Пять звеньев рефлекторной дуги. Понятие о рефлекторной дуге

Нормальная физиология: конспект лекций Светлана Сергеевна Фирсова

3. Рефлекторная дуга, ее компоненты, виды, функции

Деятельность организма – закономерная рефлекторная реакция на стимул. Рефлекс – реакция организма на раздражение рецепторов, которая осуществляется с участием ЦНС. Структурной основой рефлекса является рефлекторная дуга.

Рефлекторная дуга – последовательно соединенная цепочка нервных клеток, которая обеспечивает осуществление реакции, ответа на раздражение.

Рефлекторная дуга состоит из шести компонентов: рецепторов, афферентного (чувствительного) пути, рефлекторного центра, эфферентного (двигательного, секреторного) пути, эффектора (рабочего органа), обратной связи.

Рефлекторные дуги могут быть двух видов:

1) простые – моносинаптические рефлекторные дуги (рефлекторная дуга сухожильного рефлекса), состоящие из 2 нейронов (рецепторного (афферентного) и эффекторного), между ними имеется 1 синапс;

2) сложные – полисинаптические рефлекторные дуги. В их состав входят 3 нейрона (их может быть и больше) – рецепторный, один или несколько вставочных и эффекторный.

Представление о рефлекторной дуге как о целесообразном ответе организма диктует необходимость дополнить рефлекторную дугу еще одним звеном – петлей обратной связи. Этот компонент устанавливает связь между реализованным результатом рефлекторной реакции и нервным центром, который выдает исполнительные команды. При помощи этого компонента происходит трансформация открытой рефлекторной дуги в закрытую.

Особенности простой моносинаптической рефлекторной дуги:

1) территориально сближенные рецептор и эффектор;

2) рефлекторная дуга двухнейронная, моносинаптическая;

3) нервные волокна группы А? (70-120 м/с);

4) короткое время рефлекса;

5) мышцы, сокращающиеся по типу одиночного мышечного сокращения.

Особенности сложной моносинаптической рефлекторной дуги:

1) территориально разобщенные рецептор и эффектор;

2) рецепторная дуга трехнейронная (может быть и больше нейронов);

3) наличие нервных волокон группы С и В;

4) сокращение мышц по типу тетануса.

Особенности вегетативного рефлекса:

1) вставочный нейрон находится в боковых рогах;

2) от боковых рогов начинается преганглионарный нервный путь, после ганглия – постганглионарный;

3) эфферентный путь рефлекса вегетативной нервной дуги прерывается вегетативным ганглием, в котором лежит эфферентный нейрон.

Отличие симпатической нервной дуги от парасимпатической: у симпатической нервной дуги преганглионарный путь короткий, так как вегетативный ганглий лежит ближе к спинному мозгу, а постганглионарный путь длинный.

У парасимпатической дуги все наоборот: преганглионарный путь длинный, так как ганглий лежит близко к органу или в самом органе, а постганглионарный путь короткий.

Из книги Чудо релаксации автора Герберт Бенсон

Основные компоненты Так как выброс в кровь гормонов активности происходит в ответ на любую стрессовую ситуацию, независимо от ее содержания, то я и мои коллеги предположили, что и релаксацию можно вызвать по-разному, не обязательно только через медитацию. В технике

автора Марина Геннадиевна Дрангой

14. Рефлекторная дуга, ее компоненты, виды, функции Деятельность организма – закономерная рефлекторная реакция на стимул. Рефлекс – реакция организма на раздражение рецепторов, которая осуществляется с участием ЦНС. Структурной основой рефлекса является рефлекторная

Из книги Общая хирургия автора Павел Николаевич Мишинькин

11. Наркоз. Его компоненты и виды Наркоз – это искусственно вызываемый глубокий сон с выключением сознания, анальгезией, угнетением рефлексов и миорелаксацией. Наркоз – это сложнейшая многокомпонентная процедура, которая включает в себя:1) наркотический сон (вызывается

Из книги Общая хирургия: конспект лекций автора Павел Николаевич Мишинькин

2. Наркоз. Его компоненты и виды Наркоз – это искусственно вызываемый глубокий сон с выключением сознания, анальгезией, угнетением рефлексов и миорелаксацией. Становится понятным, что современные анестезиологическое обеспечение оперативного вмешательства, или

Из книги Точка боли. Уникальный массаж пусковых точек боли автора Анатолий Болеславович Ситель

Рефлекторная контрактура мышц шеи Рефлекторная контрактура (спазм) мышц шеи обусловлена взаимодействием нервных импульсов в задних корешках шейного отдела спинного мозга. При патологии шейного отдела позвоночника возникает напряжение мышц шеи, что, в свою очередь,

Из книги Детский массаж. Поэтапное руководство автора Елена Львовна Исаева

13. Рефлекторная «ходьба» Врожденный рефлекс ходьбы дети сохраняют до 4 месяцев. Поддерживая малыша под мышки, ведите его по поверхности стола в направлении от себя так, чтобы он переносил вес своего тела с одной ноги на другую. При этом нужно следить за тем, чтобы ребенок

Из книги Диабет. Предупреждение, диагностика и лечение традиционными и нетрадиционными методами автора Виолетта Романовна Хамидова

10. Рефлекторная «ходьба» Поддерживая ребенка под мышки, слегка наклоните его туловище вперед, вызывая шаговый рефлекс.При этом «шаги» малыша можно направлять как от себя, так и к

Из книги Минимум жира, максимум мышц! автора Макс Лис

Из книги Справочник ветеринара. Руководство по оказанию неотложной помощи животным автора Александр Талько

8. Рефлекторная «ходьба» Это упражнение описано в комплексе 2, упражнение

Из книги Нормальная физиология автора Николай Александрович Агаджанян

Компоненты питания Прежде чем говорить об основных компонентах питания, следует еще раз сказать: диабет – заболевание, которое ни в коем случае нельзя игнорировать. А уж тем более недопустимо заниматься самолечением, не обратившись к врачу. Правильную диету может

Из книги Полный медицинский справочник диагностики автора П. Вяткина

Максимизируйте функции мышц, минимизируя функции жировых тканей Этот принцип можно применить к обширному комплексу метаболических процессов, которые принимают решение, произойдут ли рост мускулов и потеря жира. Этот принцип приводит к пониманию, какие процессы следует

Из книги Боль в спине [Вопросы и ответы] автора Сандра Салманс

Рефлекторная анурия Наступает вследствие тормозящего влияния центральной нервной системы на мочеотделение под воздействием различных раздражителей (внезапное охлаждение, насильственные инструментальные вмешательства – бужирование уретры, цистоскопия), а также в

Из книги автора

Рефлекторная регуляция деятельности сердца и сосудистого тонуса Рефлекторные влияния на деятельность сердца и тонус сосудов могут возникать при раздражении различных рецепторов, расположенных как в самом сердце и сосудистой системе, так и в различных органах. Условно

Из книги автора

Рефлекторная регуляция дыхания Нейроны дыхательного центра имеют связи с многочисленными механорецепторами дыхательных путей и альвеол легких и рецепторов сосудистых рефлексогенных зон. Благодаря этим связям осуществляется весьма многообразная, сложная и

Из книги автора

Из книги автора

Рефлекторная (отраженная) боль в спине Вопрос: Раньше вы говорили, что некоторые состояния могут вызвать боль в спине, хотя больной частью тела является вовсе не спина. Что же это на самом деле?Ответ: Таких состояний достаточно много: это могут быть заболевания органов

Нервная деятельность человеческого организма предполагает преобразование поступающих сигналов. Вследствие произошедших преобразований станут ответные реакции на раздражителей. В целях их осуществления организмом необходимо наличие налаженной взаимосвязи от получения импульса до реакции на раздражителя.

Практически все рефлексы замыкаются внутри головного и спинного мозга. Однако существуют такие, у которых дуга замкнута вне ЦНС в вегетативных ганглиях либо даже в границах конкретного внутреннего органа (к примеру, сердца). Надлежащее функционирование рефлексов является основой полноценного поступления импульсов, что обусловливает деятельность ЦНС.

Общие сведения

Рефлекс — целостная реакция на раздражитель, которая проводится ЦНС. Он проявляется контролируемыми и неконтролируемыми движениями, в работе организма, в поведенческих переменах, эмоциях и восприимчивости.

