (от лат. intensio напряжение усиление), средняя по времени энергия, которую звуковая волна переносит в единицу времени через единицу площади поверхности, расположенной перпендикулярно к направлению распространения волны. Интенсивность звука… … Большой Энциклопедический словарь

    - (от лат. intensio напряжение, усиление), средняя по времени энергия, которую звуковая волна переносит в единицу времени через единицу площади поверхности, расположенной перпендикулярно к направлению распространения волны. Интенсивность звука… … Энциклопедический словарь

    интенсивность звука - Количество звуковой энергии, переносимое звуковой волной в единицу времени через единичную площадку, перпендикулярную к направлению распространения звука [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики… … Справочник технического переводчика

    - (от латинского intetisio напряжение, усиление), сила звука, поток энергии через единичную площадку, перпендикулярную направлению распространения звуковой волны. Авиация: Энциклопедия. М.: Большая Российская Энциклопедия. Главный редактор Г.П.… … Энциклопедия техники

    интенсивность звука - 3.3 интенсивность звука, Вт/м2 (sound intensity): Усредненное по времени значение мгновенной интенсивности в стационарном во времени звуковом поле. Примечания 1 Интенсивность звука вычисляют по формуле (2) где T интервал интегрирования, с; 2… … Словарь-справочник терминов нормативно-технической документации

    интенсивность звука - сила звука отношение падающей на поверхность звуковой мощности к площади этой поверхности. Определяется как амплитудами всех частотных составляющих, так и числом источников, звучащих одновременно. Интенсивность звука измеряется в Вт/м2 или… … Русский индекс к Англо-русскому словарь по музыкальной терминологии

    интенсивность звука - rus интенсивность (ж) звука, интенсивность (ж) шума eng noise intensity fra intensité (f) du bruit deu Lärmintensität (f) spa intensidad (f) del ruido rus интенсивность (ж) (сила) звука, громкость (ж) звука eng sound intensity fra intensité (f)… … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

    Сила звука, средняя по времени энергия, переносимая звуковой волной через единичную площадку, перпендикулярную к направлению распространения волны в единицу времени. Для периодического звука усреднение производится либо за промежуток… … Большая советская энциклопедия

    - [СИЛА ЗВУКА] количество звуковой энергии, переносимое звуковой волной в единицу времени через единичную площадку, перпендикулярную к направлению распространения звука (Болгарский язык; Български) интензивност на звука (Чешский язык; Čeština)… … Строительный словарь

Содержание статьи

ЗВУК И АКУСТИКА. Звук – это колебания, т.е. периодическое механическое возмущение в упругих средах – газообразных, жидких и твердых. Такое возмущение, представляющее собой некоторое физическое изменение в среде (например, изменение плотности или давления, смещение частиц), распространяется в ней в виде звуковой волны. Область физики, рассматривающая вопросы возникновения, распространения приема и обработки звуковых волн, называется акустикой. Звук может быть неслышимым, если его частота лежит за пределами чувствительности человеческого уха, или он распространяется в такой среде, как твердое тело, которая не может иметь прямого контакта с ухом, или же его энергия быстро рассеивается в среде. Таким образом, обычный для нас процесс восприятия звука – лишь одна сторона акустики.

ЗВУКОВЫЕ ВОЛНЫ

Рассмотрим длинную трубу, наполненную воздухом. С левого конца в нее вставлен плотно прилегающий к стенкам поршень (рис. 1). Если поршень резко двинуть вправо и остановить, то воздух, находящийся в непосредственной близости от него, на мгновение сожмется (рис. 1,а ). Затем сжатый воздух расширится, толкнув воздух, прилегающий к нему справа, и область сжатия, первоначально возникшая вблизи поршня, будет перемещаться по трубе с постоянной скоростью (рис. 1,б ). Эта волна сжатия и есть звуковая волна в газе.

Звуковая волна в газе характеризуется избыточным давлением, избыточной плотностью, смещением частиц и их скоростью. Для звуковых волн эти отклонения от равновесных значений всегда малы. Так, избыточное давление, связанное с волной, намного меньше статического давления газа. В противном случае мы имеем дело с другим явлением – ударной волной. В звуковой волне, соответствующей обычной речи, избыточное давление составляет лишь около одной миллионной атмосферного давления.

Важно то обстоятельство, что вещество не уносится звуковой волной. Волна представляет собой лишь проходящее по воздуху временное возмущение, по прохождении которого воздух возвращается в равновесное состояние.

Волновое движение, конечно, не является характерным только для звука: в форме волн распространяются свет и радиосигналы, и каждому знакомы волны на поверхности воды. Все типы волн математически описываются так называемым волновым уравнением.

Гармонические волны.

Волна в трубе на рис. 1 называется звуковым импульсом. Очень важный тип волны возбуждается, когда поршень колеблется туда-сюда подобно грузу, подвешенному на пружине. Такие колебания называются простыми гармоническими или синусоидальными, а возбуждаемая в этом случае волна – гармонической.

При простых гармонических колебаниях движение периодически повторяется. Промежуток времени между двумя одинаковыми состояниями движения называется периодом колебаний, а число полных периодов в секунду, – частотой колебаний. Обозначим период через Т , а частоту – через f ; тогда можно написать, что f = 1/T. Если, например, частота равна 50 периодам в секунду (50 Гц), то период равен 1/50 секунды.

Математически простые гармонические колебания описываются простой функцией. Смещение поршня при простых гармонических колебаниях для любого момента времени t можно записать в виде

Здесь d – смещение поршня из положения равновесия, а D – постоянный множитель, который равен максимальному значению величины d и называется амплитудой смещения.

Предположим, что поршень колеблется в соответствии с формулой гармонических колебаний. Тогда при движении его вправо возникает, как и прежде, сжатие, а при движении влево давление и плотность будут уменьшаться относительно своих равновесных значений. Возникает не сжатие, а разрежение газа. В этом случае вправо будет распространяться, как показано на рис. 2, волна чередующихся сжатий и разрежений. В каждый момент времени кривая распределения давления по длине трубы будет иметь вид синусоиды, и эта синусоида будет двигаться вправо со скоростью звука v . Расстояние вдоль трубы между одинаковыми фазами волны (например, между соседними максимумами) называется длиной волны. Ее принято обозначать греческой буквой l (лямбда). Длина волны l есть расстояние, проходимое волной за время Т . Поэтому l = Tv , или v = l f.

Продольные и поперечные волны.

Если частицы колеблются параллельно направлению распространения волны, то волна называется продольной. Если же они колеблются перпендикулярно направлению распространения, то волна называется поперечной. Звуковые волны в газах и жидкостях – продольные. В твердых же телах существуют волны обоих типов. Поперечная волна в твердом теле возможна благодаря его жесткости (сопротивлению к изменению формы).

Самая существенная разница между этими двумя типами волн заключается в том, что поперечная волна обладает свойством поляризации (колебания происходят в определенной плоскости), а продольная – нет. В некоторых явлениях, таких, как отражение и прохождение звука через кристаллы, многое зависит от направления смещения частиц, так же как и в случае световых волн.

Скорость звуковых волн.

Скорость звука – это характеристика среды, в которой распространяется волна. Она определяется двумя факторами: упругостью и плотностью материала. Упругие свойства твердых тел зависят от типа деформации. Так, упругие свойства металлического стержня неодинаковы при кручении, сжатии и изгибе. И соответствующие волновые колебания распространяются с разной скоростью.

Упругой называется среда, в которой деформация, будь то кручение, сжатие или изгиб, пропорциональна силе, вызывающей деформацию. Такие материалы подчиняются закону Гука:

Напряжение = C ґ Относительная деформация,

где С – модуль упругости, зависящий от материала и типа деформации.

Скорость звука v для данного типа упругой деформации дается выражением

где r – плотность материала (масса единицы объема).

Скорость звука в твердом стержне.

Длинный стержень можно растянуть или сжать силой, приложенной к концу. Пусть длина стержня равна L, прикладываемая растягивающая сила – F , а увеличение длины – D L . Величину D L /L будем называть относительной деформацией, а силу, приходящуюся на единицу площади поперечного сечения стержня, – напряжением. Таким образом, напряжение равно F /A , где А – площадь сечения стержня. В применении к такому стержню закон Гука имеет вид

где Y – модуль Юнга, т.е. модуль упругости стержня для растяжения или сжатия, характеризующий материал стержня. Модуль Юнга мал для легко растяжимых материалов, таких, как резина, и велик для жестких материалов, например для стали.

Если теперь ударом молотка по торцу стержня возбудить в нем волну сжатия, то она будет распространяться со скоростью , где r , как и прежде, – плотность материала, из которого изготовлен стержень. Значения скоростей волн для некоторых типовых материалов приведены в табл. 1.

Таблица 1. СКОРОСТЬ ЗВУКА ДЛЯ РАЗНЫХ ТИПОВ ВОЛН В ТВЕРДЫХ МАТЕРИАЛАХ

Материал

Продольные волны в протяженных твердых образцах (м/с)

Волны сдвига и кручения (м/с)

Волны сжатия в стержнях (м/с)

Алюминий
Латунь
Свинец
Железо
Серебро
Нержавеющая сталь
Флинтглас
Кронглас
Оргстекло
Полиэтилен
Полистирол

Рассмотренная волна в стержне является волной сжатия. Но ее нельзя считать строго продольной, так как со сжатием связано движение боковой поверхности стержня (рис. 3,а ).

В стержне возможны и два других типа волн – волна изгиба (рис. 3,б ) и волна кручения (рис. 3,в ). Деформациям изгиба соответствует волна, не являющаяся ни чисто продольной, ни чисто поперечной. Деформации же кручения, т.е. вращения вокруг оси стержня, дают чисто поперечную волну.

Скорость волны изгиба в стержне зависит от длины волны. Такую волну называют «дисперсионной».

