Растворимость железа в воде. Как очищать воду от железа

Железо присутствует в воде в форме двух- и трехвалентных ионов. Как очистить питьевую и техническую жидкость от этих загрязнений? Актуальная проблема для обычной семьи и крупного предприятия. Рассмотрим причины, от которых зависит растворимость железа в воде, формы загрязнителей, способы удаления ферросоединений.

Почему вода из-под крана бывает желтой и бурой?

Придают воде желтоватый цвет, нередко появляется неприятный привкус, можно заметить загрязнения в форме бурых хлопьев. Перечисленные явления — это ухудшение органолептических свойств питьевой воды. Изменение цвета — то, на что потребители воды обращают внимание в первую очередь. Помимо этого, возникают последствия для здоровья человека. Негативно влияет на состояние печени, зубов, всего желудочно-кишечного тракта, кожи и волос потребление недоброкачественной воды из под крана, в которой присутствует железо.

Растворимость в воде объясняется не только взаимодействием ферросоединений из состава горных пород с другими веществами в природе. Повышается концентрация ионов Fe 2+ и Fe 3+ вследствие процесса коррозии, который постоянно идет в аппаратах и трубах водоснабжения, изготовленных из сплавов железа. Трубопроводы постепенно приходят в негодность, изменяются свойства продукции, в производстве которой применялась вода с примесью железа.

Какова растворимость железа в воде?

Химический элемент, которому дали латинское название Ferrum, по распространенности в земной коре находится на втором месте после алюминия. В больших количествах на планете присутствуют залежи или пирита (его формула FeS 2) . Ферросоединения встречаются в горных породах вулканического и осадочного происхождения в виде гематита, магнезита, бурого железняка.

Простое вещество железо — это серебристо-серый пластичный металл, нерастворимый в воде. Оксиды и гидрооксиды, многие соли железа тоже не взаимодействуют с водой. Растворимость FeO в воде обсуждают в связи его способностью окисляться до оксида трехвалентного железа. Когда говорят о водном растворе FeO, то имеют в виду содержание ионов двухвалентного железа. В некоторых водоисточниках этот показатель доходит до 50 и более миллиграммов на 1 литр. Это высокая концентрация, такая питьевая вода должна быть очищена.

Как железо попадает в природные воды?

Физическая и химическая эрозия приводит к дроблению, растворению и разрушению горных пород, содержащих соединения железа. В результате реакций, идущих в природе, освобождаются ионы Fe 2+ и Fe 3+ . Они активно участвуют в окислительно-восстановительных процессах. Двухвалентный ион окисляется, отдает электрон и становится трехзарядным. Растворимость железа в воде — это наличие катиона Fe 2+ . В результате идущих в растворе реакций получаются разные соли. Среди них есть растворимые, например сульфаты, и нерастворимые (сульфиды, карбонаты). При обезжелезивании такой воды растворимая форма переходит в нерастворимую, образуются хлопья, выпадающие в осадок. Двухвалентное железо окисляется до трехвалентного в присутствии кислорода или других окислителей (озона, хлора).

Превращения ионов в итоге приводят к появлению устойчивой к дальнейшему окислению бурой ржавчины, ее условный состав можно представить в таком виде: Fe 2 O 3 . nH 2 O. Частица Fe 3+ входят в состав комплексных неорганических и органических веществ, которые встречаются в поверхностных водах.

Одинаково ли содержание ферросоединений в природных водах?

Концентрации химического элемента и типы железа в воде зависят от породного состава земной коры и состояния разных источников. Одновременно могут присутствовать двух- и трехвалентные соединения железа, органические формы, такие как железобактерии и коллоидные вещества (растворимые и нерастворимые).

Если имеются месторождения сульфатных руд, то более вероятно, что в высоких концентрациях будет присутствовать двухвалентное железо. Растворимость в воде ферросоединений растет с температурой вблизи районов вулканизма. В реках и озерах выше содержание железа, если существует сброс сточных вод металлургических и химических комбинатов.

Как очищать воду от железа?