Восприятие раздражителя осуществляется благодаря деятельности рецепторов. Ими являются нервные волокна и структуры, которые восприимчивы к раздражителю. Данные рецепторы способны воспринимать некоторые из них – звук, свет, температурные изменения, давление и т.д. Отталкиваясь от данных критериев рецепторы разделяются на соответствующие разновидности.

В процессе раздражения внутри рецептора осуществляется возбуждение. Он начинает преобразовывать энергию в импульсы электрического происхождения. Воспринятые данные поступают в качестве электрического сигнала и направляется по нервным окончаниям нейронов до контактирования с остальными нервными волокнами. Импульс передается на вставочные нейроны, а после – на двигательные. Он поступает таким же образом что и от восприимчивых нейронов.

Нейронные цепи попадают в центральную НС, где формируют нервный центр. Полученные данные обрабатываются, вследствие чего образуется команда управления. Далее она направляется в рабочий орган, где импульс провоцирует мышечное сокращение.

Виды рефлексов

Рефлекс предполагает ответную реакцию организма на перемены во внешнем либо внутреннем окружении вследствие влияния на рецепторы. Они располагаются на верхнем слое кожного покрова, формируя экстерорецептивные рефлексы внутри сосудов.

Ответ на раздражителей по своему происхождению может быть условным либо безусловным.

К последним относят рефлексы, чья дуга образована еще до появления на свет. В условных она формируется под воздействием различных наружных провоцирующих факторов.

Классификация

Дуга является путем, через который импульс направляется к рабочему органу. Она состоит из нейронных цепей. Непосредственно они и их окончания формируют путь, через который передается сигнал в процессе осуществления какого-либо рефлекса. Существует определенная классификация, которая разделяет данные образования на виды.

Полисинаптические дуги

К данной разновидности относят 3-нейронную дугу, внутри которой посреди рецептора и эффектора расположен нервный центр. Ее проявлением станет отдергивание конечности как ответ на болевые ощущения.

Полисинаптическая дуга обладает специфической структурой. Подобная цепь непременно идет через мозг. С учетом расположения нейронных цепей, которые обрабатывают импульс, выделяются:

  • спинномозговые;
  • бульбарные;
  • мезэнцефальные;
  • кортикальные.

Когда рефлекс воспринимают верхние отделы ЦНС, то в его обрабатывании участвуют нейронные цепи в нижних частях.

В независимости от рефлекса, когда нарушено постоянство дуги, он исчезает. Зачастую подобный разрыв может произойти вследствие травматизма или заболевания. В сложных рефлексах в процесс реакции бывают включены прочие органы, что способно вызвать поведенческое изменение внутри организма.

Дуга мигательного рефлекса

Данная реакция организма из-за собственной сложности дает возможность исследовать подобное передвижение возбуждения по дуге, которое изучить в прочих ситуациях крайне сложно. Она начинается с приведения в активность процессов возбуждения и торможения в одно и то же время. С учетом характера поражения могут прийти в активность разные участки дуги. Вызвать мигательный рефлекс способен тройничный нерв - реакция на касание, слуховой - реакция на шум, зрительный - ответная рекция на световые амплитуды либо предполагаемую угрозу.

Ответная реакция характеризуется ранней и поздней составляющими. Вторая несет ответственность за торможение реакции. К примеру, прикосновение к кожному покрову век. Глаз закроется моментально. При вторичном прикосновении дермы рефлекс будет более замедленным. Когда обработаны полученные данные, осуществляется контролируемое замедление полученного рефлекса. Данное замедление, к примеру, приучает женщин крайне быстро использовать косметику для глаз, превозмогая природное стремление века закрыть глазную роговую оболочку. Прочие вариации таких дуг тоже исследуются, но они часто обладают чересчур сложной структурой и не отличаются наглядностью.

Моносинаптическая

Образование, состоящее из 2 нейронных цепей, достаточных для осуществления сигнала. Яркий пример такой структуры — коленный рефлекс. Характерной чертой будет отсутствие подключения к реакции отделов головного мозга. Подобный рефлекс относят к безусловным.

Непосредственно такая реакция будет проверена специалистом в качестве показателя состояния соматосенсорной НС. В процессе удара молоточком по колену, начинает растягиваться мышца. Раздражитель направится через афферентное волокно в спинномозговой узел, а импульс в эфферентное волокно. В данном опыте кожные рецепторы не задействованы, однако итог будет виден и сила ответа легко дифференцируется.

Вегетативная дуга может прерываться на участки, формируя соединение, в то время как внутри анимальной системы направление, которое преодолевается сигналом, не будет прервано чем-либо.

Уровни рефлекторной дуги

Данное образование является анатомической структурой реакции. Состоит из цепи нервных окончаний, что позволяет проводить сигналы в рабочий орган.

Цепь включает следующие звенья:

  • Рецептор, который воспринимает раздражение (внутренний либо внешний). Он отвечает за выработку нервных сигналов.
  • Чувствительный путь, который состоит из нейронов. Непосредственно через них импульс направляется в .
  • Нервный центр, обладающий вставочными и двигательными нейронами. Первые направляют импульс ко последним, а те образуют команды.
  • Центробежный путь. Через него сигнал направляется в рабочий орган.
  • Исполнительный орган.

Необходимым условием рефлекса является целостная структура каждого участка дуги. Выпадение одного (вследствие травматизма либо прочих обстоятельств) сопряжено с отсутствием самого рефлекса.

Свойства системы

Рассматриваемое образование обладает следующими характеристиками:

  • Адекватность. Возможность реагирования на особое раздражение, которое сформировано для данного рецептора эволюционным способом (реакция глаз на световые изменения).
  • Полимодальность. Возможность реагирования на раздражение.
  • Возможность реакции несколькими сигналами на раздражителя. От некоторых рецепторов направляются частые сигналы, от 2 — редкие, от 3 — залпами. Ввиду этого ЦНС способна дифференцировать раздражение (боль). Частота сигнала зависит от силы раздражения.
  • Возможность преобразования энергии в сигнал.
  • Внезапное возбуждение. Самовозбуждение без влияния раздражителей. Спровоцировать это может повышенный тонус волокон вегетативной НС.
  • Флюктуация. Возможность изменения уровня собственного возбуждения. Колеблется от состояния волокон вегетативной НС.
  • Приспособление. Вероятность адаптации к продолжительному действию раздражения.

Указанные характеристики имеют важное значение в функционировании рефлекторной дуги, что в свою очередь является основой надлежащей работы ЦНС.

Реализация рефлекторной дуги

Как реакция на раздражителя возбуждается, происходят нервные процессы, формирующие либо усиливающие функцию органа. Основой возбудимости станет перемена содержания анионов и катионов в мембране аксонов.

В 2-нейронной дуге дендрит клетки обладает существенной длиной, он направляется на периферию вместе с восприимчивыми волокнами нервных окончаний. Оканчивается специфическим приспособлением для обработки раздражителей — рецептором. Возбудимость от него по нервному окончанию центростремительно поступает в ганглий. Отросток нейрона становится составляющей заднего корешка.

Данное волокно поступает в двигательный нейрон переднего рога и посредством синапса, где импульс передается посредством медиатора, контактирует с телом двигательного . Его отросток становится составляющей переднего корешка, через который центробежно импульс идет в рабочий орган. Вследствие этого мышца сокращается.

Возбуждение направляется через нервные волокна, обособленно и не распространяется на остальные составляющие указанного процесса. Это предотвращают оболочки, которые покрывают данные волокна.

Значение торможения РД

Торможение является противоположным процессом возбуждению. Оно заканчивает функционирование второго, замедляет либо предотвращает его появление. Возбуждение в одном центре НС может сопровождать торможение в другом: сигналы, которые поступают в ЦНС, способны замедлить различного рода рефлексы.

Каждый из процессов связан между собой, что гарантирует согласованное функционирование внутренних органов и организма полностью. К примеру, в процессе двигательной активности человека происходит чередование мышечного сокращения сгибателей и разгибателей: во время возбуждения сгибательного центра сигналы направляются к мышцам, которые отвечают за этот процесс. В то же время разгибательный центр замедляет и не отправляет сигналы к разгибательным мышцам, в итоге они расслабятся.