Волны кручения в стержне – чисто поперечные и недисперсионные. Их скорость дается формулой

где m – модуль сдвига, характеризующий упругие свойства материала по отношению к сдвигу. Некоторые типичные скорости волн сдвига приведены в табл. 1.

Скорость в протяженных твердых средах.

В твердых средах большого объема, где влиянием границ можно пренебречь, возможны упругие волны двух типов: продольные и поперечные.

Деформация в продольной волне – это плоская деформация, т.е. одномерное сжатие (или разрежение) в направлении распространения волны. Деформация, соответствующая поперечной волне, – это сдвиговое смещение, перпендикулярное направлению распространения волны.

Скорость продольных волн в твердых материалах дается выражением

где C L – модуль упругости для простой плоской деформации. Он связан с модулем объемной деформации В (определение которого дается ниже) и модулем сдвига m материала соотношением C L = B + 4/3m . В табл. 1 приводятся значения скоростей продольных волн для различных твердых материалов.

Скорость волн сдвига в протяженных твердых средах та же, что и скорость волн кручения в стержне из того же материала. Поэтому она дается выражением . Ее значения для обычных твердых материалов даны в табл. 1.

Скорость в газах.

В газах возможен только один тип деформации: сжатие – разрежение. Соответствующий модуль упругости В называется модулем объемной деформации. Он определяется соотношением

–D P = B (D V /V ).

Здесь D P – изменение давления, D V /V – относительное изменение объема. Знак «минус» показывает, что при увеличении давления объем уменьшается.

Величина В зависит от того, изменяется или нет температура газа при сжатии. В случае звуковой волны можно показать, что давление изменяется очень быстро и теплота, выделяющаяся при сжатии, не успевает уходить из системы. Таким образом, изменение давления в звуковой волне происходит без теплообмена с окружающими частицами. Такое изменение называется адиабатическим. Установлено, что скорость звука в газе зависит только от температуры. При данной температуре скорость звука примерно одинакова для всех газов. При температуре 21,1° С скорость звука в сухом воздухе составляет 344,4 м/с и возрастает с повышением температуры.

Скорость в жидкостях.

Звуковые волны в жидкостях являются волнами сжатия – разрежения, как и в газах. Скорость дается той же формулой . Однако жидкость гораздо менее сжимаема, чем газ, и поэтому для нее во много раз больше величина В , больше и плотность r . Скорость звука в жидкостях ближе к скорости в твердых материалах, чем в газах. Она гораздо меньше, чем в газах, зависит от температуры. Например, скорость в пресной воде равна 1460 м/с при 15,6° С. В морской воде нормальной солености она при той же температуре составляет 1504 м/с. Скорость звука возрастает с повышением температуры воды и концентрации соли.

Стоячие волны.

Когда гармоническая волна возбуждается в ограниченном пространстве, так что она отражается от границ, возникают так называемые стоячие волны. Стоячая волна – это результат наложения двух волн, бегущих одна в прямом, а другая – в обратном направлении. Возникает не движущаяся в пространстве картина колебаний с чередованием пучностей и узлов. В пучностях отклонения колеблющихся частиц от их равновесных положений максимальны, а в узлах равны нулю.

Стоячие волны в струне.

В натянутой струне возникают поперечные волны, причем происходит смещение струны относительно ее первоначального, прямолинейного положения. При фотографировании волн в струне отчетливо видны узлы и пучности основного тона и обертонов.

Картина стоячих волн существенно облегчает анализ колебательных движений струны данной длины. Пусть имеется струна длиной L , закрепленная на концах. Любой вид колебаний такой струны может быть представлен как комбинация стоячих волн. Поскольку концы струны неподвижно закреплены, возможны только такие стоячие волны, которые имеют узлы в граничных точках. Самая низкая частота колебаний струны соответствует максимально возможной длине волны. Поскольку расстояние между узлами равно l /2, частота минимальна, когда длина струны равна половине длины волны, т.е. при l = 2L . Это так называемая основная мода колебаний струны. Соответствующая ей частота, называемая основной частотой или основным тоном, дается выражением f = v /2L , где v – скорость распространения волны вдоль струны.

Существует целая последовательность колебаний более высоких частот, которые соответствуют стоячим волнам с бóльшим числом узлов. Следующая более высокая частота, которая называется второй гармоникой или первым обертоном, дается выражением

f = v /L .

Последовательность гармоник выражается формулой f = nv /2L , где n = 1, 2, 3, и т.д. Это т.н. собственные частоты колебаний струны. Они возрастают пропорционально числам натурального ряда: высшие гармоники в 2, 3, 4... и т.д. раз больше частоты основного колебания. Такой ряд звуков называется натуральным или гармоническим звукорядом.

Все это имеет важное значение в музыкальной акустике, о чем подробнее будет сказано ниже. Пока же отметим, что в звуке, производимом струной, присутствуют все собственные частоты. Относительный вклад каждой из них зависит от того, в какой точке возбуждены колебания струны. Если, например, ущипнуть струну посередине, то сильнее всего возбудится основная частота, поскольку эта точка соответствует пучности. Вторая же гармоника будет отсутствовать, так как в центре находится ее узел. То же можно сказать и о других гармониках (см. ниже Музыкальная акустика).

Скорость волн в струне равна

где Т – сила натяжения струны, а r L – масса единицы длины струны. Следовательно, спектр собственных частот струны дается выражением

Таким образом, увеличение натяжения струны приводит к повышению частот колебаний. Понизить же частоты колебаний при заданном T можно, взяв более тяжелую струну (большое r L ) или увеличив ее длину.

Стоячие волны в органных трубах.

Теория, изложенная применительно к струне, может быть применена и к колебаниям воздуха в трубе типа органной. Органную трубу можно упрощенно рассматривать как прямую трубу, в которой возбуждаются стоячие волны. Труба может иметь как закрытые, так и открытые концы. У открытого конца возникает пучность стоячей волны, а у закрытого – узел. Следовательно, труба с двумя открытыми концами имеет такую основную частоту, при которой на длине трубы укладывается половина длины волны. Труба же, у которой один конец открыт, а другой – закрыт, имеет основную частоту, при которой на длине трубы укладывается четверть длины волны. Таким образом, основная частота для трубы, открытой с обоих концов, равна f = v /2L , а для трубы, открытой с одного конца, f = v /4L (где L – длина трубы). В первом случае результат такой же, как и для струны: обертоны равны удвоенному, утроенному и т.д. значению основной частоты. Однако для трубы, открытой с одного конца, обертоны будут больше основной частоты в 3, 5, 7 и т.д. раз.

На рис. 4 и 5 схематически показана картина стоячих волн основной частоты и первого обертона для труб двух рассмотренных типов. Смещения из соображений удобства здесь показаны как поперечные, но на самом деле они продольные.

Резонансные колебания.

Стоячие волны тесно связаны с явлением резонанса. Собственные частоты, о которых говорилось выше, являются также резонансными частотами струны или органной трубы. Предположим, что вблизи открытого конца органной трубы помещен громкоговоритель, издающий сигнал одной определенной частоты, которую можно по желанию изменять. Тогда при совпадении частоты сигнала громкоговорителя с основной частотой трубы или с одним из ее обертонов труба будет звучать очень громко. Это происходит потому, что громкоговоритель возбуждает колебания воздушного столба со значительной амплитудой. Говорят, что труба в этих условиях резонирует.

Фурье-анализ и частотный спектр звука.

На практике звуковые волны одной-единственной частоты встречаются редко. Но сложные звуковые волны можно разлагать на гармоники. Такой метод называется фурье-анализом по имени французского математика Ж.Фурье (1768–1830), который первым применил его (в теории теплоты).

График зависимости относительной энергии звуковых колебаний от частоты называется частотным спектром звука. Существуют два основных типа таких спектров: дискретный и непрерывный. Дискретный спектр состоит из отдельных линий для частот, разделенных пустыми промежутками. В непрерывном спектре в пределах его полосы присутствуют все частоты.

Периодические звуковые колебания.

Звуковые колебания являются периодическими, если колебательный процесс, каким бы сложным он ни был, повторяется через определенный интервал времени. Его спектр всегда дискретный и состоит из гармоник определенной частоты. Отсюда и термин «гармонический анализ». Примером могут служить колебания прямоугольной формы (рис. 6,а ) с изменением амплитуды от до - А и периодом T = 1/f . Другой простой пример – треугольные пилообразные колебания, показанные на рис. 6,б . Пример периодических колебаний более сложной формы с соответствующими гармоническими составляющими представлен на рис. 7.

Музыкальные звуки являются периодическими колебаниями и потому содержат гармоники (обертоны). Мы уже видели, что в струне наряду с колебаниями основной частоты в той или иной степени возбуждаются другие гармоники. Относительный вклад каждого обертона зависит от способа возбуждения струны. Набором обертонов в значительной степени определяется тембр музыкального звука. Эти вопросы подробнее рассматриваются ниже в разделе, посвященном музыкальной акустике.

Спектр звукового импульса.

Обычной разновидностью звука является звук малой длительности: хлопок в ладоши, стук в дверь, звук падающего на пол предмета, кукованье кукушки. Такие звуки не являются ни периодическими, ни музыкальными. Но их тоже можно разлагать в частотный спектр. В этом случае спектр будет непрерывным: для описания звука необходимы все частоты в пределах некоторой полосы, которая может быть весьма широкой. Знать такой частотный спектр необходимо для воспроизведения подобных звуков без искажений, поскольку соответствующая электронная система должна одинаково хорошо «пропускать» все эти частоты.

Основные особенности звукового импульса можно выяснить, рассмотрев импульс простой формы. Предположим, что звук представляет собой колебания длительностью D t , при которых изменение давления таково, как показано на рис. 8,а . Примерный частотный спектр для этого случая представлен на рис. 8,б . Центральная частота соответствует колебаниям, которые мы имели бы при бесконечной протяженности того же сигнала.

