Принцип действия газотурбинных установок. Общие сведения о газотурбинных установках

Газотурбинная установка представляет собой универсальное модульное устройство, которое объединяет в себе: электрогенератор, редуктор, газовую турбину и блок управления. Также, присутствует и дополнительное оборудование, такое как: компрессор, устройство запуска, аппарат теплового обмена.

Газотурбинная установка способна функционировать не только лишь в режиме вырабатывания электроэнергии, но и производить совместное производство электрической энергии с тепловой.

Опираясь на то, что пожелает клиент, производство газотурбинных установок способно исполняться с универсальной системой, когда выхлопные газы применяют для получения пара либо же горячей воды.

Схема газотурбинной установки

Данное оборудование имеет два главных блока: турбину силового типа и генератор. Они размещаются в одном блоке.

Схема газотурбинной установки очень проста: газ, образующийся после перегорания топлива, начинает способствовать вращению лопастей самой турбины.

Таким образом, образуется крутящий момент. Это приводит к образованию электрической энергии. Выходящие газы осуществляют превращение воды в пар в котле – утилизаторе. Газ в данном случае работает с двойной пользой.

Циклы газотурбинных установок

Данное оборудование может быть выполнено с разными циклами работы.

Замкнутый цикл газотурбинной установки подразумевает под собой следующее: газ через компрессор подается в калорифер (теплообменник), куда поступает тепло от внешних источников. Затем он подается в газовую турбину, где осуществляется его расширение. Давление газа при этом получается меньше.

После этого газы попадают в холодильную камеру. Тепло оттуда выводится во внешнюю среду. Потом газ направляется в компрессор. Затем цикл возобновляется заново. Сегодня в энергетике аналогичное оборудование почти не применяется.

Производство газотурбинных установок такого типа осуществляется в больших размерах. Также, имеются потери и низкое значение КПД, напрямую зависящее от температурных показателей самого газа до турбины.

Разомкнутый цикл газотурбинной установки используют намного чаще. В этом оборудовании компрессором осуществляет подача воздуха из окружающей среды, который при высоком давлении попадает в специально предназначенную камеру сгорания. Тут происходит сжигание топлива.

Температура органического топлива достигает отметки в 2000 градусов. Это может привести к повреждению металла самой камеры. Чтобы предотвратить это, в нее подается много воздуха, чем это нужно (примерно в 5 раз). Это существенно снижает температуру самого газа и защищает металл.

Схема газотурбинной установки с разомкнутым циклом

Схема газотурбинной установки с разомкнутым циклом выглядит следующим образом: топливо подается в газовую горелку (форсунки), располагаемой внутри жаропрочной трубы. Туда нагнетается и воздух, после чего осуществляется процесс сгорания топлива.

Таких труб несколько и располагаются они концентрически. Поступает воздух в имеющиеся между ними зазоры, создавая защитный барьер и препятствуя выгоранию.

Благодаря трубам и потоку воздуха камера находится в надежной защите от перегревания. При этом на выходе температура газов ниже, чем у самого топлива.

Металл может выдерживать 1000 – 1300°С. Именно такие показатели температуры газов камеры и присутствуют в современных газотурбинных аппаратах.

Отличия газотурбинных установок закрытого и открытого типа

Главное отличие газотурбинных установок закрытого типа от открытого основывается на том, что в первом случае нет камеры сгорания, а применяется нагреватель. Тут происходит нагрев воздуха, при этом, он не участвует в самом процессе образования тепла.

Такое оборудование выполняют исключительно с горением, при неизменной величине давления. Применяется тут органическое либо ядерное топливо.

В ядерных агрегатах используют не воздух, а гелий, углекислый газ либо же азот. К преимуществам такого оборудования можно отнести возможность применять тепло атомного распада, которое выделяется в атомных реакторах.

Благодаря большой концентрации «рабочего тела» стало возможно добиться высоких показаний коэффициента теплоотдачи внутри самого регенератора. Это способствует и повышению уровня регенерации при небольших размерах. Однако такое оборудование широкого применения пока не получило.

Энергетические газотурбинные установки

Энергетические газотурбинные установки еще называют «газотурбинными мини электростанциями». Применяют их в качестве постоянных, аварийных либо резервных источников снабжения городов и труднодоступных районов.

Энергетические газотурбинные установки используют во многих отраслях промышленности:

  • нефтеперерабатывающей;
  • газодобывающей;
  • металлообрабатывающей;
  • лесной и деревообрабатывающей;
  • металлургической;
  • сельского хозяйства;
  • утилизации отходов и т.д.

Виды топлива, использующие в газотурбинных установках?

Данное оборудование способно функционировать на разных видах топлива.

В газотурбинных установках используются следующие виды горючего:

  • природный газ;
  • керосин;
  • биогаз;
  • дизельное топливо;
  • нефтяной газ попутного типа;
  • коксовый, древесный, шахтный газ и другие виды.

Многие такие турбины способны работать и на низкокалорийном виде топлива, в котором содержится небольшое количество метана (порядка 3- процентов).