Взаимодействие, которое определяет возбудительные и тормозящие процессы, то есть саморегуляцию работы внутренних органов, происходит посредством непосредственных связей ЦНС и рабочего органа.

Функционирования организма представляет собой обусловленную рефлекторную реакцию на раздражение. Рефлекс является его реакцией на раздражителей, осуществляющейся при помощи центральной НС. Его анатомическую основу составляет рефлекторная дуга. Она представляет собой последовательную цепь нервных клеток, обеспечивающих реакцию, ответа на раздражение рецепторов. Для осуществления надлежащей реакции организма требуется наличие налаженного взаимодействия между получением импульса до ответа на раздражителя.

Каждый из нас хоть раз в жизни произносил фразу «у меня рефлекс», но мало кто понимал, о чем именно говорит. Практически вся наша жизнь основана на рефлексах. В младенчестве они помогают нам выжить, во взрослой жизни - эффективно работать и сохранять здоровье. Подчиняясь рефлексам, мы дышим, ходим, едим и многое другое.

Рефлекс

Рефлекс - это ответная реакция организма на раздражитель, осуществляемая Проявляются они началом или прекращением какой-либо деятельности: движение мышц, секреция желез, изменением сосудистого тонуса. Это позволяет быстро подстраиваться под изменения внешней среды. Значение рефлексов в жизни человека настолько велико, что даже частичное их исключение (удаление во время операции, травма, инсульт, эпилепсия), приводят к стойкой инвалидности.

Изучением занимались И.П. Павлов и И.М. Сеченов. Они оставили после себя много информации для будущих поколений врачей. Раньше не разделяли психиатрию и неврологию, но после их работы невропатологи стали практиковать отдельно, накапливать опыт и анализировать его.

Виды рефлексов

Глобально рефлексы делятся на условные и безусловные. Первые возникают у человека в процессе жизни и связаны, по большей части, с тем, чем он занимается. Некоторые из приобретенных навыков со временем исчезают, и их место занимают новые, более необходимые в данных условиях. К ним относятся езда на велосипеде, танцы, игра на музыкальных инструментах, ремесленное дело, вождение автомобиля и многое другое. Такие рефлексы ее иногда называют «динамический стереотип».

Бессознательные же рефлексы заложены во всех людях одинаково и имеются у нас с момента рождения. Они сохраняются в течение всей жизни, так как именно они поддерживают наше существование. Люди не задумываются о том, что им нужно дышать, сокращать сердечную мышцу, держать свое тело в пространстве в определенной позе, моргать, чихать и т.д. Это происходить автоматически, потому что природа позаботилась о нас.

Классификация рефлексов

Существует несколько классификаций рефлексов, которые отражают их функции или указывают на уровень восприятия. Можно привести некоторые из них.

По биологическому значению выделяют рефлексы:

  • пищевые;
  • защитные;
  • половые;
  • ориентировочные;
  • рефлексы определяющие положение тела (позотонические);
  • рефлексы для движения.

По расположению рецепторов, которые воспринимают раздражитель, можно выделить:

  • экстерорецепторы, находящиеся на коже и слизистых;
  • интерорецепторы, располагающиеся во внутренних органах и сосудах;
  • проприорецепторы, воспринимающие раздражение мышц, суставов и сухожилий.

Зная три представленных классификации можно любой рефлекс охарактеризовать: приобретенный он или врожденный, какую функцию выполняет и как его вызвать.

Уровни рефлекторной дуги

Для невропатологов важно знать уровень, на котором замыкается рефлекс. Это помогает точнее определить область поражения и предсказать ущерб для здоровья. Различают спинальные рефлексы, которых располагаются в Они отвечают за механику тела, сокращение мышц, работу тазовых органов. Поднимаясь на уровень выше - в продолговатый мозг, обнаруживаются бульбарные центры, регулирующие слюнные железы, некоторые мышцы лица, функцию дыхания и сердцебиения. Повреждение этого отдела практически всегда заканчивается смертельным исходом.

В среднем мозге замыкаются мезэнцефальные рефлексы. В основном это рефлекторные дуги черепных нервов. Различают так же диэнцефальные рефлексы, конечный нейрон которых располагается в промежуточном мозге. И кортикальные рефлексы, которые управляются корой головного мозга. Как правило, это приобретенные навыки.

Следует учитывать, что строение рефлекторной дуги с участием высших координирующих центров нервной системы всегда включает в себя и нижние уровни. То есть кортикоспинальный путь будет проходить через промежуточный, средний, продолговатый и спинной мозг.

Физиология нервной системы устроена таким образом, что каждый рефлекс дублируется несколькими дугами. Это позволяет сохранять функции организма даже при травмах и болезнях.

Рефлекторная дуга

Рефлекторная дуга - это путь передачи от воспринимающего органа (рецептора) к исполняющему. Рефлекторная нервная дуга состоит из нейронов и их отростков, которые образуют цепь. Данное понятие было введено в медицину М.Холлом в середине девятнадцатого века, но со временем, оно преобразовалось в «рефлекторное кольцо». Было принято решение, что это термин полнее отражает процессы, которые происходят в нервной системе.

В физиологии различают моносинаптические, а так же двух- и трехнейронные дуги, иногда встречаются полисинаптические рефлексы, то есть включающие более трех нейронов. Самая простая дуга состоит из двух нейронов: воспринимающего и двигательного. Импульс проходит по длинному отростку нейрона к который, в свою очередь, передает его к мышце. Такие рефлексы, как правило, безусловные.

Отделы рефлекторной дуги

Строение рефлекторной дуги включает в себя пять отделов.

Первый - это рецептор, который воспринимает информацию. Он может быть расположен как на поверхности тела (кожа, слизистые), так и в его глубине (сетчатка, сухожилья, мышцы). Морфологически рецептор может выглядеть, как длинный отросток нейрона или скопление клеток.

Второй отдел - чувствительное которое передает возбуждение дальше по дуге. Тела этих нейронов располагаются за пределами в спинномозговых узлах. Их функция подобна стрелке на железнодорожной колее. То есть данные нейроны распределяют информацию, которая к ним поступает, на разные уровни ЦНС.

Третий отдел - место переключения чувствительного волокна на двигательное. Для большинства рефлексов оно находится в спинном мозге, но некоторые сложные дуги проходят сразу через головной мозг, например защитный, ориентировочный, пищевой рефлексы.

Четвертый отдел представлен двигательным волокном, который доставляет нервный импульс от спинного мозга к эффектору или мотонейрону.

Последний, пятый отдел - это орган, который осуществляет рефлекторную деятельность. Как правило, это мышца или железа, например зрачок, сердце, половые или слюнные железы.

Физиологические свойства нервных центров

Физиология нервной системы изменчива на разных ее уровнях. Чем позже сформирован отдел, тем сложнее его работа и гормональная регуляция. Выделяют шесть свойств, которые присущи всем нервным центрам, независимо от их топографии:

    Проведение возбуждения только от рецептора к эффекторному нейрону. Физиологически это обусловлено тем, что синапсы (места соединения нейронов) действуют только в одном направлении и не могут изменить его.

    Задержку проведения нервного возбуждения тоже связывают с наличием большого количества нейронов в дуге и, как следствие, синапсов. Для того чтобы синтезировать медиатор (химический раздражитель), выпустить его в синаптическую щель и провести, таким образом, возбуждение, требуется больше времени, чем если бы импульс распространялся просто по нервному волокну.

    Суммация возбуждений. Такое случается, если раздражитель слабый, но постоянно и ритмично повторяющийся. В этом случае медиатор накапливается в синаптической мембране, пока его не будет значительное количество, и только потом передает импульс. Самый простой пример этого явления - акт чихания.

    Трансформация ритма возбуждений. Строение рефлекторной дуги, а так же особенности нервной системы таковы, что даже на медленный ритм раздражителя она отвечает частыми импульсами - от пятидесяти до двухсот раз в секунду. Поэтому мышцы в человеческом организме сокращаются тетанически, то есть прерывисто.

    Рефлекторное последействие. Нейроны рефлекторной дуги находятся в возбужденном состоянии еще некоторое время после прекращения действия раздражителя. На этот счет существуют две теории. Первая утверждает, что нервные клетки передают возбуждение на доли секунды дольше, чем действует раздражитель, и тем самым пролонгируют рефлекс. Вторая имеет в своей основе рефлекторное кольцо, которое замыкается между двумя промежуточными нейронами. Они передают возбуждение до тех пор, пока один из них не сможет сгенерировать импульс, либо пока извне не поступит тормозящий сигнал.