Протяженность частотного спектра назовем шириной полосы D f (рис. 8,б ). Ширина полосы – это приблизительный диапазон частот, необходимый для воспроизведения исходного импульса без чрезмерных искажений. Существует очень простое фундаментальное соотношение между D f и D t , а именно

D f D t » 1.

Такое соотношение справедливо для всех звуковых импульсов. Его смысл в том, что чем короче импульс, тем больше частот он содержит. Предположим, что для обнаружения подводной лодки используется гидролокатор, излучающий ультразвук в виде импульса длительностью 0,0005 с с частотой сигнала 30 кГц. Ширина полосы составляет 1/0,0005 = 2 кГц, а частоты, реально содержащиеся в спектре импульса локатора, лежат в диапазоне от 29 до 31 кГц.

Шум.

Под шумом понимается любой звук, создаваемый многочисленными, не согласованными между собой источниками. Примером может служить шум листвы деревьев, колеблемой ветром. Шум реактивного двигателя обусловлен турбулентностью высокоскоростного выхлопного потока. Шум как раздражающий звук рассматривается в ст. АКУСТИЧЕСКОЕ ЗАГРЯЗНЕНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ.

Интенсивность звука.

Громкость звука может быть различной. Нетрудно сообразить, что это связано с энергией, переносимой звуковой волной. Для количественных сравнений громкости нужно ввести понятие интенсивности звука. Интенсивность звуковой волны определяется как средний поток энергии через единицу площади волнового фронта в единицу времени. Иначе говоря, если взять единичную площадку (например, 1 см 2), которая полностью поглощала бы звук, и расположить ее перпендикулярно направлению распространения волны, то интенсивность звука равна акустической энергии, поглощаемой за одну секунду. Интенсивность обычно выражается в Вт/см 2 (или в Вт/м 2).

Приведем значение этой величины для некоторых привычных звуков. Амплитуда избыточного давления, возникающего при обычном разговоре, составляет примерно одну миллионную атмосферного давления, что соответствует акустической интенсивности звука порядка 10 –9 Вт/см 2 . Полная же мощность звука, издаваемого при обычном разговоре, – порядка всего лишь 0,00001 Вт. Способность человеческого уха воспринимать столь малые энергии свидетельствует о его поразительной чувствительности.

Диапазон интенсивностей звука, воспринимаемых нашим ухом, очень широк. Интенсивность самого громкого звука, который может вынести ухо, примерно в 10 14 раз больше минимальной, которую оно способно услышать. Полная мощность источников звука охватывает столь же широкий диапазон. Так, мощность, излучаемая при очень тихом шепоте, может быть порядка 10 –9 Вт, тогда как мощность, излучаемая реактивным двигателем, достигает 10 5 Вт. Опять-таки интенсивности различаются в 10 14 раз.

Децибел.

Поскольку звуки столь сильно различаются по интенсивности, удобнее рассматривать ее как логарифмическую величину и измерять в децибелах. Логарифмическая величина интенсивности представляет собой логарифм отношения рассматриваемого значения величины к ее значению, принимаемому за исходное. Уровень интенсивности J по отношению к некоторой условно выбранной интенсивности J 0 равен

Уровень интенсивности звука = 10 lg (J /J 0) дБ.

Такием образом, один звук, превышающий другой по уровню интенсивности на 20 дБ, превышает его в 100 раз по интенсивности.

В практике акустических измерений принято выражать интенсивность звука через соответствующую амплитуду избыточного давления Р е . Когда давление измеряется в децибелах относительно некоторого условно выбранного давления Р 0 , получают так называемый уровень звукового давления. Поскольку интенсивность звука пропорциональна величине P e 2 , а lg(P e 2) = 2lgP e , уровень звукового давления определяется следующим образом:

Уровень звукового давления = 20 lg (P e /P 0) дБ.

Условное давление Р 0 = 2Ч 10 –5 Па соответствует стандартному порогу слышимости для звука с частотой 1 кГц. В табл. 2 приводятся уровни звукового давления для некоторых обычных источников звука. Это интегральные значения, полученные усреднением по всему слышимому диапазону частот.

Таблица 2. ТИПИЧНЫЕ УРОВНИ ЗВУКОВОГО ДАВЛЕНИЯ

Источник звука

Уровень звукового давления, дБ (отн. 2Ч 10 –5 Па)

Штамповочный цех
Машинное отделение на судне
Прядильно-ткацкий цех
В вагоне метро
В автомобиле при движении в потоке транспорта
Машинописное бюро
Бухгалтерия
Офис
Жилое помещение
Территория жилого района ночью
Студия радиовещания

Громкость.

Уровень звукового давления не связан простой зависимостью с психологическим восприятием громкости. Первый из этих факторов объективный, а второй – субъективный. Эксперименты показывают, что восприятие громкости зависит не только от интенсивности звука, но и от его частоты и условий эксперимента.

Громкости звуков, не привязанных к условиям сравнения, сравнивать невозможно. И все же сравнение чистых тонов представляет интерес. Для этого определяют уровень звукового давления, при котором данный тон воспринимается как равногромкий стандартному тону частотой 1000 Гц. На рис. 9 представлены кривые равной громкости, полученные в экспериментах Флетчера и Мэнсона. Для каждой кривой указан соответствующий уровень звукового давления стандартного тона 1000 Гц. Например, при частоте тона 200 Гц необходим уровень звука в 60 дБ, чтобы он воспринимался как равногромкий тону 1000 Гц с уровнем звукового давления 50 дБ.

Эти кривые используются для определения фона – единицы уровня громкости, которая тоже измеряется в децибелах. Фон – это уровень громкости звука, для которого уровень звукового давления равногромкого стандартного чистого тона (1000 Гц) равен 1 дБ. Так, звук частотой 200 Гц при уровне 60 дБ имеет уровень громкости в 50 фонов.

Нижняя кривая на рис. 9 – это кривая порога слышимости хорошего уха. Диапазон слышимых частот простирается примерно от 20 до 20 000 Гц .

Распространение звуковых волн.

Как и волны от камешка, брошенного в спокойную воду, звуковые волны распространяются во всех направлениях. Такой процесс распространения удобно характеризовать волновым фронтом. Волновой фронт – это поверхность в пространстве, во всех точках которой колебания происходят в одной фазе. Волновые фронты от камешка, упавшего в воду, представляют собой окружности.

Плоские волны.

Волновой фронт простейшего вида – плоский. Плоская волна распространяется только в одном направлении и представляет собой идеализацию, которая лишь приблизительно реализуется на практике. Звуковую волну в трубе можно считать приблизительно плоской, как и сферическую волну на большом расстоянии от источника.

Сферические волны.

К простым типам волн можно отнести и волну со сферическим фронтом, исходящую из точки и распространяющуюся во всех направлениях. Такую волну можно возбудить с помощью малой пульсирующей сферы. Источник, возбуждающий сферическую волну, называется точечным. Интенсивность такой волны убывает по мере ее распространения, поскольку энергия распределяется по сфере все большего радиуса.

Если точечный источник, создающий сферическую волну, излучает мощность 4p Q , то, поскольку площадь поверхности сферы радиусом r равна 4p r 2 , интенсивность звука в сферической волне равна

J = Q /r 2 ,

где r – расстояние от источника. Таким образом, интенсивность сферической волны убывает обратно пропорционально квадрату расстояния от источника.

Интенсивность любой звуковой волны в процессе ее распространения уменьшается вследствие поглощения звука. Это явление будет рассмотрено ниже.

Принцип Гюйгенса.

Для распространения волнового фронта справедлив принцип Гюйгенса. Для выяснения его рассмотрим известную нам форму волнового фронта в какой-либо момент времени. Ее можно найти и спустя время D t , если каждую точку начального волнового фронта рассматривать как источник элементарной сферической волны, распространившейся за этот промежуток на расстояние v D t . Огибающая всех этих элементарных сферических волновых фронтов и будет новым волновым фронтом. Принцип Гюйгенса позволяет определять форму волнового фронта на протяжении всего процесса распространения. Из него следует также, что волны, как плоские, так и сферические, сохраняют свою геометрию в процессе распространения при условии, что среда однородна.

Дифракция звука.

Дифракцией называется огибание волнами препятствия. Дифракция анализируется с помощью принципа Гюйгенса. Степень такого огибания зависит от соотношения между длиной волны и размером препятствия или отверстия. Поскольку длина звуковой волны во много раз больше, чем световой, дифракция звуковых волн менее удивляет нас, нежели дифракция света. Так, можно разговаривать с кем-то стоящим за углом здания, хотя он и не виден. Звуковая волна с легкостью огибает угол, тогда как свет из-за малости своей длины волны дает резкие тени.

Рассмотрим дифракцию плоской звуковой волны, падающей на твердый плоский экран с отверстием. Для определения формы волнового фронта по другую сторону экрана нужно знать соотношение между длиной волны l и диаметром отверстия D . Если эти величины примерно одинаковы или l намного больше D , то получается полная дифракция: волновой фронт выходящей волны будет сферическим, а волна достигнет всех точек за экраном. Если же l несколько меньше D , то выходящая волна будет распространяться преимущественно в прямом направлении. И наконец, если l намного меньше D , то вся ее энергия будет распространяться по прямой. Эти случаи показаны на рис. 10.

Дифракция наблюдается и тогда, когда на пути звука оказывается какое-либо препятствие. Если размеры препятствия намного больше длины волны, то звук отражается, а позади препятствия формируется зона акустической тени. Когда размеры препятствия сравнимы с длиной волны или меньше ее, звук дифрагирует в какой-то мере во всех направлениях. Это учитывается в архитектурной акустике. Так, например, иногда стены здания покрывают выступами с размерами порядка длины волны звука. (На частоте 100 Гц длина волны в воздухе около 3,5 м.) При этом звук, падая на стены, рассеивается во всех направлениях. В архитектурной акустике это явление называется диффузией звука.

Отражение и прохождение звука.