Для удаления ферросоединений используются реагентные и безреагентные способы. Основой большинства процессов является окисление двухвалентного иона до трехвалентного катиона. Точно так же поступают с другими примесями в воде — переводят в нерастворимые соединения и удаляют с помощью фильтра. На этом принципе основана работа большинства промышленных установок.

Какая растворимость железа в воде, определяют с помощью приборов. Затем проводят обезжелезивание химическими реагентами: кислородом, хлором, озоном, перманганатом калия, пероксидом водорода. Происходят химические реакции окисления, и получается нерастворимый осадок. Его можно не только отфильтровать, но и удалить после отстаивания способом декантации (слить с осадка чистую воду). При озонировании и хлорировании одновременно происходит обеззараживание (дезинфекция). Считается, что использование озона — более перспективный метод, потому что хлор опасен для здоровья человека.

Какие есть способы обезжелезивания небольших объемов воды?

В домашних условиях из вышеперечисленных реагентов можно использовать пероксид водорода и марганцовку. Как очищать воду от железа, если требуется получить небольшой объем за короткий срок? При добавлении перекиси в воду выпадают хлопья осадка. Необходимо дождаться, чтобы он осел на дно емкости и слить воду, либо пропустить ее через обычный Такая очищенная от загрязнений вода пригодна для питья и приготовления пищи.

По отношению к органическим формам железа перечисленные методы малоэффективны. Те реагенты, о которых упоминалось выше, недостаточно быстро осаждают коллоидные частицы.

Ионообмен и катализ — методы обезжелезивания воды

Существуют автономные установки, действующие на принципах катализа, ионообмена. Устройства применяются для очищения воды на небольших промышленных предприятиях и в коттеджах.

Железо при каталитическом способе удалается с помощью специальной засыпки, выпускаемой из природного и синтетического сырья. Фильтр для обезжелезивания воды — это металлическая емкость. Внутрь помещают засыпку и пропускают воду. Вещество является катализатором процесса окисления двухвалентного железа, переводя его в нерастворимое состояние из разных форм.

При ионообменном обезжелезивании используются катиониты, получаемые из смол-ионообменников, например цеолита (минерала). В последние годы налажен выпуск синтетических продуктов для обезжелезивания воды методом ионообмена.

Почему нужна альтернатива реагентам?

Дительное время используются химические вещества, если существует эта вредная примесь — железо в воде. Виды железа бывают разные, поэтому необходимо искать оптимальное решение, способ, подходящий для очистки воды из конкретного источника, для которого установлены формы и концентрации железа.

Хлорирование уходит в прошлое, этот способ отрицательно сказывается на качестве воды и здоровье населения. Аэрация или обогащение воды воздухом — метод практически лишенный недостатков. Через воду пропускают кислород, железо окисляется, а нерастворимые хлопья осадка можно удалить фильтрацией или отстаиванием.

Обезжелезивание проводят без химических реагентов — при помощи электрохимического способа. Два электрода погружают в емкость с водой, которую требуется очистить. Отрицательный электрод — катод — притягивает и удерживает положительно заряженные ионы железа, в каком бы виде они ни находились. Другой безреагентный метод — использование специальных мембран.

Каждый из вышеперечисленных способов имеет не только достоинства, но недостатки. Выбор метода зависит от формы, в которой присутствует железо в воде.

Железо - серебристо-белый вязкий и ковкий металл. Атомный вес - 55,85; плотность - 7,87 г/см3, температура плавления 1539°С. Ниже температуры 768°С железо обладает ферромагнитными свойствами, выше этой температуры - теряет их. При плавлении железо увеличивается в объеме на 4,4%..

Сплав железа с углеродом (до 2% углерода) называется сталью. Сталь прочнее и тверже железа, свойства её могут меняться в широких пределах в зависимости от вида обработки, содержания углерода и легирующих элементов.