    Утопление нервных центров возникает при длительном раздражении рецепторов. Проявляется это сначала снижением, а потом и вовсе отсутствием чувствительности.

Вегетативная рефлекторная дуга

По типу нервной системы, которая реализует возбуждение и проводит нервный импульс, выделяют соматические и вегетативные нервные дуги. Особенностью является то, что рефлекс к скелетной мускулатуре не прерывается, а вегетативный обязательно переключается через ганглий. Все нервные узлы могут быть разделены на три группы:

  • Вертебральные (позвоночные) ганглии имеют отношения к симпатической нервной системе. Они располагаются по обеим сторонам от позвоночника, формируя столбы.
  • Предпозвоночные узлы располагаются на некотором расстоянии и от позвоночного столба, и от органов. К ним относят ресничный узел, шейные симпатические узлы, солнечное сплетение и брыжеечные узлы.
  • Внутриорганные узлы, как не сложно догадаться, располагаются во внутренних органах: мышце сердца, бронхов, кишечной трубке, железах внутренней секреции.

Эти различия между соматической и вегетативной системой уходят глубоко в филогенез, и связаны со скоростью распространения рефлексов и их жизненной необходимостью.

Реализация рефлекса

Извне на рецептор рефлекторной дуги поступает раздражение, которое вызывает возбуждение и возникновение нервного импульса. В основе этого процесса лежит изменение концентрации ионов кальция и натрия, которые находятся с обеих сторон мембраны клетки. Изменение количества анионов и катионов вызывает сдвиг электрического потенциала и появление разряда.

От рецептора возбуждение, двигаясь центростремительно, поступает в афферентное звено рефлекторной дуги - спинномозговой узел. Отросток его заходит в спинной мозг к чувствительным ядрам, а затем переключается на моторные нейроны. Это центральное звено рефлекса. Отростки двигательных ядер выходят из спинного мозга вместе с другими корешками и направляются к соответствующему исполнительному органу. В толще мышц волокна заканчиваются двигательной бляшкой.

Скорость передачи импульса зависит от типа нервного волокна и может колебаться от 0,5 до 100 метров в секунду. Возбуждение не переходит на соседние нервы благодаря наличию оболочек, изолирующих отростки друг от друга.

Значение торможения рефлекса

Так как нервное волокно способно долго сохранять возбуждение, то торможение является важным приспособительным механизмом организма. Благодаря ему, нервные клетки не испытывают постоянного перевозбуждения и усталости. Обратная афферентация, благодаря которой и реализуется торможение, участвует в образовании условных рефлексов и снимает с ЦНС необходимость анализировать второстепенные задачи. Это обеспечивает координацию рефлексов, например, движений.

Обратная афферентация так же предотвращает распространение нервных импульсов на другие структуры нервной системы, сохраняя их работоспособность.

Координация работы нервной системы

У здорового человека все органы действуют слажено и согласовано. Они подчиняются единой системе координации. Строение рефлекторной дуги - это частный случай, который подтверждает единое правило. Как и в любой другой системе, в человеке тоже существует ряд принципов или закономерностей, по которым она действует:

  • конвергенция (импульсы от разных участков могут поступать к одному участку ЦНС);
  • иррадиация (длительное и сильное раздражение вызывает возбуждение соседних участков);
  • одних рефлексов другими);
  • общий конечный путь (основан на несоответствии количества афферентных нейронов к эфферентным);
  • обратная связь (саморегуляция системы исходя из количества принятых и сгенерированных импульсов);
  • доминанта (наличие главного очага возбуждения, который перекрывает остальные).

Рефлеторная дуга состоит из:

– рецепторов - воспринимающих раздражение.

– чувствительного (центростремительного, афферентного) нервного волокна, передающего возбуждение к центру

– нервного центра, где происходит переключение возбуждения с чувствительных нейронов на двигательные

– двигательного (центробежного, эфферентного) нервного волокна, несущего возбуждение от центральной нервной системы к рабочему органу

– эффектора- рабочего органа, который осуществляет эффект, реакцию в ответ на раздражение рецептора.

Рецепторы и рецептивные поля

Рецептор - клетки воспринимающие раздражение.

Рецептивное поле – это анатомическая область при раздражении которой вызывается данный рефлекс.

Рецептивные поля первично-чувствующих рецепторов организованы наиболее просто. Например, тактильное или ноцицептивное рецептивное поле кожной поверхности представляет собой разветвления одиночного чувствительного волокна.

Рецепторы, расположенные в различных участках рецептивного поля, имеют различную чувствительность к адекватному раздражению. В центре рецептивного поля обычно находится высокочувствительная зона, а ближе к периферии рецептивного поля чувствительность падает.

Рецептивные поля вторично-чувствующих рецепторов организованы аналогичным образом. Отличие состоит в том, что разветвления афферентного волокна оканчиваются не свободно, а имеют синаптические контакты с чувствительными клетками - рецепторами. Так организованы вкусовые, вестибулярные, акустические рецептивные поля.

Перекрытие рецептивных полей. Один и тот же участок чувствительной поверхности (например, кожи или сетчатки глаза) иннервируется несколькими чувствительными нервными волокнами, которые своими разветвлениями перекрывают рецептивные поля отдельных афферентных нервов.

Благодаря перекрытию рецептивных полей увеличивается общая сенсорная поверхность организма.

Классификация рефлексов.

По типу образования:

Условные (приобретенные)- отозваться на имя, слюна у собаки на свет.

Безусловные (врожденные)- мигательный глотательный, коленный.

По располож. рецепторов:

Экстероцептивные (кожные, зрительные, слуховые, обонятельные),

Интероцептивные (с рецепторов внутренних органов)

Проприоцептивные (с рецепторов мышц, сухожилий, суставов)

По эффекторам:

Соматические, или двигательные, (рефлексы скелетных мышц);

Вегетативные внутренних органов - пищеварительные, сердечно-сосудистые, выделительные, секреторные и др.

По биологическому происхождению:

Оборонительные, или защитные (ответ на тактильное болевое раздд.)

Пищеварительные(раздр. Рецепторов полости рта.)

Половые (гормоны в кровь)

Ориентировочные (поворот головы, тела)

Двигательные

Позотонические (поддерж. позы Тела)

По количеству синапсов:

Моносинаптические, дуги которых состоят из афферентного и эфферентного нейронов (например, коленный).

Полисинаптические, дуги которых содержат также 1 или несколько промежуточных нейронов и имеют 2 или несколько синаптических переключений. (сомат. и вегет. реф-сы).

Дисинаптические (2 синапса, 3 нейрона).

По характеру ответной реакции:

Моторные \ двигательные(мышечные сокращения)

Секреторные (выделение секреторной железы)

Сосудодвигательные (расширение и сужение сосудов)

Сердечные (изм. Работы мышци сердца.)

По длительности протекания:

фазные (быстрые) отдергивание руки

тонические (медленные) поддержание позы

По расположению нервного центра:

Спинальные (участвуют нейроны СМ) - одергивание Руки от горячего 2-4 сегменты, коленный рефлекс.

Рефлексы в головном мозге

Бульбарные (продолговатый мозг) - смыкание век при прикос. к роговице.

Мезенцифальные (средний м)- зрение ориентир.

Диэнцифальные (промежуточный мозг) – обоняние

Кортикальные (кора БП ГМ) – услов. реф.

Свойства нервных центров.

1. Односторонность распространения возбуждения .

Возбуждение передается с афферентного на эфферентный нейрон (причина: строение синапса).

Замедление передачи возбуждения.

Обусл. Наличием множества синапсов, также зависит от силы раздр.(суммация) и от физич-го сост. ЦНС(утомляемость).

3.Суммация сложение эффектов, ниже пороговых раздражителей.

Временная: реф. От пред. Имп-са еще не прошел, а след. Уже пришел.

Пространственная: смешение неск. Подпор. Им –сов обусл. Образов. Реф-са.

Центр облегчения и окклюзия.

Центр облегчение -возникает при действии оптимального раздражителя (max ответная реакция)- появл. Центр облегчения.