Когда звуковая волна, движущаяся в одной среде, падает на границу раздела с другой средой, одновременно могут происходить три процесса. Волна может отражаться от поверхности раздела, она может проходить в другую среду без изменения направления или изменять направление на границе, т.е. преломляться. На рис. 11 показан простейший случай, когда плоская волна падает под прямым углом к плоской поверхности, разделяющей два различных вещества. Если коэффициент отражения по интенсивности, который определяет долю отраженной энергии, равен R , то коэффициент прохождения будет равен T = 1 – R .

Для звуковой волны отношение избыточного давления к колебательной объемной скорости называется акустическим сопротивлением. Коэффициенты отражения и прохождения зависят от соотношения волновых сопротивлений двух сред, волновые сопротивления, в свою очередь, пропорциональны акустическим сопротивлениям. Волновое сопротивление газов гораздо меньше, чем жидкостей и твердых тел. Поэтому если волна в воздухе падает на толстый твердый объект или на поверхность глубокой воды, то звук почти полностью отражается. Например, для границы воздуха и воды отношение волновых сопротивлений составляет 0,0003. Соответственно этому энергия звука, проходящего из воздуха в воду, равна лишь 0,12% падающей энергии. Коэффициенты отражения и прохождения обратимы: коэффициент отражения есть коэффициент прохождения в обратном направлении. Таким образом, звук практически не проникает ни из воздуха в водный бассейн, ни из-под воды наружу, что хорошо знакомо всем, кто плавал под водой.

В рассмотренном выше случае отражения предполагалось, что толщина второй среды в направлении распространения волны велика. Но коэффициент прохождения будет значительно больше, если вторая среда представляет собой стенку, разделяющую две одинаковые среды, такую, как твердая перегородка между комнатами. Дело в том, что толщина стенки обычно меньше длины волны звука или сравнима с ней. Если толщина стенки кратна половине длины волны звука в стенке, то коэффициент прохождения волны при перпендикулярном падении очень велик. Перегородка была бы абсолютно прозрачной для звука этой частоты, если бы не поглощение, которым мы здесь пренебрегаем. Если толщина стенки намного меньше длины волны звука в ней, то отражение всегда мало, а прохождение велико, за исключением случая, когда приняты специальные меры по увеличению поглощения звука.

Рефракция звука.

Когда плоская звуковая волна падает под углом на границу раздела сред, угол ее отражения равен углу падения. Прошедшая же волна отклоняется от направления падающей волны, если угол падения отличен от 90° . Такое изменение направления движения волны называется рефракцией. Геометрия рефракции на плоской границе показана на рис. 12. Углы между направлением волн и нормалью к поверхности обозначены q 1 для падающей волны и q 2 – для преломленной прошедшей. В соотношение между этими двумя углами входит только отношение скоростей звука для двух сред. Как и в случае световых волн, эти углы связаны между собой законом Снеллиуса (Снелля):

Таким образом, если скорость звука во второй среде меньше, чем в первой, то угол преломления будет меньше угла падения, если же скорость во второй среде больше, то угол преломления будет больше угла падения.

Рефракция, обусловленная градиентом температуры.

Если скорость звука в неоднородной среде непрерывно меняется от точки к точке, то рефракция также меняется. Поскольку скорость звука и в воздухе, и в воде зависит от температуры, при наличии градиента температуры звуковые волны могут изменять направление своего движения. В атмосфере и океане из-за горизонтальной стратификации обычно наблюдаются вертикальные градиенты температуры. Поэтому вследствие изменений скорости звука по вертикали, обусловленных температурными градиентами, звуковая волна может отклоняться либо вверх, либо вниз.

Рассмотрим случай, когда в каком-то месте вблизи поверхности Земли воздух теплее, чем в более высоких слоях. Тогда с увеличением высоты температура воздуха здесь понижается, а вместе с ней уменьшается и скорость звука. Звук, излучаемый источником вблизи поверхности Земли, вследствие рефракции будет уходить вверх. Это показано на рис. 13, где изображены звуковые «лучи».

Отклонение лучей звука, показанное на рис. 13, в общей форме описывается законом Снеллиуса. Если через q , как и раньше, обозначить угол между вертикалью и направлением излучения, то обобщенный закон Снеллиуса имеет вид равенства sinq /v = const, относящегося к любой точке луча. Таким образом, если луч переходит в область, где скорость v уменьшается, то угол q тоже должен уменьшаться. Поэтому звуковые лучи всегда отклоняются в направлении уменьшения скорости звука.

Из рис. 13 видно, что существует область, расположенная на некотором удалении от источника, куда звуковые лучи вообще не проникают. Это так называемая зона молчания.

Вполне возможно, что где-то на высоте, большей, чем показано на рис. 13, из-за градиента температуры скорость звука увеличивается с высотой. В таком случае первоначально отклонившаяся вверх звуковая волна здесь отклонится к поверхности Земли на большом удалении. Так бывает, когда в атмосфере образуется слой температурной инверсии, в результате чего оказывается возможным прием сверхдальних звуковых сигналов. При этом качество приема в удаленных точках бывает даже лучше, чем вблизи. В истории было много примеров сверхдальнего приема. Например, во время Первой мировой войны, когда атмосферные условия благоприятствовали соответствующей рефракции звука, канонаду на французском фронте можно было слышать в Англии.

Рефракция звука под водой.

Рефракция звука, обусловленная изменением температуры по вертикали, наблюдается и в океане. Если температура, а стало быть, и скорость звука, уменьшается с глубиной, звуковые лучи отклоняются вниз, в результате чего образуется зона молчания, подобная тому, как это показано на рис. 13 для атмосферы. Для океана соответствующая картина получится, если этот рисунок просто перевернуть .

Наличием зон молчания затрудняется обнаружение подводных лодок с гидролокатором, а рефракция, отклоняющая звуковые волны вниз, существенно ограничивает дальность их распространения вблизи поверхности. Тем не менее наблюдается также и рефракция с отклонением вверх. Она может создать более благоприятные условия для гидролокации.

Интерференция звуковых волн.

Наложение двух или большего числа волн называется интерференцией волн.

Стоячие волны как результат интерференции.

Рассмотренные выше стоячие волны – частный случай интерференции. Стоячие волны образуются в результате наложения двух волн одинаковой амплитуды, фазы и частоты, распространяющихся в противоположных направлениях.

Амплитуда в пучностях стоячей волны равна удвоенной амплитуде каждой из волн. Поскольку интенсивность волны пропорциональна квадрату ее амплитуды, это означает, что интенсивность в пучностях в 4 раза больше интенсивности каждой из волн или же в 2 раза больше суммарной интенсивности двух волн. Здесь нет нарушения закона сохранения энергии, поскольку в узлах интенсивность равна нулю.

Биения.

Возможна также интерференция гармонических волн разных частот. Когда две частоты мало различаются, возникают так называемые биения. Биения – это изменения амплитуды звука, происходящие с частотой, равной разности исходных частот. На рис. 14 представлена осциллограмма биений.

Следует иметь в виду, что частота биений – это частота амплитудной модуляции звука. Не следует также путать биения с разностной частотой, возникающей в результате искажений гармонического сигнала.

Биения часто используют при настройке двух тонов в унисон. Настройка частоты производится до тех пор, пока биения не перестанут прослушиваться. Даже если частота биений очень мала, человеческое ухо способно уловить периодическое нарастание и убывание громкости звука. Поэтому биения являются весьма чувствительным методом настройки в звуковом диапазоне. Если настройка не точна, то разность частот можно определить на слух, подсчитав число биений за одну секунду. В музыке на слух воспринимаются и биения высших гармонических составляющих, что применяется при настройке фортепиано .

Поглощение звуковых волн.

Интенсивность звуковых волн в процессе их распространения всегда уменьшается вследствие того, что определенная часть акустической энергии рассеивается. В силу процессов теплообмена, межмолекулярного взаимодействия и внутреннего трения звуковые волны поглощаются в любой среде. Интенсивность поглощения зависит от частоты звуковой волны и от других факторов, таких, как давление и температура среды.

Поглощение волны в среде количественно характеризуется коэффициентом поглощения a . Он показывает, насколько быстро уменьшается избыточное давление в зависимости от расстояния, проходимого распространяющейся волной. Убывание амплитуды избыточного давления –D Р е при прохождении расстояния D х пропорционально амплитуде начального избыточного давления Р е и расстоянию D х . Таким образом,

–D P e = a P e D x .

Например, когда говорят, что потери на поглощение составляют 1 дБ/м, это означает, что на расстоянии 50 м уровень звукового давления уменьшается на 50 дБ.

Поглощение вследствие внутреннего трения и теплопроводности.

При движении частиц, связанном с распространением звуковой волны, неизбежно трение между разными частицами среды. В жидкостях и газах такое трение называется вязкостью. Вязкость, которой обусловлено необратимое превращение акустической энергии волны в теплоту, является главной причиной поглощения звука в газах и жидкостях.

Кроме того, поглощение в газах и жидкостях обусловлено потерями теплоты при сжатии в волне. Мы уже говорили, что при прохождении волны газ в фазе сжатия нагревается. В этом быстропротекающем процессе тепло обычно не успевает передаваться другим областям газа или стенкам сосуда. Но в действительности данный процесс неидеален, и часть выделяющейся тепловой энергии уходит из системы. С этим связано поглощение звука вследствие теплопроводности. Такое поглощение происходит в волнах сжатия в газах, жидкостях и твердых телах.

Поглощение звука, обусловленное как вязкостью, так и теплопроводностью, обычно увеличивается пропорционально квадрату частоты. Таким образом, звуки высоких частот поглощаются гораздо сильнее, чем низкочастотные. Например, при нормальных давлении и температуре коэффициент поглощения (обусловленного обоими механизмами) на частоте 5 кГц в воздухе составляет около 3 дБ/км. Поскольку поглощение пропорционально квадрату частоты, коэффициент поглощения на частоте 50 кГц составит 300 дБ/км.