Другие особенности газотурбинных установок

Отличительные особенности газотурбинных установок:

  • Незначительный вред, причиняемый окружающей среде. Это малый расход масла. Способность работать на отходах самого производства. Выброс в атмосферу вредных веществ составляет 25 ppm.
  • Небольшие габариты и вес. Это позволяет располагать данное оборудование на небольших площадках, что экономит деньги.
  • Незначительный уровень шума, а также вибрации. Данный показатель находится в пределах 80 – 85 дБА.
  • Способность газотурбинного оборудования работать на различном топливе позволяет применять его практически в любом производстве. При этом предприятие сможет само выбирать экономически выгодный вид топлива, опираясь на специфику своей деятельности.
  • Продолжительная работа с минимальной нагрузкой. Это касается и режима холостого хода.
  • На протяжении одной минуты данное оборудование способно выдерживать превышение номинальной величины тока на 150 процентов. А в течение 2 часов – 110 %.
  • При трехфазном симметричном «КЗ» система генератора способна выдержать на протяжении 10 секунд порядка 300 процентов номинального непрерывного тока.
  • Отсутствие водяного охлаждения.
  • Высокая надежность работы.
  • Продолжительный ресурс работы (около 200 000 часов).
  • Использование оборудования в любых климатических условиях.
  • Умеренная цена строительства и небольшие затраты во время самой работы, ремонта и технического обслуживания.

Электрическая мощность газотурбинного оборудования находится в пределах от десятков кВт до нескольких МВт. Максимально большой КПД достигается, если газотурбинная установка функционирует в режиме одновременного производства тепловой и электрической энергии (когенерации).

Благодаря получению недорогой такой энергии, появляется возможность быстрой окупаемости такого рода оборудования. Энергоустановка и котел – утилизатор выходящих газов способствуют более эффективному использованию топлива.

С газотурбинными машинами существенно упростилась задача получения большой мощности. А при выполнении всех тепловых особенностей турбин газового типа, значение большого электрического коэффициента полезного действия отходит на второй план. Если брать во внимание большое значение температуры выпускных газов газотурбинного оборудования, то можно осуществить комбинацию применения газовой и паровой турбины.

Данное инженерное решение способствует предприятиям значительно наращивать производительность от применения топлива и увеличить электрический КПД до отметки в 57 – 59 процентов. Такой метод очень хороший, но он приводит к финансовым затратам и усложнению конструкции оборудования. Поэтому его часто используют только крупные производства.

Отношение производимой электрической энергии по отношению к тепловой в газотурбинной установке составляет 1 к 2. Таким образом, к примеру, если газотурбинная установка имеет мощность в 10 Мегаватт, то она способна выработать 20 МВт тепловой энергии. Чтобы осуществить перевод Мегаватт в гигакалории, необходимо использовать специальный коэффициент, который равен 1,163.

В зависимости от того, что именно необходимо заказчику, газотурбинное оборудование может дополнительно оснащаться водонагревательными и паровыми котлами. Это позволяет получать пар с различным давлением, который будет применяться для решения различных производственных задач. Также, это позволяет получить горячую воду, которая будет иметь стандартную температуру.

Во время совмещенной эксплуатации двух типов энергии, можно получить увеличение коэффициента использования топлива (КИТ) газотурбинной тепловой электростанции до 90 процентов.

При использовании газотурбинных установок в виде оборудования силового типа для мощных ТЭС, а также мини-ТЭЦ, вы получите оправданное экономическое решение. Обусловлено это тем, что сегодня практически все электростанции работают на газе. Они имеют очень низкую для потребителя удельную стоимость, что касается строительства и небольших затрат во время последующего использования.

Лишняя, причем даже бесплатная, тепловая энергия позволяет без каких либо затрат на электроэнергию настроить вентиляцию (кондиционирование) производственных помещений. И это можно делать в любое время года. Охлажденный таким способом теплоноситель, можно использовать для разных промышленных нужд. Такой вид технологии носит название «тригенерация».

Газотурбинные установки на выставке

Центральный комплекс ЦВК «Экспоцентр» – это очень комфортабельная площадка, которая располагается в Москве, вблизи станций метрополитена «Выставочная» и «Деловой центр».

Благодаря высокому профессионализму сотрудников данного комплекса и их компаний, обеспечивается идеальная логистика создания выставок и быстрое оформление таможенных документов, погрузочных, разгрузочных и монтажных работ. Также, осуществляется поддержка постоянной работы установок во время ее презентации.

Выставочная павильонная площадка ЦВК «Экспоцентр» имеет все необходимое оборудование для проведения таких масштабных мероприятий. Благодаря открытой площадке вы сможете без проблем презентовать свое инновационное или энергоемкое оборудование, которое работает в реальном времени.

Ежегодная международная выставка «Электро» представляет собой крупномасштабное мероприятие в России и СНГ. На нем будет продемонстрировано электрическое оборудование для энергетики, электротехники, промышленной световой техники, а также автоматизации предприятий.

На выставке «Электро», вы сможете увидеть современные тенденции отрасли, от генерации электрической энергии до завершающего ее использования. Благодаря инновационным технологиям и высококачественному оборудованию ваше предприятие может получить «глоток свежего воздуха» и заново возродиться.

Такая модернизация производства не сможет быть не замечена потребителями ваших услуг и товаров. Такое оборудование способно существенно снизить себестоимость и затраты на электрическую энергию.

Ежегодно данное мероприятие посещают производители из более двадцати стран мира. Посетить его можете и вы. Для этого вам стоит заполнить соответствующую заявку у нас на сайте либо позвонить нам. У нас на выставке вы сможете презентовать свои новые образцы продукции, полезные модели и изобретения, новые оригинальные товары и многое другое, что относится к энергетике и электрическому оборудованию.