При действии min раздр. (сниж отв. Рекция) возник окклюзия.

Усвоение и трансформация ритма возбуждения.

Трансформация - изменение частоты нервного импульса при прохождении через нервный центр. Частота может повышаться или понижаться.

Усвоение (танец, режим дня)

Последствие

Запаздание окончания ответной реакции после прекращения действия раздражения. Связано с циркул-й нерв. Имп. По замкн. Цепям нейронов.

Кратковременное (доли секунды)

длительное (секунды)

Ритмическая активность нервных центров.

Увеличение или уменьшение частоты нервных импульсов связанных со свойствами синапса и интегративной длительностью нейронов.

8. Пластичность нервных центров.

Способность перестраивать функциональность свойства для более эффективной регуляции функций,осуществления новых, ранее не свойственных этому центру рефлексов или восстановления фунцкий. В основе пласт синпсов- изменение молл-й стру-ры.

Изменения возбудимости под действием химических веществ.

Высокая чуст-ть к дейст.различ-х ве-в.

Утомляемость нервных центров.

Связана с высокой утомляемостью синапсов. Сниж чувств. Рецепторов.

Общие принципы координационной деятельности ЦНС.

Торможение- особый нер. проц. проявл-ся в уменьшении или полном исчещновении отв. реакции.

Принцип конвергенции

Конвергенция - это схождение импульсов поступающих по различным афферентным путям в каком-либо одном центральном нейроне или нервном центре.

2 . Принцип конвергенции тесно связан с принципом общего конечного пути открытым Шерринктоном. Множество разнообразных раздражителей может вызвать возбуждение одного и того же мотонейрона и одну и ту же двигательную реакцию. Этот принцип обусловлен неодинаковым колличеством афферентных и эфферентных путей.

Принцип дивергенции

Это контактирование одного нейрона с множеством других.

Иррадиация и концентрация возбуждения.

Распространение процесса возбуждения на другие нервные центры, называется иррадиацией (избирательная - в одном направлении, генерализованная - обширная).

Иррадиация через некоторое время сменяется явлением концентрации возбуждения в том же исходном пукте ЦНС.

Процесс иррадиации игрет положительную (формирование новых условных рефлексов) и отрицательную (нарушение тонких взаимоотношений сложившихся между процессами возбуждения и торможения, что приводит к расстройству двигательной деятельности) роли.

Принцип реципрокности (вытормаживает)

Возбуждение одних клеток вызывает торможение других через вставочный нейрон.

Принцип доминанты

Ухтомский сформулировал принцип доминанты как рабочий принцип деятельности нервных центров. Термином доминанта обозначает господствующий очаг возбуждения ЦНС, который определяет текущую деятельность организма.

Принципы доминантного очага :

Повышенная возбудимость нервных центров;

Стойкость возбуждения возбуждения во времени;

Способность к суммации посторонних раздражителей;

Инерция (способность длительного сохранения возбуждения после окончания действия раздражения); способность вызывать сопряженные торможения.

Рефлекторная дуга - это цепь нейронов от периферического рецептора через центральную нервную систему к периферическому эффектору. Элементами рефлекторной дуги являются периферический рецептор, афферентный путь, один или больше вставочных нейронов, эфферентный путь и эффектор.

Все рецепторы участвуют в тех или иных рефлексах, так что их афферентные волокна служат афферентным путем соответствующей рефлекторной дуги. Число вставочных нейронов всегда больше одного, кроме моносинаптического рефлекса растяжения. Эфферентный путь представлен либо двигательными аксонами, либо постганглионарными волокнами вегетативной нервной системы, а эффекторами являются скелетные мышцы и гладкие мышцы, сердце, железы.

Время от начала стимула до реакции эффектора называется временем рефлекса. В большинстве случаев оно определяется в основном временем проведения в афферентных и в эфферентных путях и в центральной части рефлекторной дуги, к которому следует прибавить время трансформации стимула в рецепторе в распространяющийся импульс, время передачи через синапсы в центральной нервной системе (синаптическая задержка), время передачи от эфферентного пути к эффектору и время активации эффектора.

Рефлекторные дуги делятся на несколько типов

1. Моносинаптические рефлекторные дуги - в такой дуге участвует только один синапс, находящийся в центральной нервной системе. Такие рефлексы весьма обычны у всех позвоночных, они участвуют в регуляции мышечного тонуса и позы (например, коленный рефлекс). В этих дугах нейроны не доходят до головного мозга, и рефлекторные акты осуществляются без его участия, так как они стереотипны и не требуют обдумывания или сознательного решения. Они экономны в отношении числа участвующих центральных нейронов и обходятся без вмешательства головного мозга.

2. Полисинаптические спинномозговые рефлекторные дуги - в них участвуют по меньшей мере два синапса, находящиеся в ЦНС, так как в дугу включен третий нейрон - вставочный, или промежуточный нейрон. Здесь имеются синапсы между сенсорным нейроном и вставочным нейроном и между вставочным и двигательным нейронами. Такие рефлекторные дуги позволяют организму осуществлять автоматические непроизвольные реакции, необходимые для приспособления к изменениям внешней среды (например, зрачковый рефлекс или сохранение равновесия при передвижении) и к изменениям в самом организме (регуляция частоты дыхания, кровяного давления и т.п.).

3. Полисинаптические рефлекторные дуги с участием как спинного, так и головного мозга - в рефлекторных дугах этого типа имеется синапс в спинном мозге между сенсорным нейроном и нейроном, посылающим импульсы в головной мозг.

Рефлексы поддаются классификации по различным критериям. Так, в зависимости от уровня замыкания дуги, т.е. по месту локализации рефлекторного центра, рефлексы подразделяют на спинальные (рефлекс замыкается в спинном мозге), бульбарные (рефлекторный центр - продолговатый мозг), мезэнцефальные (замыкание рефлекторной дуги осуществляется в среднем мозге), диэнцефальные и кортикальные рефлекторные центры находятся в конечном мозге и коре больших полушарий соответственно.

По эффекторному признаку они бывают соматические, когда эфферентный путь рефлекса осуществляет двигательную иннервацию скелетной мускулатуры, и вегетативные, когда эффекторами являются внутренние органы.

В зависимости от вида раздражаемых рецепторов рефлексы делят на экстероцептивные (если рецептор воспринимает информацию из внешней среды), проприоцептивные (рефлекторная дуга начинается от рецепторов костно-мышечно-сухожильного аппарата) и интероцептивные (от рецепторов внутренних органов).

Интероцептивные рефлексы, в свою очередь, подразделяются на висцеро-висцеральные (рефлекторная дуга связывает два внутренних органа), висцеро-мышечные (рецепторы находятся на мышечно-сухожильном аппарате, эффектор - внутренний орган) и висцеро-кутанные (рецепторы локализованы в коже, рабочие органы - внутренности).

По Павлову, рефлексы делят на условные (выработанные в течение жизни, специфичные для каждого индивида) и безусловные (врожденные, видоспецифичные: пищевые, половые, оборонительно-двигательные, гомеостатические и др.).

Независимо от вида рефлекса его рефлекторная дуга содержит рецептор, афферентный путь, нервный центр, эфферентный путь, рабочий орган и обратную связь. Исключением являются аксон-рефлексы, рефлекторная дуга которого располагается в пределах одного нейрона: чувствительные отростки генерируют центростремительные импульсы, которые, проходя через тело нейрона, по аксону распространяются в центральную нервную систему, а по ответвлению аксона импульсы доходят уже до эффектора. Подобные рефлексы относят к функционированию метасимпатической нервной системы, через них, например, осуществляются механизмы регулирования тонуса сосудов и деятельности желез кожи.

Функцию восприятия раздражения и превращения его в энергию возбуждения выполняют рецепторы рефлекторных дуг. Рецепторная энергия возбуждения носит характер локального ответа, что имеет значение в градации возбуждения по силе.

Исходя из строения и происхождения рецепторов, их можно разделить на первично-чувствующие, вторично-чувствующие и свободные нервные окончания. У первых в качестве рецептора действует сам нейрон (развивается из нейроэпителия), т.е. между раздражителем и первым афферентным нейроном нет структур-посредников. Локальный ответ первично-чувствующих рецепторов - рецепторный потенциал - является и генераторным потенциалом, т.е. вызывающим возникновение потенциала действия на мембране афферентного волокна. К первично-чувствующим рецепторам относят зрительные, обонятельные, хемо- и барорецепторы сердечно-сосудистой системы.