Поглощение в твердых телах.

Механизм поглощения звука вследствие теплопроводности и вязкости, имеющий место в газах и жидкостях, сохраняется и в твердых телах. Однако здесь к нему добавляются новые механизмы поглощения. Они связаны с дефектами структуры твердых тел. Дело в том, что поликристаллические твердые материалы состоят из мелких кристаллитов; при прохождении звука в них возникают деформации, приводящие к поглощению звуковой энергии. Звук рассеивается и на границах кристаллитов. Кроме того, даже в монокристаллах имеются дефекты типа дислокаций, вносящие свой вклад в поглощение звука. Дислокации – это нарушения согласования атомных плоскостей. Когда звуковая волна вызывает колебания атомов, дислокации смещаются, а затем возвращаются в исходное положение, рассеивая энергию вследствие внутреннего трения.

Поглощением за счет дислокаций объясняется, в частности, почему не звенит колокольчик из свинца. Свинец – это мягкий металл, в котором очень много дислокаций, в связи с чем звуковые колебания в нем чрезвычайно быстро затухают. Но он хорошо зазвенит, если его охладить жидким воздухом. При низких температурах дислокации «замораживаются» в фиксированном положении, а потому не смещаются и не преобразуют звуковую энергию в теплоту.

МУЗЫКАЛЬНАЯ АКУСТИКА

Музыкальные звуки.

Музыкальная акустика изучает особенности музыкальных звуков, их характеристики, связанные с тем, как мы их воспринимаем, и механизмы звучания музыкальных инструментов.

Музыкальный звук, или тон, – это периодический звук, т.е. колебания, которые снова и снова повторяются через определенный период. Выше говорилось, что периодический звук можно представить в виде суммы колебаний с частотами, кратными основной частоте f : 2f , 3f , 4f и т.д. Отмечалось также, что колеблющиеся струны и воздушные столбы издают музыкальные звуки.

Музыкальные звуки различаются по трем признакам: громкости, высоте и тембру. Все эти показатели субъективные, но их можно связать с измеряемыми величинами. Громкость связана в основном с интенсивностью звука; высота звука, характеризующая его положение в музыкальном строе, определяется частотой тона; тембр, которым один инструмент или голос отличается от другого, характеризуется распределением энергии по гармоникам и изменением этого распределения во времени.

Высота звука.

Высота музыкального звука тесно связана с частотой, но не тождественна ей, поскольку оценка высоты звука носит субъективный характер.

Так, например, установлено, что оценка высоты одночастотного звука несколько зависит от уровня его громкости. При значительном повышении уровня громкости, скажем на 40 дБ, кажущаяся частота может уменьшиться на 10%. На практике эта зависимость от громкости не имеет значения, поскольку музыкальные звуки гораздо сложнее одночастотного звука.

В вопросе о взаимосвязи между высотой тона и частотой более существенно другое: если музыкальные звуки состоят из гармоник, то с какой частотой ассоциируется воспринимаемая высота звука? Оказывается, что это может быть и не та частота, которая соответствует максимальной энергии, и не самая низкая частота в спектре. Так, например, музыкальный звук, состоящий из набора частот 200, 300, 400 и 500 Гц, воспринимается как звук высотой 100 Гц. То есть высота звука ассоциируется с основной частотой гармонического ряда, даже если ее нет в спектре звука. Правда, чаще всего основная частота в той или иной мере в спектре присутствует.

Говоря о соотношении между высотой звука и его частотой, не следует забывать об особенностях человеческого органа слуха. Это особый акустический приемник, который вносит свои искажения (не говоря уже о том, что существуют психологические и субъективные аспекты слуха). Ухо способно выделять некоторые частоты, кроме того, звуковая волна претерпевает в нем нелинейные искажения. Частотная избирательность обусловлена различием между громкостью звука и его интенсивностью (рис. 9). Труднее объяснить нелинейные искажения, которые выражаются в появлении частот, отсутствующих в исходном сигнале. Нелинейность реакции уха обусловлена асимметрией движения различных его элементов.

Одной из характерных особенностей нелинейной приемной системы является то, что при возбуждении ее звуком с частотой f 1 в ней возбуждаются гармонические обертоны 2f 1 , 3f 1 ,..., а в некоторых случаях и субгармоники типа 1 / 2 f 1 . Кроме того, при возбуждении нелинейной системы двумя частотами f 1 и f 2 в ней возбуждаются суммарная и разностная частоты f 1 + f 2 и f 1 - f 2 . Чем больше амплитуда исходных колебаний, тем больше вклад «лишних» частот.

Таким образом, в силу нелинейности акустических характеристик уха могут появиться частоты, отсутствующие в звуке. Такие частоты называются субъективными тонами. Предположим, что звук состоит из чистых тонов частот 200 и 250 Гц. Из-за нелинейности отклика дополнительно появятся частоты 250 – 200 = 50, 250 + 200 = 450, 2ґ 200 = 400, 2ґ 250 = 500 Гц и т.д. Слушающему будет казаться, что в звуке присутствует целый набор комбинационных частот, появление же их на самом деле обусловлено нелинейной реакцией уха. Когда музыкальный звук состоит из основной частоты и ее гармоник, очевидно, что основная частота эффективно усиливается разностными частотами.

Правда, как показали исследования, субъективные частоты возникают лишь при достаточно большой амплитуде исходного сигнала. Поэтому не исключено, что в прошлом роль субъективных частот в музыке сильно преувеличивалась.

Музыкальные стандарты и измерение высоты музыкального звука.

За основной тон, определяющий весь музыкальный строй, в истории музыки принимались звуки разной частоты. Сейчас общепринятая частота для ноты «ля» первой октавы составляет 440 Гц. Но в прошлом она менялась от 400 до 462 Гц.

Традиционный способ определения высоты звука – сравнение его с тоном стандартного камертона. Об отклонении частоты заданного звука от стандарта судят по наличию биений. Камертонами пользуются до сих пор, хотя теперь существуют и более удобные приборы для определения высоты звука, такие, как эталонный генератор стабильной частоты (с кварцевым резонатором), который можно плавно перестраивать в пределах всего звукового диапазона. Правда, точная калибровка такого прибора довольно сложна.

Широко распространен стробоскопический метод измерения высоты звука, при котором звук музыкального инструмента задает частоту вспышек стробоскопической лампы. Лампа освещает рисунок на диске, вращающемся с известной частотой, и по кажущейся частоте движения рисунка на диске при стробоскопическом освещении определяют основную частоту тона.

Ухо очень чувствительно к изменению высоты звука, но его чувствительность зависит от частоты. Она максимальна вблизи нижнего порога слышимости. Даже нетренированное ухо способно обнаружить разницу в частотах, равную всего лишь 0,3%, в диапазоне от 500 до 5000 Гц. Чувствительность можно повысить тренировкой. Музыканты обладают очень развитым чувством высоты звука, но оно не всегда помогает при определении частоты чистого тона, создаваемого эталонным генератором. Это говорит о том, что при определении на слух частоты звука важную роль играет его тембр.

Тембр.

Под тембром понимаются те особенности музыкальных звуков, которые придают музыкальным инструментам и голосам их неповторимую специфику, даже если сравнивать звуки одинаковой высоты и громкости. Это, так сказать, качество звука.

Тембр зависит от частотного спектра звука и его изменения во времени. Он определяется несколькими факторами: распределением энергии по обертонам, частотами, возникающими в момент появления или прекращения звука (так называемыми переходными тонами) и их затуханием, а также медленной амплитудной и частотной модуляцией звука («вибрато»).

Интенсивность обертонов.

Рассмотрим натянутую струну, которая возбуждается щипком в ее средней части (рис. 15,а ). Поскольку все четные гармоники имеют узлы посередине, они будут отсутствовать, и колебания будут состоять из нечетных гармоник основной частоты, равной f 1 = v /2l , где v – скорость волны в струне, а l – ее длина. Таким образом, будут присутствовать только частоты f 1 , 3f 1 , 5f 1 и т.д. Относительные амплитуды этих гармоник показаны на рис. 15,б .

Данный пример позволяет сделать следующий важный общий вывод. Набор гармоник резонансной системы определяется ее конфигурацией, а распределение энергии по гармоникам зависит от способа возбуждения. При возбуждении струны в ее середине доминирует основная частота и полностью подавляются четные гармоники. Если же струну закрепить в ее средней части и ущипнуть в каком-нибудь другом месте, то будут подавлены основная частота и нечетные гармоники.

Все это применимо и к другим известным музыкальным инструментам, хотя в деталях ситуация может сильно отличаться. В инструментах обычно имеется воздушная полость, дека или рупор для излучения звука. Все это и обусловливает структуру обертонов и возникновение формант.

Форманты.

Как сказано выше, качество звука музыкальных инструментов зависит от распределения энергии по гармоникам. При изменении высоты звука многих инструментов и особенно человеческого голоса распределение по гармоникам изменяется так, что основные обертоны всегда располагаются примерно в одном и том же частотном диапазоне, который называется диапазоном формант. Одной из причин существования формант является применение резонансных элементов для усиления звука, таких, как дека и воздушный резонатор. Ширина естественных резонансов обычно велика, благодаря чему эффективность излучения на соответствующих частотах выше. У медных духовых инструментов форманты определяются раструбом, из которого выходит звук. Обертоны, приходящиеся на диапазон формант, всегда сильно подчеркиваются, так как излучаются с максимальной энергией. Формантами в значительной мере определяются характерные качественные особенности звуков музыкального инструмента или голоса.

Изменение тонов во времени.

Тон звучания любого инструмента редко остается постоянным во времени, и с этим существенно связан тембр. Даже когда инструмент выдерживает долгую ноту, наблюдается небольшая периодическая модуляция частоты и амплитуды, обогащающая звук, – «вибрато». Это особенно характерно для струнных инструментов типа скрипки и для человеческого голоса.