Условия участия в выставке в ЦВК «Экспоцентр» очень прозрачные. Любой правообладатель, если обнаружит различные нарушения его прав на объекты интеллектуальной собственности, может гарантированно рассчитывать на правовую помощь. Это позволяет повысить ответственность и осмотрительность каждого участника выставки во время презентации своего продукта.

Схемы и показатели газотурбинных установок электростанций

Газотурбинные электростанции в СССР в качестве самостоятельных энергетических установок получили ограниченное распростра­нение. Серийные газотурбинные установки (ГТУ) обладают невысокой экономичностью, потребляют, как правило, высококачественное топливо (жидкое или газообразное). При ма­лых капитальных затратах на сооружение они характеризуются высокой маневренностью, поэтому в некоторых странах, например в США, их используют в качестве пиковых энергоустановок. ГТУ имеют по сравнению с паровыми турбинами повышенные шумовые характеристики, требующие дополнительной звукоизоляции машинного отделения и воздухозаборных устройств. Воздушный компрес­сор потребляет значительную долю (50-60%) внутренней мощности газовой турбины. Вследствие специфического соотношения мощностей компрессора и газовой турбины диапазон из­менения электрической нагрузки ГТУ невелик.

Единичная мощность установленных газо­вых турбин не превышает 100-150 МВт, что значительно меньше требуемой единичной мощности крупных энергоблоков.

Большинство современных ГТУ работает по схеме непрерывного сгорания топлива и выполняется по открытому (разомкнутому) или закрытому (замкнутому) циклу в зависи­мости от вида сжигаемого топлива.

В ГТУ открытого цикла в качестве топли­ва используется жидкое малосернистое газо­турбинное топливо или природный газ, кото­рые подаются в камеру сгорания (рис. 9.1). Необходимый для сгорания топлива воздух очищается в комплексном воздухоочиститель­ном устройстве (фильтре) и сжимается в ком­прессоре до давления МПа. Для получения заданной температуры газов перед газовой турбиной °С в камере сгорания поддерживается нужный избыток воздуха (2,5-5,0) с учетом теоретической температуры горения топлива, вида топли­ва, способа его сжигания и др. Горячие газы являются рабочим телом в газовой турбине, где они расширяются, а затем при температу­ре °С выбрасываются в дымо­вую трубу.

Рис. 9.1. Принципиальная тепловая схема ГТУ откры­того цикла:

К - воздушный компрессор; ГТ - газовая турбина; Г - элект­рогенератор; ПУ - пусковое устройство; Ф- воздушный фильтр; КС - камера сгорания топлива

ГТУ замкнутого цикла (рис. 9.2) позво­ляют использовать как твердое, так и высо­косернистое жидкое топливо (мазут), сжи­гаемое в камере сгорания, где установлен подогреватель рабочего тела, обычно воздуха. Включение в схему воздухоохладителя умень­шает работу сжатия в компрессоре, а регене­ратора - повышает экономичность ГТУ. Пока не получили применения ГТУ замкнутого цик­ла с другими рабочими телами (гелий и т. п.).

Основные преимущества ГТУ для энерго­системы заключаются в их мобильности. В за­висимости от типа установки ее время пуска и нагружения составляет 5-20 мин. ГТУ ха­рактеризуются более низкой удельной стои­мостью (на 50-80% меньше, чем у базовых энергоблоков), высокой степенью готовности к пуску, отсутствием потребности в охлажда­ющей воде, возможностью быстрого строи­тельства ТЭС при малых габаритах электро­станции и незначительном загрязнении окру­жающей среды. Вместе с тем ГТУ имеют невысокий КПД производства электроэнергии (28-30%), заводское изготовление их слож­нее, чем паровых турбин, они нуждаются в до­рогих и дефицитных видах топлива. Эти обстоятельства определили и наиболее рацио­нальную область использования ГТУ в энер­госистеме в качестве пиковых и обычно авто­номно запускаемых установок с использова­нием установленной мощности 500- 1000 ч/год. Для таких установок предпочти­тельна конструктивная схема в виде одновальной ГТУ простого цикла без регенерации или с регенератором теплоты уходящих газов (рис. 9.3,а, б). Такая схема характеризуется большой простотой и компактностью установ­ки, которая в значительной степени изготав­ливается и монтируется на заводе. Энергети­ческие ГТУ, эксплуатация которых планиру­ется в полубазовой части графика электриче­ской нагрузки, экономически оправдано вы­полнять по более сложной конструктивной схеме (рис. 9.3,в).

Рис. 9.2. Принципиальная схема ГТУ закрытого цикла:

ВП - воздухоподогреватель; ГТ - газовая турбина; Р - реге­нератор; ВК -воздушный компрессор; Г - электрогенератор; ПУ - пусковое устройство

Рис. 9.3. Конструктивные схемы различных типов ГТУ:

а - ГТУ простого цикла без регенерации; б - ГТУ простого цикла с регенератором теплоты уходящих газов; в - двухвальная ГТУ с двухступенчатым подводом теплоты топлива: Т - подвод топлива; КВД. КПД - воздушные компрессоры высо­кого и низкого давления; ГТВД, ГТНД - газовые турбины вы­сокого и низкого давления

В Советском Союзе работают газотурбин­ные электростанции с ГТУ типов ГТ-25-700, ГТ-45-3, ГТ-100-750-2 и других с начальной температурой газов перед газовой турбиной 700-950 °С. Ленинградским металлическим заводом разработаны проекты новой серии ГТУ мощностью 125-200 МВт при начальной температуре газов соответственно 950, 1100 и 1250 °С. Они выполнены по простой схемес открытым циклом работы, одновальными, без регенератора (табл. 9.1). Тепловая схема газотурбинной установки ГТ-100-750-2 ЛМЗ показана на рис. 9.4,а, а компоновка электростанции с такими турбинами - на рис. 9.4,б. Эти ГТУ эксплуатируются на Краснодарской ТЭЦ, на ГРЭС им. Классона Мосэнерго, на пиковой ТЭС в г. Инота Вен­герской Народной Республики и др.