Вторично-чувствующие клетки представляют собой специальные структуры ненервного происхождения, которые с помощью синаптических нейрорецепторных контактов взаимодействуют с дендритами псевдоуниполярных чувствительных клеток. Рецепторный потенциал, возникающий под действием раздражителя, во вторично-чувствующих клетках не является генераторным и не вызывает возникновения потенциала действия на мембране афферентного волокна. Возбуждающий постсинаптический потенциал возникает лишь через механизм выделения рецепторной клеткой медиатора. Градация силы раздражителя осуществляется посредством экскреции различных количеств медиатора (чем больше выделяется медиатора, тем сильнее раздражитель).

Ко вторично-чувствующим клеткам относят слуховые, вестибулярные, каротидные, тактильные и другие рецепторы. Иногда в связи с особенностями функционирования к этой группе относят фоторецепторы, которые с анатомической точки зрения и в связи с происхождением из нейроэпителия являются вторично-чувствующими.

Свободные нервные окончания представляют собой ветвления дендритов псевдоуниполярных чувствительных клеток и локализуются почти во всех тканях человеческого тела.

По энергетической природе раздражителя, на который реагирует рецептор, они делятся на механорецепторы (тактильные, барорецепторы, волюморецепторы, слуховые, вестибулярные; они, как правило, воспринимают механическое раздражение при помощи выростов клетки), хеморецепторы (обонятельные), хеморецепторы сосудов, центральной нервной системы, фоторецепторы (воспринимают раздражение через палочко- и колбочковид-ные выросты клетки), терморецепторы (реагируют на изменение «тепло-холод» - тельца Руфини и колбы Краузе слизистых оболочек) и ноцицепторы (неинкапсулированные болевые окончания).

Пострецепторным образованием рефлекторных дуг является афферентный путь, образованный псевдоуниполярным чувствительным нейроном, тело которого лежит в спинальном ганглии, а аксоны образуют задние корешки спинного мозга. Функция афферентного пути - проведение информации к центральному звену, более того, на данном этапе происходит кодирование информации. Для этих целей в организме позвоночных применяется двоичный код, составленный из пачек (залпов) импульсов и промежутков между ними. Существует два основных вида кодирования: частотное и пространственное.

Первое заключается в формировании различного числа импульсов в пачке, разного количества пачек, их длительности и длительности перерывов между ними в зависимости от силы нанесенного на рецептор раздражения. Пространственное кодирование осуществляет градацию силы раздражителя, задействуя различное количество нервных волокон, по которым одновременно проводится возбуждение.

В состав афферентного пути входят преимущественно А-б, А-в и А-д волокна.

Пройдя по волокнам, нервный импульс попадает в рефлекторный центр, который в анатомическом смысле представляет собой совокупность нейронов, расположенных на определенном уровне центральной нервной системы и принимающих участие в формировании данного рефлекса. Функция рефлекторного центра состоит в анализе и синтезе информации, а также в переключении информации с афферентного на эфферентный путь.

В зависимости от отдела нервной системы (соматического и автономного) рефлексы, центр которых расположен в спинном мозге, различаются по локализации вставочных нейронов. Так, для соматической нервной системы рефлекторный центр расположен в промежуточной зоне между передними и задними рогами спинного мозга. Рефлекторный центр вегетативной нервной системы (тела вставочных нейронов) лежит в задних рогах. Соматический и вегетативный отделы нервной системы также отличаются по локализации эфферентных нейронов. Тела моторных нейронов соматической нервной системы лежат в передних рогах спинного мозга, тела преганглионарных нейронов автономной системы - на уровне средних рогов.

Аксоны обоих типов клеток формируют эфферентный путь рефлекторной дуги. В соматической нервной системе он непрерывающийся, его составляют волокна типа А-б. Исключением являются лишь А-г волокна, проводящие возбуждение от клеток спинного мозга к интрафузальным волокнам мышечных веретен. Эфферентный путь автономной нервной системы прерывается в вегетативном ганглии, расположенном или интрамурально (парасимпатическая часть), или близ спинного мозга (отдельно или в симпатическом стволе - симпатическая часть). Преганглио нарное волокно относится к В-волокнам, постганглионарное - к группе С.

Рабочим органом для соматического отдела нервной системы является поперечно-полосатая скелетная мышца, в вегетативной дуге эффектор - железа либо мышца (гладкая или поперечно-полосатая сердечная). Между эфферентным путем и рабочим органом расположен химический мионевральный либо нейросекреторный синапс.

Рефлекторная дуга замыкается в кольцо благодаря обратной афферентации - потоку импульсов от рецепторов эффектора обратно в рефлекторный центр. Функция обратной связи - сигнализация в центральную нервную систему о выполненном действии. Если оно выполнено недостаточно, нервный центр возбуждается - рефлекс продолжается. Также за счет обратной афферентации осуществляется контроль периферической деятельности центральной нервной системой.

Различают отрицательную и положительную обратные связи. Первая при выполнении определенной функции запускает механизм, угнетающий эту функцию. Положительная обратная связь заключается в дальнейшей стимуляции функции, которая уже выполняется или в угнетении функции, которая уже угнетена. Положительная обратная афферентация встречается редко, так как приводит биологическую систему в неустойчивое положение.

Простые (моносинаптические) рефлекторные дуги состоят лишь из двух нейронов (афферентного и эфферентного) и различаются только в проприоцептивных рефлексах. Остальные дуги включают все выше указанные компоненты.

Физиологические свойства и функциональная значимость нервных волокон

Нервные волокна имеют самую высокую возбудимость, самую высокую скорость проведения возбуждения, самый короткий рефрактерный период, высокую лабильность. Это обеспечивается высоким уровнем обменных процессов и низкой величиной мембранного потенциала.

Функция: проведение нервных импульсов от рецепторов к центральной нервной системе и обратно.

Особенности строения и виды нервных волокон

Нервное волокно - аксон - покрыт клеточной мембраной.

Выделяют 2 вида нервных волокон:

Безмиелиновые нервные волокна - один слой швановских клеток, между ними - щелевидные пространства. Клеточная мембрана на всем протяжении контактирует с окружающей средой. При нанесении раздражения возбуждение возникает в месте действия раздражителя. Безмиелиновые нервные волокна обладают электрогенными свойствами (способностью генерировать нервные импульсы) на всем протяжении.

Миелиновые нервные волокна - покрыты слоями шванновских клеток, которые местами образуют перехваты Ранвье (участки без миелина) через каждые 1 мм. Продолжительность перехвата Ранвье 1 мкм. Миелиновая оболочка выполняет трофическую и изолирующую функции (высокое сопротивление). Участки, покрытые миелином не обладают электрогенными свойствами. Ими обладают перехваты Ранвье. Возбуждение возникает в ближайшем к месту действия раздражителя перехвата Ранвье. В перехватах Ранвье высокая плотность Nа-каналов, поэтому в каждом перехвате Ранвье происходит усиление нервных импульсов.

Перехваты Ранвье выполняют функцию ретрансляторов (генерируют и усиливают нервные импульсы).

Механизм проведения возбуждения по нервному волокну

1885 г. - Л. Герман - между возбужденными и невозбужденными участками нервного волокна возникают круговые токи.

При действии раздражителя имеется разность потенциалов между наружной и внутренней поверхностями ткани (участки несущие различные заряды). Между этими участками возникает электрический ток (движение ионов Nа+). Внутри нервного волокна возникает ток от положительного полюса к отрицательному полюсу, т. е. ток направлен от возбужденного участка к невозбужденному. Этот ток выходит через невозбужденный участок и вызывает его перезарядку. На наружной поверхности нервного волокна ток идет от невозбужденного участка к возбужденному. Этот ток не изменяет состояние возбужденного участка, т. к. он находится в состоянии рефрактерности.

Доказательство наличия круговых токов: нервное волокно помещают в раствор NaCl и регистрируют скорость проведения возбуждения. Затем нервное волокно помещают в масло (повышается сопротивление) - скорость проведения уменьшается на 30 %. После этого нервное волокно оставляют на воздухе - скорость проведения возбуждения уменьшается на 50 %.