У многих инструментов, например у фортепиано, длительность звука такова, что постоянный тон не успевает сформироваться – возбуждаемый звук быстро нарастает, а затем следует его быстрое затухание. Поскольку затухание обертонов обычно обусловлено зависящими от частоты эффектами (такими, как акустическое излучение), очевидно, что распределение по обертонам меняется на протяжении звучания тона.

Характер изменения тона во времени (быстрота нарастания и спада звука) для некоторых инструментов схематически показан на рис. 18. Как нетрудно видеть, у струнных инструментов (щипковых и клавишных) постоянный тон практически отсутствует. В таких случаях говорить о спектре обертонов можно лишь условно, поскольку звук быстро меняется во времени. Характеристики нарастания и спада – тоже важная составляющая тембра таких инструментов.

Переходные тона.

Гармонический состав тона обычно быстро изменяется за короткое время после возбуждения звука. В тех инструментах, в которых звук возбуждается ударом по струнам или щипком, энергия, приходящаяся на высшие гармоники (а также на многочисленные негармонические составляющие), максимальна сразу же после начала звучания, а через доли секунды эти частоты замирают. Такие звуки, называемые переходными, придают специфическую окраску звуку инструмента. В фортепиано они обусловлены действием молоточка, ударяющего по струне. Иногда музыкальные инструменты с одинаковой структурой обертонов можно различить только по переходным тонам.

ЗВУЧАНИЕ МУЗЫКАЛЬНЫХ ИНСТРУМЕНТОВ

Музыкальные звуки можно возбуждать и изменять разными способами, в связи с чем музыкальные инструменты отличаются разнообразием форм. Инструменты большей частью создавались и совершенствовались самими музыкантами и искусными мастерами, не прибегавшими к научной теории. Поэтому акустическая наука не может объяснить, например, почему скрипка имеет такую форму. Однако вполне возможно описать свойства звука скрипки, исходя из общих принципов игры на ней и ее конструкции.

Под частотным диапазоном инструмента обычно понимают диапазон частот его основных тонов. Человеческий голос перекрывает примерно две октавы, а музыкальный инструмент – не менее трех (большой орган – десять). В большинстве случаев обертоны простираются до самой границы диапазона слышимого звука.

У музыкальных инструментов имеются три основные части: колеблющийся элемент, механизм для его возбуждения и вспомогательный резонатор (рупор или дека) для акустической связи между колеблющимися элементом и окружающим воздухом.

Музыкальный звук периодичен во времени, а периодические звуки состоят из ряда гармоник. Поскольку собственные частоты колебаний струн и воздушных столбов фиксированной длины гармонически связаны между собой, во многих инструментах основными колеблющимися элементами служат струны и воздушные столбы. За небольшим исключением (флейта – одно из них) на инструментах нельзя взять одночастотного звука. При возбуждении основного вибратора возникает звук, содержащий обертоны. У некоторых вибраторов резонансные частоты не являются гармоническими составляющими. Инструменты такого рода (например, барабаны и тарелки) используются в оркестровой музыке для особой выразительности и подчеркивания ритма, но не для мелодического развития.

Струнные инструменты.

Сама по себе колеблющаяся струна – плохой излучатель звука, а поэтому у струнного инструмента должен быть дополнительный резонатор для возбуждения звука заметной интенсивности. Это может быть замкнутый объем воздуха, дека или комбинация того и другого. Характер звучания инструмента определяется также способом возбуждения струн.

Ранее мы видели, что основная частота колебаний закрепленной струны длины L дается выражением

где Т – сила натяжения струны, а r L – масса единицы длины струны. Следовательно, мы можем изменять частоту тремя способами: изменяя длину, натяжение или массу. Во многих инструментах используется небольшое число струн одинаковой длины, основные частоты которых определяются надлежащим выбором натяжения и массы. Прочие частоты получаются путем укорачивания длины струны пальцами.

В других инструментах, в частности в фортепиано, для каждой ноты предусматривается одна из многих предварительно настроенных струн. Настроить фортепиано, где диапазон частот велик, – задача непростая, особенно в области низких частот. Сила натяжения всех струн фортепиано практически одинакова (примерно 2 кН), а разнообразие частот достигается изменением длины и толщины струн.

Возбуждение струнного инструмента может осуществляться щипком (например, на арфе или банджо), ударом (на фортепиано), либо при помощи смычка (в случае музыкальных инструментов семейства скрипок). Во всех случаях, как было показано выше, число гармоник и их амплитуда зависят от способа возбуждения струны.

Фортепиано.

Типичным примером инструмента, где возбуждение струны производится ударом, является фортепиано. Большая дека инструмента обеспечивает широкий диапазон формант, поэтому тембр его очень однороден для любой возбуждаемой ноты. Максимумы главных формант приходятся на частоты порядка 400–500 Гц, а на низших частотах тоны особенно богаты гармониками, причем амплитуда основной частоты меньше, чем некоторых обертонов. В фортепиано удар молоточком на всех, кроме самых коротких, струнах приходится на точку, расположенную на расстоянии в 1/7 длины струны от одного из ее концов. Это обычно объясняется тем, что в данном случае значительно подавляется седьмая гармоника, диссонансная по отношению к основной частоте. Но вследствие конечной ширины молоточка подавляются и другие гармоники, расположенные вблизи седьмой.

Скрипичное семейство.

В скрипичном семействе инструментов долгие звуки извлекаются смычком, с помощью которого к струне прикладывается переменная вынуждающая сила, поддерживающая колебания струны. Под действием движущегося смычка струна за счет трения отводится в сторону, пока из-за увеличения силы натяжения не срывается. Вернувшись в исходное положение, она снова увлекается смычком. Зтот процесс повторяется, так что на струну действует периодическая внешняя сила.

В порядке увеличения размеров и понижения частотного диапазона основные смычковые струнные инструменты располагаются следующим образом: скрипка, альт, виолончель, контрабас. Частотные спектры этих инструментов особенно богаты обертонами, что, несомненно, придает особую теплоту и выразительность их звучанию. В скрипичном семействе колеблющаяся струна акустически связана с воздушной полостью и корпусом инструмента, которыми в основном и определяется структура формант, занимающих весьма широкий частотный диапазон. Крупные представители скрипичного семейства имеют набор формант, смещенный в область низких частот. Поэтому одна и та же нота, взятая на двух инструментах скрипичного семейства, приобретает разную тембровую окраску из-за различия в структуре обертонов.

Скрипка имеет резко выраженный резонанс вблизи 500 Гц, обусловленный формой ее корпуса. Когда берется нота, частота которой близка к этому значению, может возникнуть нежелательный вибрирующий звук, называемый «волчьим тоном». Воздушная полость внутри скрипичного корпуса тоже имеет свои резонансные частоты, главная из которых расположена вблизи 400 Гц. Из-за своей особой формы скрипка обладаеь многочисленными тесно расположенными резонансами. Все они, кроме волчьего тона, не очень выделяются в общем спектре извлекаемого звука.

Духовые инструменты.

Деревянные духовые инструменты.

О собственных колебаниях воздуха в цилиндрической трубе конечной длины говорилось ранее. Собственные частоты образуют ряд гармоник, основная частота которого обратно пропорциональна длине трубы. Музыкальные звуки в духовых инструментах возникают благодаря резонансному возбуждению столба воздуха.

Колебания воздуха возбуждаются либо колебаниями в воздушной струе, падающей на острый край стенки резонатора, либо колебаниями гибкой поверхности язычка в воздушном потоке. В обоих случаях в локализованной области ствола инструмента возникают периодические изменения давления.

Первый из этих способов возбуждения основан на возникновении «краевых тонов». Когда из щели выходит поток воздуха, разбиваемый клинообразным препятствием с острым краем, периодически возникают вихри – то по одну, то по другую сторону клина. Частота их образования тем больше, чем больше скорость воздушного потока. Если такое устройство акустически связано с резонирующим воздушным столбом, то частота краевого тона «захватывается» резонансной частотой воздушного столба, т.е. частота образования вихрей определяется воздушным столбом. В таких условиях основная частота воздушного столба возбуждается только тогда, когда скорость воздушного потока превысит некоторое минимальное значение. В определенном интервале скоростей, превышающих это значение, частота краевого тона равна этой основной частоте. При еще большей скорости воздушного потока (вблизи той, при которой краевая частота в отсутствие связи с резонатором равнялась бы второй гармонике резонатора) краевая частота скачком удваивается и высота тона, испускаемого всей системой, оказывается на октаву выше. Это называется передувом.

Краевыми тонами возбуждаются воздушные столбы в таких инструментах, как орган, флейта и флейта-пикколо. При игре на флейте исполнитель возбуждает краевые тона, дуя сбоку в боковое отверстие вблизи одного из концов. Ноты одной октавы, начиная с «ре» и выше, получают за счет изменения эффективной длины ствола, открывая боковые отверстия, при нормальном краевом тоне. Более высокие же октавы получают передувом.

Другой способ возбуждения звучания духового инструмента основан на периодическом прерывании воздушного потока колеблющимся язычком, который называется тростью, так как изготавливается из тростника. Такой способ применяется в различных деревянных и медных духовых инструментах. Возможны варианты с одиночной тростью (как, например, в кларнете, саксофоне и инструментах типа гармони) и с симметричной двойной тростью (как, например, в гобое и фаготе). В обоих случаях колебательный процесс одинаков: воздух продувается через узкую щель, в которой давление в соответствии с законом Бернулли понижается. Трость при этом втягивается в щель и перекрывает ее. В отсутствие потока упругая трость выпрямляется и процесс повторяется.

В духовых инструментах перебор нот звукоряда, как и на флейте, осуществляется открыванием боковых отверстий и передувом.

В отличие от трубы, открытой с обоих концов, имеющей полный набор обертонов, труба, открытая только с одного конца, имеет только нечетные гармоники (см . выше ). Такова конфигурация кларнета, а потому четные гармоники у него слабо выражены. Передув в кларнете происходит при частоте, в 3 раза превышающей основную.