Таблица 9.1

Показатели ГТУ
Газотурбинная установка Электрическая мощность, МВт Расход возду- ха через ком- прессор,кг/с Степень сжа- тия в компрес- соре Начальная тем-ра газов, о С Электрический КПД,%
ГТ-25-700* 194,5 4,7/9,7
ГТ-35-770 6,7 27,5
ГТЭ-45-2** 54,3(52,9) 7,7 28(27,6)
ГТ-100-750-2М* 4,5/6,4 750/750
ГТЭ-150
ГТЭ-200 15,6
М9 7001 «Дженерал электрик» 9,6 30,7

* Турбинаи компрессор двухвальные; вал с турбиной и компрессором высокого давления имеет повышенную частоту вращения.

** Приработе на природном газе (жидком газотурбинном топливе).



Рис. 9.4. Газотурбинная установка ГТ-100-750-2 ЛМЗ:

а - тепловая схема: 1-8 - подшипники ГТУ; / - воздух из атмосферы; II - охлаждающая вода; III - топливо (природ­ный газ); /V - уходящие газы; V - пар к пусковой турбине (р=1,2 МПа, t=235°С); ГШ- глушитель шума; КНД - компрессор низкого давления; ВО - воздухоохладители; КВД - ком­прессор высокого давления; КСВД - камера сгорания высокого давления; ТВД - турбина высокого давления; КСНД - камера сгорания низкого давления; ТНД - турбина низкого давления; ВП - внутренний подшипник; В - возбудитель; ПТ - пусковая турбина; АПК - антипомпажные клапаны за КНД; б - компоновка (поперечный разрез):/ - КНД; 2-ВО; 3 - КВД; 4 - КСВД; 5 - ТВД; 6 - КСНД; 7-ТНД; 8 - ПТ; 9 - дымовая труба; 10 - антипомпажный кла­пан (АПК); Л-электрогенератор (Г); 12- мостовой кран; 13- фильтры для очистки воздуха; 14 - глушители шума; 15 - маслонасосы системы регулирования; 16- теплофикационные подо­греватели; /7 - шиберы на выхлопных газоходах; 18 - масло­охладители

Жидкое газотурбинное топливо, применяе­мое для отечественных ГТУ, на электростан­ции подвергается фильтрации и промывке от солей щелочных металлов. Затем в топливо добавляют присадку с содержанием магния для предотвращения ванадиевой коррозии. По данным эксплуатации такая подготовка топлива способствует длительной работе га­зовых турбин без загрязнения и коррозии проточной части.

Ростовским отделением АТЭП разработан типовой проект пиковой газотурбинной элек­тростанции с ГТУ ГТЭ-150-1100. На рис. 9.5 приведена принципиальная тепловая схема такой ГТУ, рассчитанной на сжигание жид­кого газотурбинного топлива или природного газа. ГТУ выполнена по простой открытой схеме, роторы газовой турбины и компрессора расположены в одном транспортабельном кор­пусе, что значительно сокращает сроки мон­тажа и трудозатраты. Газотурбинные агрега­ты устанавливаются поперечно в машинном зале электростанции с пролетом 36 и ячейкой блока в 24 м. Дымовые газы отводятся в ды­мовую трубу высотой 120 м с тремя металли­ческими газоотводящими стволами.

Рис. 9.5. Принципиальная тепловая схема газотурбин ной установки ЛМЗ ГТЭ-150-1100:

ВК - вспомогательный компрессор пневмораспыления топлива: ПТ - паровая турбина; Р - редуктор блока разгонного устройства; ЭД - электродвигатель вспомогательного компрессора ГТ - газовая турбина; Т - подвод жидкого топлива, соответствующего ГОСТ 10743-75, = 42,32 МДж/кг (10 110 ккал/кг) ДТ - дымовая труба; АПК - антипомпажный клапан

Важной особенностью газотурбинных ус­тановок является зависимость их показателей от параметров наружного воздуха, а в первую очередь от его температуры. Под ее влиянием изменяется расход воздуха через компрессор, соотношение внутренних мощностей компрес­сора и газовой турбины и в итоге - электри­ческая мощность ГТУ и ее КПД. В МЭИ вы­полнены многовариантные расчеты работы ГТЭ-150 на жидком газотурбинном топливе и на тюменском природном газе в зависимости от температуры и давления наружного возду­ха (рис. 9.6, 9.7). Полученные результаты подтверждают повышение тепловой эконо­мичности ГТУ с ростом температуры газов перед газовой турбиной и с понижением температуры наружного воздуха . Повы­шение температуры от =800°С до = =1100°С повышает электрический КПД ГТУ на 3% при = -40 °С и на 19% при = 40 °С. Понижение температуры наружного воздуха с +40 до -40°С приводит к значи­тельному увеличению электрической мощно­сти ГТУ. Для различных начальных темпера­тур это увеличение составляет 140-160%. Для ограничения роста мощности ГТУ при понижении температуры наружного воздуха и с учетом возможности перегрузки электро­генератора (в рассматриваемом случае типа ТГВ-200) приходится воздействовать либо на температуру газов перед газовой турбиной, уменьшая расход топлива (кривые 4 на рис. 9.6 и 9.7), либо на температуру наруж­ного воздуха, подмешивая небольшое количе­ство уходящих газов (2-4%) к засасываемо­му компрессором воздуху. Постоянный расход воздуха в диапазоне нагрузок 100-80% мож­но поддерживать также прикрытием входного направляющего аппарата (ВНА) компрессо­ра ГТУ.