Сплав железа с углеродом (более 2% углерода) называется чугуном. Кроме углерода, в чугуне содержится до 4% кремния, до 2% марганца, а также фосфор и сера. Чугун отличается высокими литейными свойствами. Из-за низкой пластичности он не подвергается обработке давлением за исключением чугуна особого вида, который называется ковким. В зависимости от формы выделения углерода чугун подразделяется на белый и серый. Белым называется чугун, в котором при нормальной температуре весь углерод находится в связанном состоянии, в основном в форме цементита. Такой чугун в изломе имеет белый цвет и металлический блеск. Серым называется чугун, в котором весь углерод или большая его часть находятся в виде графита, а в связанном состоянии (в форме цементита) углерода содержится не более 0.8 %. Ввиду большого количества графита, входящего в состав такого чугуна, его излом имеет серый цвет. По коррозионной стойкости чугун можно приравнять к легированным сталям. Это объясняется, в частности, наличием в чугуне графита, который в значительной степени замедляет коррозию.

В разбавленных кислотах железо растворяется. Скорость коррозии железа в серной кислоте возрастает с увеличением концентрации, достигая максимума при 47%-ной концентрации, после чего уменьшается; в 98%-ной кислоте железо не растворяется, в 100%-ной растворимость резко увеличивается. Своеобразно действие азотной кислота в зависимости от ее концентрации. Холодная разбавленная азотная кислота (плотность ниже 1,034) растворяет железо без выделения водорода, восстанавливаясь до аммиака. Кислота с плотностью до 1.115 также растворяет железо, но продуктами реакции являются азот и закись азота. В концентрированной кислоте (плотность выше 1,41) растворение уменьшается вследствие пассивирования железа. Пассивность обусловлена тончайшей оксидной пленкой, которая легко разрушается при механическом воздействии. в серной кислоте чугун корродирует медленнее, чем в соляной. Азотная кислота активно действует на серый чугун. Фосфорная кислота менее агрессивна, чем соляная и серная. В органических кислотах, свободных от растворенного кислорода, железо устойчиво, уксусная кислота воздействует на чугун. Углеродистая сталь устойчива в плавиковой кислоте при концентрации 65-70%. При концентрации шгае 65% и комнатной температуре наступает активное взаимодействие кислоты с углеродистой сталью. Чугун разъедается плавиковой кислотой любой концентрации. Железо, углеродистые стали и чугун стойки в разбавленных растворах щелочей. Аэрация, повышенная температура, высокая концентрация и присутствие хлоридов увеличивают скорость коррозии. Значительно разъедают сталь кипящие растворы гидроокиси натрия при концентрации выше 10%, но в. 30%-ном растворе процесс замедляется вследствие образования защитной пленки. В воде, не содержащей растворенный кислород, железо практически не корродирует.

ие имеют метод термического разложения пентакарбонила железа (см. § 193) и электролиз водных растворов его солей.

Во влажном воздухе железо быстро ржавеет, т. е. покрывается бурым налетом гидратированного оксида железа, который вследствие своей рыхлости не защищает железо от дальнейшего окисления. В воде железо интенсивно корродирует; при обильном доступе кислорода образуются гндратные формы оксида желе-за(Ш):

2Fe + 3/203 + лНлО = Fe203 пН20

При недостатке кислорода или при его затрудненном доступе образуется смешанный оксид Fe3C>4 (FeO"Fe2Os):

3Fe + 202 + пН20 = Fe304 ? nH20

Железо растворяется в соляной кислоте любой концентрации:

Те + 2НС1 FeCl2 + Н2Г

Аналогично происходит растворение в разбавленной серной кислоте:

Fe 4- H2S04 = FeS04 4- H2f

В концентрированных растворах серной кислоты железо окисляется до железа(III):

2Fe 4- 6H2S04 = Fe2(S04)3 4- 3S02^ 4. 6H20

Однако в серной кислоте, концентрация которой близка к 100%, железо становится пассивным и взаимодействия практически не происходит.

В разбавленных п умеренно концентрированных растворах азотной кислоты железо растворяется:

Fe 4- 4.HNO3 = Fe(N03)3 4" NOr -f 2Н20

При высоких концентрациях HNO3 растворение замедляется и железо становится пассивным.

Для железа характерны два ряда соединений: соединения железа (П) и соединения железа(III). Первые отвечают оксиду железа (II), или закиси железа, FeO, вторые - оксиду железа(Ш).