В гобое вторая гармоника весьма интенсивна. Он отличается от кларнета тем, что канал его ствола имеет коническую форму, тогда как в кларнете сечение канала на большей части его длины постоянно. Частоты колебаний в стволе конической формы труднее рассчитать, чем в цилиндрической трубе, но все же там имеется полный набор обертонов. При этом частоты колебаний конической трубы с закрытым узким концом такие же, как и у цилиндрической трубы, открытой с обоих концов.

Медные духовые инструменты.

Медные, в том числе валторна, труба, корнет-а-пистон, тромбон, горн и туба, возбуждаются губами, действие которых в сочетании с мундштуком особой формы аналогично действию двойной трости. Давление воздуха при возбуждении звука здесь значительно выше, чем в деревянных духовых. Медные духовые, как правило, представляют собой металлический ствол с цилиндрической и конической секциями, заканчивающийся раструбом. Секции подобраны так, что обеспечивается полный спектр гармоник. Полная длина ствола лежит в пределах от 1,8 м для трубы до 5,5 м для тубы. Туба закручена в виде улитки для удобства в обращении, а не из акустических соображений.

При фиксированной длине ствола в распоряжении исполнителя имеются только ноты, определяемые собственными частотами ствола (причем основная частота обычно «неберущаяся»), а высшие гармоники возбуждаются повышением давления воздуха в мундштуке. Так, на горне фиксированной длины можно взять лишь несколько нот (вторую, третью, четвертую, пятую и шестую гармоники). На других медных инструментах частоты, лежащие между гармониками, берутся с изменением длины ствола. Уникален в этом смысле тромбон, длина ствола которого регулируется плавным перемещением выдвижной U-образной кулисы. Перебор нот всего звукоряда обеспечивается семью разными позициями кулисы с изменением возбуждаемого обертона ствола. В других медных инструментах это достигается путем эффективного увеличения полной длины ствола при помощи трех боковых каналов разной длины и в разных комбинациях. Это дает семь разных длин ствола. Как и на тромбоне, ноты всего звукоряда берутся возбуждением разных серий обертонов, соответствующих этим семи длинам ствола.

Тоны всех медных инструментов богаты гармониками. Это объясняется в основном наличием раструба, повышающего эффективность излучения звука на высоких частотах. Труба и валторна предназначены для игры в гораздо более широком диапазоне гармоник, чем у горна. Партия солирующей трубы в произведениях И.Баха содержит много пассажей в четвертой октаве ряда, доходящих до 21-й гармоники этого инструмента.

Ударные инструменты.

Ударные инструменты заставляют звучать, ударяя по телу инструмента и тем самым возбуждая его свободные колебания. От фортепиано, в котором колебания возбуждаются тоже ударом, такие инструменты отличаются в двух отношениях: колеблющееся тело не дает гармонических обертонов и оно само может излучать звук без дополнительного резонатора. К ударным инструментам относятся барабаны, тарелки, ксилофон и треугольник.

Колебания твердых тел гораздо сложнее, чем воздушного резонатора той же формы, поскольку в твердых телах больше типов колебаний. Так, вдоль металлического стержня могут распространяться волны сжатия, изгиба и кручения. Поэтому у цилиндрического стержня гораздо больше мод колебаний и, следовательно, резонансных частот, чем у цилиндрического воздушного столба. Кроме того, эти резонансные частоты не образуют гармонический ряд. В ксилофоне используются изгибные колебания твердых брусков. Отношения обертонов колеблющегося бруска ксилофона к основной частоте таковы: 2,76, 5,4, 8,9 и 13,3.

Камертон представляет собой колеблющийся изогнутый стержень, причем основной его вид колебаний возникает, когда оба плеча одновременно сближаются друг с другом или удаляются друг от друга. У камертона нет гармонического ряда обертонов, и используется только его основная частота. Частота его первого обертона более чем в 6 раз превышает основную частоту.

Еще один пример колеблющегося твердого тела, издающего музыкальные звуки, – колокол. Размеры колоколов могут быть разными – от маленького колокольчика до многотонных церковных колоколов. Чем больше колокол, тем ниже звуки, которые он издает. Форма и другие особенности колоколов претерпели много изменений в ходе их многовековой эволюции. Их изготовлением, требующим большого мастерства, занимаются очень немногие предприятия.

Первоначальный обертонный ряд колокола не является гармоническим, причем отношения обертонов неодинаковы для разных колоколов. Так, например, для одного большого колокола измеренные отношения частот обертонов к основной частоте составили 1,65, 2,10, 3,00, 3,54, 4,97 и 5,33. Но распределение энергии по обертонам быстро изменяется сразу после удара по колоколу, и, по-видимому, форма колокола подбирается таким образом, чтобы доминирующие частоты были связаны между собой приблизительно гармонически. Высота тона колокола определяется не основной частотой, а нотой, доминирующей сразу же после удара. Она соответствует примерно пятому обертону колокола. Спустя некоторое время в звуке колокола начинают преобладать низшие обертоны.

В барабане колеблющимся элементом служит кожаная мембрана, обычно круглая, которую можно рассматривать как двумерный аналог натянутой струны. В музыке барабан не имеет столь важного значения, как струна, поскольку естественный набор его собственных частот не является гармоническим. Исключение составляет литавра, мембрана которой натянута над воздушным резонатором. Последовательность обертонов барабана можно сделать гармонической за счет изменения толщины мембраны в радиальном направлении. Примером такого барабана может служить табла , используемая в классической индийской музыке.

Акустика – область физики, изучающая упругие колебания и волны, методы получения и регистрации колебаний и волн, их взаимодействие с веществом.

Звук в широком смысле – упругие колебания и волны, распространяющиеся в газообразных, жидких и твердых веществах; в узком смысле – явление, субъективно воспринимаемое органом слуха человека и животных. В норме ухо человека слышит звук в диапазоне частот от 16 Гц до 20 кГц.

Звук с частотой ниже 16 Гц называется инфразвуком , выше 20 кГц – ультразвуком , а самые высокочастотные упругие волны в диапазоне от 10 9 до 10 12 Гц – гиперзвуком .

Существующие в природе звуки разделяют на несколько видов.

Звуковой удар – это кратковременное звуковое воздействие (хлопок, взрыв, удар, гром).

Тон – это звук, представляющий собой периодический процесс. Основной характеристикой тона является частота. Тон может быть простым, характеризующимся одной частотой (например, издаваемый камертоном, звуковым генератором), и сложным (издаваемым, например, аппаратом речи, музыкальным инструментом).

Сложный тон можно представить в виде суммы простых тонов (разложить на составляющие тона). Наименьшая частота такого разложения соответствует основному тону , а остальные – обертонам , или гармоникам . Обертоны имеют частоты, кратные основной частоте.

Акустический спектр тона – это совокупность всех его частот с указанием их относительных интенсивностей или амплитуд.

Шум – это звук, имеющий сложную, неповторяющуюся временную зависимость, и представляет собой сочетание беспорядочно изменяющихся сложных тонов. Акустический спектр шума – сплошной (шорох, скрип).

Физические характеристики звука:

а) Скорость (v ). Звук распространяется в любой среде, кроме вакуума. Скорость его распространения зависит от упругости, плотности и температуры среды, но не зависит от частоты колебаний. Скорость звука в воздухе при нормальных условиях равна примерно 330 м/с (» 1200 км/ч). Скорость звука в воде равна 1500 м/с; близкое значение имеет скорость звука и в мягких тканях организма.

б) Интенсивность (I ) – энергетическая характеристика звука – это плотность потока энергии звуковой волны. Для уха человека важны два значения интенсивности (на частоте 1 кГц):

порог слышимости I 0 = 10 –12 Вт/м 2 ; такой порог выбран на основе объективных показателей – это минимальный порог восприятия звука нормальным человеческим ухом; встречаются люди у которых интенсивность I 0 может составлять 10 –13 или 10 –9 Вт/м 2 ;

порог болевого ощущения I max – 10 Вт/м 2 ; звук такой интенсивности человек перестает слышать и воспринимает его как ощущение давления или боли.

в) Звуковое давление (Р ). Распространение звуковой волны сопровождается изменением давления.

Звуковое давление (Р ) – это давление, дополнительно возникающее при прохождении звуковой волны в среде; оно является избыточным над средним давлением среды.

Физиологически звуковое давление проявляется как давление на барабанную перепонку. Для человека важны два значения этого параметра:

– звуковое давление на пороге слышимости – P 0 = 2×10 –5 Па;

– звуковое давление на пороге болевого ощущения – Р m ах =

Между интенсивностью (I ) и звуковым давлением (Р ) существует связь:

I = P 2 /2rv ,

где r – плотность среды, v – скорость звука в среде.

г) Волновое сопротивление среды (R a) – это произведение плотности среды (r )на скорость распространения звука (v ):

R a = rv .

Коэффициент отражения (r ) – величина, равная отношению интенсивностей отраженной и падающей волн:

r = I отр /I пад.

r рассчитывается по формуле:

r = [(R a 2 – R a 1)/(R a 2 + R a 1)] 2 .

Интенсивность преломленной волны зависит от коэффициента пропускания.

Коэффициент пропускания (b ) – величина, равная отношению интенсивностей прошедшей (преломленной) и падающей волн:

b = I прош /I пад.

При нормальном падении коэффициент b рассчитывается по формуле

b = 4(R a 1 /R a 2)/( R a 1 /R a 1 + 1) 2 .

Отметим, что сумма коэффициентов отражения и преломления равна единице, а их значения не зависят от того порядка, в котором звук проходит данные среды. Например, для перехода звука из воздуха в воду значения коэффициентов такие же, как для перехода в обратном направлении.