Рис. 9.6. Зависимость электрической мощности ГТУ от температуры наружного воздуха :

1- =1100°С; 2- = 950°С; 3 - = 800 °С; 4- = ; - работа ГТУ на природном газе; работа ГТУ на жидком топливе

Рис. 9.7. Зависимость электрического КПД ГТУ от температуры наружного воздуха (обозначения см. на рис. 9.6)

Изменение электрического КПД в сторону его уменьшения особенно значительно притемпературе наружного воздуха выше 5-10 °С (рис. 9.7). С повышением температуры наружного воздуха от +15 до +40 С С этот КПД уменьшается на 13-27% в зависимости от температуры газов перед газовой турбиной и вида сжигаемого топлива.

Повышение наружной температуры воз­духа увеличивает коэффициент избытка воз­духа за газовой турбиной и температуру ухо­дящих газов, что способствует ухудшению энергетических показателей ГТУ.

Имеют единичную электрическую мощность от двадцати киловатт (микротурбины) и до нескольких десятков мегаватт - это классические газовые турбины.

Электрический КПД современных газотурбинных установок составляет 33–39% . КПД газотурбинных установок, в целом ниже, чем у газопоршневых силовых агрегатов. Но с газотурбинными установками значительно упрощается задача получения высокой мощности электростанции. При реализации всего теплового потенциала газовых турбин значимость высокого электрического КПД для потребителей становится менее актуальной. С учетом высокой температуры выхлопных газов в мощных газотурбинных установках имеется возможность комбинированного использования газовых и паровых турбин . Такой инженерный подход позволяет существенно повысить эффективность использования топлива и увеличивает электрический КПД установок до 57–59%. Этот способ хорош, но ведет к удорожанию и усложнению проекта.

Соотношение производимой электрической энергии к тепловой энергии у составляет ~ 1:2. То есть газотурбинная установка с электрической мощностью 10 МВт способна выдать ~ 20 МВт тепловой энергии. Для перевода МВт в ГКал используется коэффициент 1,163 (1,163 МВт = 1163 кВт = 1 Гкал ).

В зависимости от потребностей дополнительно оснащаются паровыми или водогрейными котлами , что дает возможность иметь пар различного давления для производственных потребностей, или горячую воду со стандартными температурами (ГВС). При комбинированном использовании энергии двух видов коэффициент использования топлива (КИТ) газотурбинной тепловой электростанции увеличивается до 90%.

Режим работы электростанции, с использованием сопутствующей тепловой энергии имеет свой технический термин - когенерация .

Возможность получения от газотурбинных установок больших количеств бесплатной тепловой энергии предполагает возврат более быстрый возврат.

Применение газотурбинных установок в качестве силового оборудования для мощных ТЭС и мини–ТЭЦ оправдано экономически, так как на сегодняшний день электростанции, работающие на газовом топливе , имеют наиболее привлекательную для потребителя удельную стоимость строительства и низкие затраты при последующей эксплуатации.

Избытки бесплатной тепловой энергии в любое время года дают возможность, посредством чиллеров - АБХМ , без затрат электричества, наладить полноценное кондиционирование помещений любого назначения. Охлажденный таким образом теплоноситель можно применять в промышленных целях, в различных производственных циклах. Эта технология называется тригенерация .

Эффективность использования газотурбинных установок обеспечивается в широком диапазоне электрических нагрузок от минимальных 1–3% до максимальных 110–115%.

Позитивным фактором использования газотурбинных установок - ГТУ непосредственно в местах проживания людей, является то, что содержание вредных выбросов у них минимально и находится на уровне 9–25 ppm . Такие отличные экологические качества позволяют без проблем размещать газотурбинные установки в непосредственной близости от местонахождения людей.

Этот критерий газотурбинных установок - ГТУ незначительно лучше, чем у ближайших конкурентов газовых турбин - поршневых электростанций .

При использовании газотурбинных установок потребитель получает экономию денежных средств на катализаторах и при строительстве дымовых труб .

На фото изображена газотурбинная установка SIEMENS SGT–700 мощностью 29 МВт.

Газотурбинные установки имеют незначительные вибрации и шумы в пределах 65–75 дБ (что соответствует по шкале уровня шума звуку пылесоса на расстоянии 1 метр). Как правило, специальная звуковая изоляция для подобного высокотехнологичного генерационного оборудования не нужна.

Газотурбинные установки обладают относительно компактными размерами и небольшим удельным весом. Допускается монтаж ГТУ на техническом этаже здания или крышное расположение маломощных газотурбинных установок. Это полезное свойство ГТУ является важным финансовым фактором в городской застройке, потому что оно позволяет экономить дорогостоящие дефицитные квадратные метры и во многих ситуациях дает больше технического простора инженерам для решения задачи размещения автономной электростанции.