Особенности проведения возбуждения по миелиновым и безмиелиновым нервным волокнам:

миелиновые волокна - имеют оболочку обладающую высоким сопротивлением, электрогенные свойства только в перехватах Ранвье. Под действием раздражителя возбуждение возникает в ближайшем перехвате Ранвье. Соседний перехват в состоянии поляризации. Возникающий ток вызывает деполяризацию соседнего перехвата. В перехватах Ранвье высокая плотность Nа-каналов, поэтому в каждом следующем перехвате возникает чуть больший (по амплитуде) потенциал действия, за счет этого возбуждение распространяется без декремента и может перескакивать через несколько перехватов. Это сальтаторная теория Тасаки. Доказательство теории - в нервное волокно вводили препараты, блокирующие несколько перехватов, но проведение возбуждения регистрировалось и после этого. Это высоко надежный и выгодный способ, т. к. устраняются небольшие повреждения, увеличивается скорость проведения возбуждения, уменьшаются энергетические затраты;

безмиелиновые волокна - поверхность обладает электрогенными свойствами на всем протяжении. Поэтому малые круговые токи возникают на расстоянии в несколько микрометров. Возбуждение имеет вид постоянно бегущей волны.

Этот способ менее выгоден: большие затраты энергии (на работу Nа-К-насоса), меньшая скорость проведения возбуждения.

Классификация нервных волокон

Нервные волокна классифицируются по:

· длительности потенциала действия;

· строению (диаметру) волокна;

· скорости проведения возбуждения.

Выделяют следующие группы нервных волокон:

· группа А (альфа, бета, гамма, дельта) - самый короткий потенциал действия, самая толстая миелиновая оболочка, самая высокая скорость проведения возбуждения;

· группа В - миелиновая оболочка менее выражена;

· группа С - без миелиновой оболочки.

Морфологические отличия дендритов от аксонов

1. У отдельного нейрона имеется несколько дендритов, аксон всегда один.

2. Дендриты всегда короче аксона. Если размеры дендритов непревышают 1,5-2 мм, то аксоны могут достигать 1м и более.

3. Дендриты плавно отходят от тела клетки и постепеннопостоянный диаметр на значительном протяжении.

4. Дендриты ветвятся обычно под острым углом, и ветвинаправлены от клетки. Аксоны отдают коллатерали чаще всего под прямым углом, ориентация коллатералей не связана непосредственно с положением клеточного тела.

5. Рисунок дендритического ветвления у клеток одного типа более постоянен, чем разветвления аксона этих клеток.

6. Дендриты зрелых нейронов бывают покрыты дендритическими шипиками, которые отсутствуют на соме и начальной части дендритных стволов. Аксоны не имеют шипиков.

7. Дендриты никогда не имеют мякотной оболочки. Аксоны часто окружены миелином.

8. Дендриты имеют более регулярную пространственнуюорганизацию микротрубочек, в аксонах в основном преобладают нейрофиламенты и микротрубочки расположены менее упорядочение

9. В дендритах, в особенности в их проксимальных участках,имеются эндоплазматический ретикулум и рибосомы, чего нет в аксонах.

10. Поверхность дендритов в большинстве случаев контактирует с синоптическими бляшками и имеет активные зоны с постсинаптической специализацией.

Строение дендритов

Если о геометрии дендритов, длине их ветвей, ориентации имеется сравнительно большая литература, то о внутреннем строении, о строении отдельных компонентов их цитоплазмы есть лишь отдельные разрозненные сведения. Эти сведения стали возможными только с внедрением в нейрогистологию электронно - микроскопических исследований.

Основные характерные черты дендрита, которые выделяют его на электронно-микроскопических срезах:

1)отсутствие миелиновой оболочки,

наличие правильной системы микротрубочек,

3) наличие на них активных зон синапсов с ясно выраженной электронной плотностью цитоплазмы дендрита,

4) отхождение от общего ствола дендрита шипиков,

5) специально организованные зоны узлов ветвлений,

6) вкрапление рибосом,

7) наличие в проксимальных участках гранулированного и не гранулированного эндоплазматического ретикулума.

Наиболее примечательной особенностью цитоплазмы дендритов является наличие многочисленных микротрубочек. Они хорошо выявляются как на поперечных срезах, так и на продольных. Начиная от проксимального участка дендрита, микротрубочки идут параллельно длинной оси дендрита до его дистальных разветвлений. Микротрубочки следуют в дендрите параллельно друг другу, не соединяясь и не пересекаясь между собой. На поперечных срезах можно видеть, что расстояния между отдельными трубочками постоянны. Отдельные дендритические трубочки тянутся на довольно большие расстояния, часто следуя изгибам, которые могут быть по ходу дендритов. Число трубочек относительно постоянно на единицу площади поперечного сечения дендрита и составляет примерно 100 на 1 мкм. Это число характерно для любых дендритов, взятых из разных отделов центральной и периферической нервной системы, у разных видов животных.

Функция микротрубочек - транспорт веществ по отросткам нервных клеток.

При разрушении микротрубочек может нарушаться транспорт веществ в дендрите, и, таким образом, конечные отделы отростков лишаться притока питательных и энергетических веществ от тела клетки. Дендриты, для того чтобы сохранить в экстремальных условиях структуру синаптических контактов и тем самым обеспечить функцию межнейронального взаимодействия, восполняют дефицит питательных веществ за счет прилежащих к ним структур (синаптические бляшки, многослойную миелиновую оболочку мягкого волокна, а также фрагменты глиальных клеток).

Если действие патогенного фактора будет своевременно устранено, дендриты восстанавливают структуру и правильную пространственную организацию микротрубочек, тем самым восстанавливается и система транспорта веществ, которая присуща нормальному мозгу. Если же сила и продолжительность патогенного фактора будут значительными, то явления эндоцитоза вместо своей приспособительной функции могут стать для дендритов губительными, т. к. фагоцитированные фрагменты не смогут утилизироваться и, накапливаясь в цитоплазме дендритов, приведут к необратимым его повреждениям.

Нарушение в организации микротрубочек ведет к резкому изменению поведения животных. У животных, в эксперименте у которых были разрушены микротрубочки в дендритах наблюдалась дезорганизация сложных форм поведения при сохранности простых условных рефлексов. У человека это может привести к серьезным нарушениям в высшей нервной деятельности.

О том, что дендриты являются наиболее чувствительным локусом к действию патологического агента при психических заболевания, свидетельствуют некоторые работы американских ученых. Оказалось, что при старческом слабоумии (синильной деменции) и болезни Альцгеймера на препаратах мозга, обработанных по методу Гольджи, не выявляются отростки нервных клеток. Стволы дендритов кажутся как бы обгоревшими и обугленными. Не выявление этих отростков на гистологических препаратах мозга, вероятно, связано также с нарушением в этих отростках системы микротрубочек и нейрофиломентов.

В дендритах встречаются. Они следуют параллельно длинной оси дендрита, могут лежать отдельно или собираться в пучки, однако в цитоплазме нет их строгого расположения. Вероятно, вместе с микротрубочками могут быть эквивалентом нейрофибрилл.

Для всех дендритов ЦНС характерно увеличение поверхности за счет многократного дихотомического деления. При этом образуются в зонах деления особые расширительные площадки или узлы ветвления.

Нормальный анализ показывает, что в узле ветвления, к которому подходят две дендритные ветви, несущие каждая в отдельности собственный сигнал, могут осуществляться следующие операции. Через узел ветвления в общий ствол и дальше к телу нейрона проходят:

или сигнал от одной ветви,

или только от другой,

или результат взаимодействия двух сигналов,

или же сигналы взаимно гасят друг друга.

В цитоплазме узла ветвления имеются почти все компоненты, которые характерны для тела нервной клетки, и участки резко отличаются по своему строению от цитоплазмы общего дендритного ствола и ветвей, полученных при делении. В узлах ветвления содержится повышенное число митохондрий, гранулированный и гладкий ретикулум, видны скопления одиночных рибосом и рибосом, собранных в розетки. Эти компоненты (гранулированный и гладкий ретикулум, рибосомы) принимают непосредственное участие в синтезе белка. Скопление митохондрий в этих местах указывает на интенсивность окислительных процессов.