д) Уровень интенсивности . При сравнении интенсивности звука удобно пользоваться логарифмической шкалой, то есть сравнивать не сами величины, а их логарифмы. Для этого используется специальная величина – уровень интенсивности (L ):

L = lg (I /I 0); L = 2lg (P /P 0). (1.3.79)

Единицей измерения уровня интенсивности является – бел , [Б].

Логарифмический характер зависимости уровня интенсивности от самой интенсивности означает, что при увеличении интенсивности в 10 раз уровень интенсивности возрастает на 1 Б.

Один бел большая величина, поэтому на практике используют более мелкую единицу уровня интенсивности – децибел [дБ]: 1 дБ = 0,1 Б. Уровень интенсивности в децибелах выражается следующими формулами:

L ДБ = 10lg (I /I 0); L ДБ = 20lg (P /P 0).

Если в данную точку приходят звуковые волны от нескольких некогерентных источников , то интенсивность звука равна сумме интенсивностей всех волн:

I = I 1 + I 2 + ...

Для нахождения уровня интенсивности результирующего сигнала используется следующая формула:

L = lg (10 L l +10 L l + ...).

Здесь интенсивности должны быть выражены в белах . Формула для перехода имеет вид

L = 0,l×L ДБ.

Характеристики слухового ощущения:

Высота тона обусловлена, прежде всего, частотой основного тона (чем больше частота, тем более высоким воспринимается звук). В меньшей степени высота зависит от интенсивности волны (звук большей интенсивности воспринимается более низким).

Тембр звука определяется его гармоническим спектром. Различные акустические спектры соответствуют разному тембру, даже в том случае, когда основной тон у них одинаков. Тембр – это качественная характеристика звука.

Громкость звука – это субъективная оценка уровня его интенсивности.

Закон Вебера-Фехнера:

Если увеличивать раздражение в геометрической прогрессии (то есть в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (то есть на одинаковую величину).

Для звука с частотой 1 кГц вводят единицу уровня громкости – фон , которая соответствует уровню интенсивности 1 дБ. Для других частот уровень громкости также выражают в фонах по следующему правилу:

громкость звука равна уровню интенсивности звука (дБ) на частоте 1 кГц, вызывающего у «среднего» человека такое же ощущение громкости, что и данный звук, причем

Е = klg (I/I 0). (1.3.80)

Пример 32. Звук, которому на улице соответствует уровень интенсивности L 1 = 50 дБ, слышен в комнате как звук с уровнем интенсивность L 2 = 30 дБ. Найти отношение интенсивностей звука на улице и в комнате.

Дано: L 1 = 50 дБ = 5 Б;

L 2 = 30 дБ = 3 Б;

I 0 = 10 –12 Вт/м 2 .

Найти: I 1 /I 2 .

Решение. Для того чтобы найти интенсивность звука в комнате и на улице, запишем формулу (1.3.79) для двух рассматриваемых в задаче случаев:

L 1 = lg (I 1 /I 0); L 2 = lg (I 2 /I 0),

откуда выразим интенсивности I 1 и I 2:

5 = lg (I 1 /I 0) Þ I 1 = I 0 ×10 5 ;

3 = lg (I 2 /I 0) Þ I 2 = I 0 ×10 3 .

Очевидно: I 1 /I 2 = 10 5 /10 3 = 100.

Ответ: 100.

Пример 33. Для людей с нарушенной функцией среднего уха слуховые аппараты сконструированы так, чтобы передавать колебания непосредственно на кости черепа. Для костной проводимости порог слухового восприятия на 40 дБ выше, чем для воздушной. Чему равна минимальная интенсивность звука, которую способен воспринимать человек с дефектом слуха?

Дано: L к = L в + 4.

Найти: I min .

Решение. Для костной и воздушной проводимости, согласно (1.3.79),

L к = lg (I min /I 0); L в = lg (I 2 /I 0), (1.3.81)

где I 0 – порог слышимости.

Из условия задачи и (1.3.81) следует, что

L к = lg (I min /I 0) = L в + 4 = lg (I 2 /I 0) + 4, откуда

lg (I min /I 0) – lg (I 2 /I 0) = 4, то есть,

lg [(I min /I 0) : (I 2 /I 0)] = 4 Þ lg (I min /I 2) = 4, имеем:

I min /I 2 = 10 4 Þ I min = I 2 ×10 4 .

При I 2 = 10 –12 Вт/м 2 , I min = 10 –8 Вт/м 2 .

Ответ: I min = 10 –8 Вт/м 2 .

Пример 34. Звук с частотой 1000 Гц проходит через стенку, при этом его интенсивность уменьшается с 10 –6 Вт/м 2 до 10 –8 Вт/м 2 . На сколько уменьшился уровень интенсивности?

Дано: n = 1000 Гц;

I 1 = 10 –6 Вт/м 2 ;

I 2 = 10 –8 Вт/м 2 ;

I 0 = 10 –12 Вт/м 2 .

Найти: L 2 – L 1 .

Решение. Уровни интенсивности звука до и после прохождения стенки найдем из (1.3.79):

L 1 = lg (I 1 /I 0); L 2 = lg (I 2 /I 0), откуда

L 1 = lg (10 –6 /10 –12) = 6; L 2 = lg (10 –8 /10 –12) = 4.

Тогда L 2 – L 1 = 6 – 4 = 2 (Б) = 20 (дБ).

Ответ: уровень интенсивности уменьшился на 20 дБ.

Пример 35. Для людей с нормальным слухом изменение уровня громкости ощущается при изменении интенсивности звука на 26 %. Какому интервалу громкости соответствует указанное изменение интенсивности звука? Частота звука составляет 1000 Гц.

Дано: n = 1000 Гц;

I 0 = 10 –12 Вт/м 2 ;

DI = 26 %.

Найти: DL .

Решение. Для частоты звука, равной 1000 Гц, шкалы интенсивностей и громкостей звука совпадают согласно формуле (1.3.80), так как k = 1,

Е = klg (I/I 0) = lg (I/I 0) = L , откуда

DL = lg (DI/I 0) = 11,4 (Б) = 1 (дБ) = 1 (фон).

Ответ: 1 фон.

Пример 36. Уровень интенсивности приемника составляет 90 дБ. Чему равен максимальный уровень интенсивности трех приемников, работающих одновременно?

Интенсивность звука (абсолютная) - величина, равная отношению потока звуковой энергии dP через поверхность, перпендикулярную направлению распространения звука, к площади dS этой поверхности:

Единица измерения - ватт на квадратный метр (Вт/м 2).

Для плоской волны интенсивность звука может быть выражена через амплитуду звукового давления p 0 и колебательную скорость v :

где Z S - удельное акустическое сопротивление среды.

Тело, являющееся источником звуковых колебаний, излучает энергию, которая переносится звуковыми колебаниями в пространство (среду), окружающее источник звука. Количество звуковой энергии, проходящей в одну секунду через площадь в 1 м 2 , расположенную перпендикулярно направлению распространения звуковых колебаний, называют интенсивностью (а также, силой) звука.

Величину ее можно определить по формуле:

I=P 2 /Cp 0 [Вт/м 2 ] (1.1)

где: Р - звуковое давление, н/м 2 ; С – скорость звука, м/с; р 0 – плотность среды.

Из приведенной формулы видно, что при увеличении звукового давления интенсивность звука возрастает и, следовательно, увеличивается его громкость.

9. Какие виды частотных спектров звука вы знаете?

Частотный спектр звука - график зависимости относительной энергии звуковых колебаний от частоты. Существуют два основных типа таких спектров: дискретный и непрерывный . Дискретный спектр состоит из отдельных линий для частот, разделенных пустыми промежутками. В непрерывном спектре в пределах его полосы присутствуют все частоты.

На практике звуковые волны одной-единственной частоты встречаются редко. Но сложные звуковыеволны можно разлагать на гармоники. Такой метод называется фурье-анализом по имени французского математика Ж.Фурье (1768-1830), который первым применил его (в теории теплоты).

ДВА ТИПА ПЕРИОДИЧЕСКИХ ВОЛН: а - прямоугольные колебания; б - пилообразные колебания. Амплитуда обеих волн равна А, а период колебаний Т - величина, обратная частоте f.

10. Какая полоса частот называется октавой?

Октава - полоса частот, в которой верхняя граничная частота в два раза больше нижней

Октава - единица частотного интервала, равна интервалу между двумя частотами (f2 и f1), логарифм отношения которых (при основании 2) log2(f2/f1)=1, что соответствует f2/f1=2;

11. Что понимают вод порогом слышимости?

Порог слышимости - минимальная величина звукового давления, при которой звук данной частоты может быть ещё воспринят ухом человека. Величину порога слышимости принято выражать в децибелах, принимая за нулевой уровень звукового давления 2·10 −5 Н/м 2 или 20·10 −6 Н/м 2 при частоте 1 кГц (для плоской звуковой волны). Порог слышимости зависит от частоты звука. При действии шумов и других звуковых раздражителей порог слышимости для данного звука повышается, причём повышенное значение порога слышимости сохраняется некоторое время после прекращения действия мешающего фактора, а затем постепенно возвращается к исходному уровню. У разных людей и у одних и тех же лиц в разное время порог слышимости может различаться. Он зависит от возраста, физиологического состояния, тренированности. Измерения порога слышимости обычно производят методами аудиометрии.

12. В каких единицах измеряется уровень звукового давления?

Звуково́е давле́ние - переменное избыточное давление, возникающее в упругой среде при прохождении через неё звуковой волны. Единица измерения - паскаль (Па).

Мгновенное значение звукового давления в точке среды изменяется как со временем, так и при переходе к другим точкам среды, поэтому практический интерес представляет среднеквадратичное значение данной величины, связанное с интенсивностью звука:

где - интенсивность звука, - звуковое давление, - удельное акустическое сопротивление среды, - усреднение по времени.

При рассмотрении периодических колебаний иногда используют амплитуду звукового давления; так, для синусоидальной волны

где - амплитуда звукового давления.



Похожие публикации