Газотурбинные установки - ГТУ отличаются высокой надежностью и неприхотливостью. Имеются подтвержденные заводские данные о безостановочной работе некоторых газотурбинных установок - ГТУ в течение 5–7 лет.

Некоторые производители современных газовых турбин осуществляют ремонт узлов без транспортировки на завод–изготовитель, а другие производители заранее привозят сменную турбину или камеру сгорания, что существенно снижает сроки выполнения капитального ремонта до 4–6 рабочих дней. Эти меры снижают затраты на обслуживание установок.

Преимуществом газотурбинных установок - ГТУ является длительный ресурс (полный до 200 000 часов, до капитального ремонта 30000–60000 часов). В рабочем цикле газотурбинных установках моторное масло не применяется. Имеется небольшой объем редукторного масла, частота замены которого редка.

Отсутствие водяного охлаждения выгодно отличает газотурбинные установки от поршневых электростанций. Многие марки ГТУ надежно функционируют на различных видах газового топлива , включая попутный нефтяной газ (ПНГ) . Но, как и для других видов электростанций, попутный газ с содержанием сероводорода требует специальной подготовки. Без современной установки - станции подготовки газа жизненный цикл электростанции любого типа сокращается в 4–5 раз. Последствия эксплуатации ГПЭС или ГТУ без станций подготовки ПНГ зачастую носят просто фатальный характер.

Газотурбинные установки подготовлены для эксплуатации в различных климатических условиях. Строительство газотурбинных установок в отдаленных районах позволяет получить экономию финансовых средств за счет исключения дорогостоящего строительства линий электропередач (ЛЭП). В местах с более развитой инфраструктурой газотурбинные установки повышают надежность электрического и теплового снабжения.

Одним из вариантов применения газотурбинных установок - ГТУ является концепция блочно-модульных систем (кластеров). Модульные газотурбинные установки - ГТУ состоят из унифицированных энергоблоков и общих управляющих систем, что позволяет за короткий период времени увеличивать электрическую мощность с наименьшими финансовыми и временными затратами.

Блочные вариации газотурбинных установок - ГТУ обеспечивают высокий уровень заводской готовности. Размеры модулей газотурбинных установок - ГТУ, как правило, стандартны. Существуют мобильные ГТУ , которые можно оперативно перемещать с одного объекта энергоснабжения на другой, но такие установки, как правило, не имеют возможности для производства тепловой энергии.

Автоматизированные системы управления газотурбинной электростанции позволяют отказаться от непосредственного присутствия обслуживающего персонала. Мониторинг работы газотурбинных установок - ГТУ может осуществляться удаленно через различные телекоммуникационные каналы. При возникновении внештатных ситуаций предусмотрены комплексные системы автоматической защиты и пожаротушения.

Газотурбинные установки - ГТУ - принцип работы

В газотурбинных установках - ГТУ многоступенчатый компрессор сжимает атмосферный воздух, и подает его под высоким давлением в камеру сгорания. В камеру сгорания газотурбинных установок - ГТУ подается и определенное количество топлива. При столкновении на высокой скорости топливо и воздух воспламеняются. Топливовоздушная смесь сгорает, выделяя большое количество энергии. Затем, энергия газообразных продуктов сгорания преобразуется в механическую работу за счёт вращения струями раскаленного газа лопаток турбины.

В последние годы (приблизительно с 50-х г. прошлого столетия) на ТЭС для привода электрических генераторов стали широко использоваться газовые турбины.

Газотурбинные установки (ГТУ) могут работать со сгоранием топлива при постоянном давлении (рис. 6.1) и при постоянном объеме (рис. 6.2). Соответствующие им идеальные циклы делятся на циклы с подводом теплоты в процессе при постоянном давлении и постоянном объеме .

Рис. 6.1. Схема ГТУ со сгоранием топлива при постоянном давлении: 1 - турбокомпрессор; 2 - газовая турбина; 3 - топливный насос; 4 - камера сгорания; 5 - топливная форсунка;

6 - активная зона камеры сгорания

Рис.6.2. Схема ГТУ со сгоранием топлива при постоянном объеме: 5, б, 7 - соответственно топливный, воздушный и газовый клапаны; 8 - запальное устройство; 9 - ресивер; остальные обозначения те же, что на рис. 6.1

На практике получили распространение ГТУ с разомкнутым (открытым) циклом со сгоранием топлива (с подводом теплоты к рабочему телу) при постоянном давлении с последующим расширением смеси продуктов сгорания с воздухом в проточной части турбины (цикл Брайтона) (см. рис. 6.6).

В ГТУ со сгоранием топлива при постоянном давлении процесс горения осуществляется непрерывно (см. п. 6.2), а в ГТУ со сгоранием топлива при постоянном объеме процесс горения является периодическим (пульсирующим). Сжатый в компрессоре 1 воздух (см. рис. 6.2) подается в ресивер 9 (сосуд большой емкости для выравнивания давления), откуда через воздушный клапан 6 поступает в камеру сгорания 4. Сюда же топливным насосом 3 через топливный клапан 5 подается топливо. Процесс горения производится при закрытых топливном, воздушном и газовом клапанах 5, 6, 7. Воспламенение топливовоздушной смеси осуществляется устройством 8 (электрической искрой). После сгорания топлива в результате повышения давления в камере 4 открывается газовый клапан 7. Продукты сгорания, проходя через сопловые аппараты (на рис. 6.2 не показаны), поступают на рабочие лопатки и приводят во вращение ротор газовой турбины 2.