или окиси железа, Fe2C>3. Кроме того, известны соли 01селезной кислоты H2Fe04, в которой степень окисленности железа равна -f-6.

Соединения железа(П). Соли железа(II) образуются при растворении железа в разбавленных кислотах, кроме азотной. Важнейшая из них - сульфат железа(\\), или железный купорос, FeS04"7H20, образующий светло-зеленые кристаллы, хорошо растворимые в воде. На воздухе железный купорос постепенно выветривается и одновременно окисляется с поверхности, переходя в желто-бурую основную соль железа(III).

Сульфат железа(II) получают путем растворения обрезков стали в 20-30 %-ной серной кислоте:

Fe + H2S04 = FeS04 -f H2f

Сульфат железа(II) применяется для борьбы с вредителями растений, в производстве чернил и минеральных красок, при крашении тканей.

При нагревании железного купороса выделяется вода и получается белая масса безводной соли FeSC>4. При температурах выше 480 °С безводная соль разлагается с выделением диоксида и три-оксида серы; последний во влажном воздухе образует тяжелые белые пары серной кислоты:

2FeS04 - Fe203 + S02f + S03f

При взаимодействии раствора соли железа(II) со щелочью выпадает белый осадок гидроксида железа {Щ Fe(OH)2f который на воздухе вследствие окисления быстро принимает зеленоватую, а затем бурую окраску, переходя в гидроксид железа (III) Fe(OH)3:

4Fe(OH)2 + 02 + 2Н20 = 4Fe(0H)3

Безводный оксид оюелеза(П) FeO можно получить в виде черного легко окисляющегося порошка восстановлением оксида железа (III) оксидом углерода(II) при 500°С:

Fe203 + СО = 2FeO -f С02

Карбонаты щелочных металлов осаждают из растворов солей железа(II) белый карбонат железа(П) РеСОз. При действии воды, содержащей С02, карбонат железа, подобно карбонату кальция, частично переходит в более растворимую кислую соль Fe(HC03)2. В виде этой соли железо содержится в природных железистых водах.

Соли железа(II) легко могут быть переведены в соли железа (III) действием различных окислителей - азотной кислоты, пер-манганата калия, хлора, например:

6FeS04 + 2HNO3 + 3H2S04 = 3Fe3(S04)3 + 2NOf + 4H20 10FeSO4 + 2KMn04 + 8H2S04 = 5Fe2(S04)3 + K2S04 + 2MnS04 + 8H20

Ввиду способности легко окисляться, соли железа (Щ часто применяются как восстановители.

Соединения железа(Ш). Хлорид железа (III) FeCb представляет собой темно-коричневые с зеленоватым отливом кристаллы. Это вещество сильно гигроскопично; поглощая влагу из воздуха, оно превращается в кристаллогидраты, содержащие различное количество воды и расплывающиеся на воздухе. В таком состоянии хлорид железа(Ш) имеет буро-оранжевый цвет. В разбавленном растворе FeCl3 гидролизуется до основных солей. В парах хлорид железа(III) имеет структуру, аналогичную структуре хлорида алюминия (стр. 615) и отвечающую формуле Fe2Cl6; заметная диссоциация Fe2Cle на молекулы FeCl3 начинается при температурах около 500 °С.

Хлорид железа(III) применяют в качестве коагулянта при очистке воды, как катализатор при синтезах органических веществ, в текстильной промышленности.

Сульфат железа(П1) Fe2(804)3 - очень гигроскопичные, расплывающиеся на воздухе белые кристаллы. Образует кристаллогидрат Fe2(S04)3-9H20 (желтые кристаллы). В водных растворах сульфат железа(III) сильно гидролизован. С сульфатами щелочных металлов и аммония он образует двойные соли -квасцы, например железоаммонийные квасцы (NH4)Fe(S04)2- 12Н20 - хорошо растворимые в воде светло-фиолетовые кристаллы. При прокаливании выше 500°С сульфат железа (III) разлагается в соответствии с уравнением:

Fe2(S04)3 = Fe203 + 3S03t

Сульфат железа(III) применяют, как и FeCU, в качест



Похожие публикации