Функции дендритов

Хотелось бы отметить, что основные трудности, с которыми сталкивается исследователь при изучении функции дендритов, - это отсутствие сведений о свойствах мембраны дендрита (в отличие от мембраны тела нейрона) из-за невозможности введения микроэлектрода внутрь дендрита.

Оценивая в целом геометрию дендритов, распределение синапсов и особое строение цитоплазмы в местах дендритных ветвлений, можно говорить о специальных локусах нейрона со своей собственной функцией. Самое простое, что можно было бы приписать дендритным площадкам в местах ветвления - это трофическая функция.

Из всего вышесказанного следует, что цитоплазма дендритов содержит много ультраструктурных компонентов, способных обеспечивать их важные функции. В дендрите есть определенные локусы, где его работа имеет свои особенности.

Главное назначение многочисленных дендритных разветвлений нервной клетки - это обеспечить взаимосвязь с другими нейронами. В коре головного мозга млекопитающих большая доля аксодендрических связей приходится на контакты с особыми специализированными выростами дендритов - дендрическими шипиками. Дендритические шипики являются филогенетически самыми молодыми образованиями в нервной системе. В онтогенезе они созревают значительно позже других нервных структур и представляют собой наиболее пластичный аппарат нервной клетки.

Как правило, дендрический шипик имеет в коре мозга млекопитающих характерную форму. (рис. 2). От основного дендритного ствола отходит сравнительно узкая ножка, которая заканчивается расширением - головкой. Вероятно такая форма дендритического придатка (наличие головки) связана, с одной стороны с увеличением площади синаптического контакта с аксонным окончанием, с другой служит для размещения внутри шипика специализированных органел, в частности шипикового аппарата, который имеется только в дендритических шипиках коры мозга млекопитающих. В этой связи кажется уместной аналогия с формой синаптического аксонного окончания, когда тонкое претерминальное волокно образует расширение. Это расширение (синаптическая бляшка) образует обширный контакт с иннервируемым субстратом и содержит внутри большой набор ультраструктурных компонентов (синаптические пузырьки, митохондрии, нейрофиламенты, гранулы гликогена).

Существует гипотеза (которую, в частности, разделяет и развивает нобелевский лаурят Ф. Крик) о том, что геометрия шипиков может меняться в зависимости от функционального состояния мозга. При этом узкая шейка шипика может расширяться, а сам шипик уплощается, в результате чего увеличивается эффективность аксо-шипикового контакта.

Если форма и размеры дендрических шипиков в коре мозга млекопитающих могут несколько варьировать, то наиболее постоянно в них наличие специфического шипикового аппарата. Он представляет собой комплекс взаимосвязанных канальцев (цистерн), расположенных, как правило, в головке шипика. Вероятно, это органелла связана с очень важными функциями, присущими филогенетически самым молодым мозговым образованиям, так как шипиковый аппарат встречается в основном в коре головного мозга, и только у высших животных.

Несмотря ни на что шипик является производным дендрита, в нем отсутствуют нейрофиламенты и дендритические трубочки, его цитоплазма содержит грубо или тонко гранулированный матрикс. Еще одной характерной чертой шипика в коре мозга является обязательное присутствие на них синаптических контактов с аксонными окончаниями. Цитоплазма шипика имеет специальные компоненты, которые отличают его от дендритных стволов. Можно отметить своеобразную триаду в цитоплазме шипика: субсинаптическая специализация активных зон - шипиковый аппарат - митохондрии. Учитывая многообразие сложных и важных функций, которые выполняют митохондрии, можно ожидать также сложных функциональных проявлений в «триадах» при синаптической передаче. Можно говорить о том, что цитоплазма дендритического шипика и шипиковый аппарат могут иметь непосредственное отношение к синаптической функции.

Дендритические шипики и концы дендритов также очень чувствительны к действию экстремальных факторов. При любом виде отравления (например, алкогольном, гипоксическом, тяжелыми металлами - свинцом, ртутью и т.д.) меняется количество выявленных шипиков на дендритах клеток коры больших полушарий. По всей вероятности, шипики при этом не исчезают, но у них нарушаются цитоплазматические компоненты, и они хуже импрегнируются солями тяжелых металлов. Так как шипики - один из структурных компонентов обеспечения межнейрональных контактов, то неполадки в них приводят к серьезным нарушениям функции мозга.

В некоторых случаях при кратковременном действии экстремального фактора может наступить на первый взгляд пара дорсальная ситуация, когда количество выявленных шипиков на дендритах клеток мозга не уменьшается, а увеличивается. Так, это наблюдается при экспериментальной ишемии мозга в начальный ее период. Параллельно с увеличением числа выявленных шипиков может улучшаться функциональное состояние мозга. В данном случае гипоксия является фактором, который способствует усилению метаболизма в нервной ткани, лучшей реализации резервов, не используемых в обычной обстановке, и быстрому сгоранию шлаков, накопленных в организме. Ультраструктурно это проявляется в более интенсивной проработке цитоплазмы шипиков, разрастании и увеличении цистерн шипикового аппарата. Вероятно, этот феномен положительного действия гипоксии наблюдается тогда, когда человек, испытывая большие физические нагрузки в условиях гипоксии, покоряет горные вершины. Эти трудности компенсируются затем более интенсивной продуктивной работой, как мозга, так и других органов.

Формирование дендритов

Дендриты и их межнейрональные связи формируются в процессе онтогенетического развития мозга. Причем дендриты, в частности апикальных, у молодых особей какое-то время остаются свободными для образования новых контактов. Участки дендрита, расположенные ближе к телу клетки, возможно, связаны с более прочными и простыми - натуральными условными рефлексами, а концы оставлены для образования новых связей, ассоциаций.

В зрелом возрасте на дендритах уже нет свободных от межнейрональных контактов участков, зато при старении прежде страдают именно концы дендритов и по насыщенности контактами

у старых особей они напоминают дендриты детского возраста. Это происходит как из-за того, что ослабляются транспортные белоксинтезирующие процессы в клетке, так и из-за нарушений кровоснабжения мозга. Может быть, именно здесь кроется та морфологическая основа для такого широко известного в неврологии и в обыденной жизни факта, когда старики трудно осваивают что-то новое, часто забывают текущие события и очень хорошо помнят о прошлом. То же самое наблюдается и при отравлению.

Как уже отмечалось, увеличение и усложнение дендритного древа в филогенезе необходимы не только для восприятия большого числа приходящих импульсов, но и для предварительной обработки.

Дендриты нейронов центральной нервной системы обладают синаптической функцией на всем протяжении, причем концевые участки нисколько не уступают в этом срединным. Если же речь идет о дистальных (концевых) участках апикальных дендритов пирамидных нейронов коры больших полушарий, то их доля в осуществлении межнейрональных взаимодействий еще более значительна, чем проксимальных. Там к большему числу концевых синаптических бляшек на самом стволе и разветвлениях апикального дендрита присоединяются еще контакты на дендритических шипиках.

Изучая эту проблему при помощи электронной микроскопии, исследователи также убедились в том, что концевые участки дендритов плотно покрыты синаптическими бляшками и, таким образом, принимают непосредственное участие в межнейрональных взаимодействиях. Электронная микроскопия также показала, что дендриты могут образовывать контакты между собой. Эти контакты могут быть или параллельными, которым большинство авторов приписывают электротонические свойства, или типичными ассиметричными синапсами с ясно выраженными органеллами, обеспечивающими химическую передачу. Такие дендро-дендритические контакты только еще начинают привлекать внимание исследователей. Итак, дендрит на всем своем протяжении выполняет синаптическую функцию. Каким же образом поверхность дендрита приспособлена для обеспечения контактов с аксонными окончаниями?

Поверхностная мембрана дендрита устроена так, чтобы максимальным образом использоваться для межнейрональных контактов. Дендрит весь изрыт углублениями, складками, карманами, имеет различного неровности рода микровыросты, шипы, грибовидные придатки и др. Все эти рельефы дендритных стволов соответствуют форме и размерам приходящих синаптических окончаний. Причем в различных отделах нервной системы и у разных животных рельеф дендритной поверхности имеет специфические особенности. Конечно же, самым замечательным выростом дендритической мембраны является дендритический шипик.

Дендриты очень чувствительны к действию различных экстремальных факторов. Нарушения в них приводят ко многим заболеваниям, например психическим расстройствам.



Похожие публикации