Рабочим телом ГТУ служат в основном газообразные продукты сгорания органического топлива в смеси с воздухом. В качестве топлива используется природный газ, хорошо очищенные искусственные газы и специальное газотурбинное жидкое топливо (обработанное дизельное моторное и соляровое масло).

Особенностью работы ГТУ является то, что только часть (20-40%) подаваемого компрессором воздуха вводится в активную зону камеры сгорания и участвует в процессе горения топлива при температуре порядка 1500-1600 °С. Остальная часть воздуха (60-80%) предназначена для снижения температуры газов перед турбиной до 1000-1300 °С (для стационарной ГТУ) по условиям надежности и долговечности работы ее лопаточного аппарата, с чем связан повышенный избыток воздуха в газах а г перед турбиной и за ГТУ. а г уменьшается с ростом начальной температуры рабочего тела перед газовой турбиной и в различных установках составляет 2,5-5. КПД ГТУ существенно ниже, чем КПД ПТУ на паровом цикле, что обусловлено наличием воздушного компрессора, потребляемая мощность которого составляет 40-50% мощности газовой турбины.

Газовая турбина меньше и легче паровой, поэтому при пуске она прогревается до рабочих температур значительно быстрее, в отличие от паротурбинной установки, снабженной паровым котлом, который требует медленного прогрева (десятки часов) во избежание аварии из-за неравномерных тепловых удлинений, особенно массивного барабана.

Благодаря большой маневренности (быстрый пуск в работу и нагружение) ГТУ применяют в энергетике, прежде всего для покрытия пиковых нагрузок и в качестве аварийного резерва для собственных нужд крупных энергосистем. Меньший КПД ГТУ по сравнению с паросиловой установкой (ПСУ) в этом случае играет незначительную роль. Для таких ГТУ характерны частые пуски (до 1000 в год) при относительно малом числе часов использования (100-1500 ч/год).

Разновидностью ГТУ являются установки с приводом электрического генератора от двигателя внутреннего сгорания (дизельные электростанции), где в качестве топлива, как и в ГТУ, используется природный газ или качественное жидкое топливо. Однако дизельные электростанции, получившие распространение в странах Ближнего Востока, уступают по единичной мощности ГТУ, хотя и имеют более высокий КПД.

КПД простейших энергетических ГТУ (рис. 6.3) в 50-60-е гг. XX в. составлял 14-18%. В настоящее время с целью повышения КПД ГТУ выполняют с несколькими ступенями подвода теплоты и промежуточным охлаждением сжимаемого воздуха, а также с регенеративным подогревом сжатого в компрессоре воздуха отработавшими в турбине газами, приближая тем самым реальный цикл к циклу Карно, а КПД ГТУ-до 27-37%.

КПД газотурбинных установок ограничивается начальной температурой рабочего тела (1100-1300 °С и выше для ГТУ 5-го поколения) и единичной мощностью из-за возрастающих затрат энергии на собственные нужды, в том числе и на привод компрессора. Первое ограничение в настоящее время устранить затруднительно. Второе ограничение может быть устранено, если в турбину вместо низкоэнтальпийного агента (смеси продуктов сгорания с воздухом) подавать высокоэнтальпийный рабочий агент при той же начальной температуре. Чаще в продукты сгорания добавляют водяной пар. ГТУ, работающие с рабочими телами, состоящими из смесей паров воды и газов или использующие в тепловой схеме раздельно газы и пар, называются парогазовыми установками (ПГУ), а их циклы - парогазовыми. Первые ПГУ называют монарными, а вторые - бинарными .

В период освоения установок с раздельными рабочими телами было опробовано несколько тепловых схем. Наиболее эффективной оказалась схема, в которой паровой цикл по отношению к газовому является полностью утилизационным . Такие установки получили название утилизационных ПГУ или ПГУ-У. В утилизационной ПГУ паровая часть установки работает без дополнительной затраты топлива. Подобная ПГУ из-за высокой начальной температуры цикла (более 1000-1300 °С) может иметь КПД более 60%, что существенно выше, чем у обычной паротурбинной установки и у отдельной ГТУ. Важнейшим фактором повышения КПД ПГУ является использование продуктов сгорания топлива как рабочего тела в области высоких температур (в газовой турбине) и водяного пара в области низких температур (в паровой турбине).

ГТУ открытого типа уступают паротурбинным установкам по единичной мощности, имеют более низкий КПД, менее долговечны в эксплуатации, более требовательны к сортам топлива. Дальнейшее развитие ГТУ направлено на повышение их единичной мощности, экономичности, надежности и долговечности, что в основном определяется прогрессом в области создания жаростойких материалов и разработкой эффективных способов охлаждения проточной части газовых турбин.

Пока мы говорили только о самой газовой турбине, не

* * задавая вопроса, откуда берется газ, приводящий ее в действие.

В паровую турбину рабочий пар поступает из паро­вого котла. Какие же устройства необходимы для того, чтобы питать рабочим газом газовую турбину?

Для работы газовой турбины необходим газ, имеющий большой запас энергии. Энергия газа - его способность совершать при определенных условиях механическую ра­боту- зависит от давления и температуры. Чем сильнее сжат газ и чем выше его температура, тем большую ме­ханическую работу способен он совершить при своем рас­ширении. Значит, для работы турбин необходим сжатый и нагретый газ. Отсюда понятно, какие устройства должны входить в газотурбинную установку (или газо­турбинный двигатель). Это, во-первых, устройство для сжатия воздуха, во-вторых, устройство для его подогрева

И, в-третьих, сама газовая турбина, преобразующая вну­треннюю энергию сжатого и нагретого газа в механиче­скую работу.

Сжатие воздуха - сложная задача. Осуществить ее значительно труднее, чем подать в камеру сгорания жидкое горючее. Например, чтобы подавать в камеру сго­рания с давлением 10 атмосфер один килограмм керосина в секунду, необходимо расходовать около 2 лошадиных сил, а для сжатия до 10 атмосфер одного килограмма воздуха в секунду необходимо примерно 400 лошадиных сил. А в газотурбинных установках на один килограмм керосина приходится примерно 60 килограммов воздуха.

Значит, на подачу воздуха в камеру сгорания с давле­нием 10 атмосфер надо затрачивать в 12 тысяч раз боль­шую мощность, чем на подачу жидкого горючего.

Для сжатия воздуха применяются специальные ма­шины, называемые нагнетателями или компрессорами. Они получают необходимую для их работы механическую энергию от самой газовой турбины. Компрессор и тур-

Бежного компрессора.

Компрессора.

Бина крепятся на одном валу, и турбина во время работы отдает часть своей мощности воздушному компрессору.

В газотурбинных установках используются компрес­соры двух типов: центробежные и осевые.

В центробежном компрессоре (рис. 6), как показывает его название, для сжатия воздуха используется действие центробежной силы. Такой компрессор состоит из вход­ного патрубка, по которому внешний воздух входит в компрессор; диска с рабочими лопатками, называемого часто крыльчаткой (рис. 7); так называемого диффузора, в который поступает выходящий из крыльчатки воздух, и выходных патрубков, отводящих сжатый воздух к месту назначения, например к камере сгорания газотурбинной установки.

Воздух, входящий в центробежный компрессор, под­хватывается лопатками быстровращающейся крыль­чатки и под действием центробежной силы отбрасывается от центра к окружности. Двигаясь по каналам между лопатками и вращаясь вместе с диском, он сжимается центробежными силами. Чем быстрее вращение крыль­чатки, тем больше сжатие воздуха. В современных ком­прессорах окружная скорость крыльчатки достигает 500 метров в секунду. При этом давление воздуха на выходе из крыльчатки составляет примерно 2,5 атмо­сферы. Помимо повышенного давления, воздух, проходя между лопатками, приобретает большую скорость, близ­кую по величине к окружной скорости крыльчатки. За­тем воздух пропускают через диффузор - постепенно расширяющийся канал. При движении по такому каналу скорость воздуха уменьшается, а давление растет. На выходе из диффузора воздух обычно имеет давление по­рядка 5 атмосфер.

Центробежные компрессоры просты по конструкции. Они имеют малый вес, могут сравнительно эффективно работать при различных числах оборотов вала и расходах воздуха. Эти качества обеспечили им широкое примене­ние в технике. Однако у центробежных компрессоров не­достаточно высок коэффициент полезного действия - всего 70-75%. Поэтому в газотурбинных установках, где на сжатие воздуха затрачивается очень много энергии, чаще применяются компрессоры осевого типа. Их коэф­фициент полезного действия выше, он достигает 85-90 %. Но по своему устройству осевой компрессор сложнее центробежного и имеет больший вес.

Осевой компрессор состоит из нескольких рабочих ко­лес, жестко укрепленных на валу и помещенных в канал, по которому движется воздух. Каждое рабочее колесо представляет собой диск с лопатками на ободе. При бы­стром вращении рабочего колеса лопатки сжимают про­ходящий по каналу воздух и увеличивают его скорость.

За каждым рабочим колесом помещается один ряд не­подвижных лопаток - направляющий аппарат, который еще более повышает давление воздуха и сообщает струе требуемое направление.

Рабочее колесо с расположенным за ним рядом не­подвижных лопаток направляющего аппарата называется ступенью компрессора. Одна ступень осевого компрес­сора увеличивает давление воздуха примерно в 1,3 раза. Чтобы получить большее давление, применяют осевые компрессоры с несколькими ступенями. Для получения высоких давлений используются осевые компрессоры с

Рис. 8. Ротор пятнадцахиступенчатого осевого компрессора.

14, 16 и большим числом ступеней. В многоступенчатых осевых компрессорах рабочие лопатки иногда крепятся не на отдельных дисках, а на общем пустотелом валу, так называемом барабане. Вращающуюся часть компрес­сора (барабан с рядами лопаток или рабочие колеса, укрепленные на валу) называют ротором (рис. 8), а не­подвижные направляющие лопатки, укрепленные на ко­жухе компрессора,- его статором.

Свое название осевой компрессор получил потому, что воздух движется вдоль его оси, в отличие от центробеж­ного компрессора, в котором воздух перемещается в ра­диальном направлении.

Воздух, сжатый в компрессоре до высокого давления, подается в камеру сгорания. Здесь в поток воздуха впры­скивается через распылители-форсунки жидкое топливо, которое воспламеняется таким же путем, как это де­лается в двигателях внутреннего сгорания,- с помощью электросвечи. Электросвеча работает только в период запуска двигателя. Далее горение происходит непре­рывно. При этом выделяется большое количество тепла. При сгорании одного килограмма керосина выделяется 10 500 калорий тепла.

Чем больше тепла выделится при сгорании топлива, тем выше будет температура газов в конце камеры сгора­ния. Если на 15 килограммов воздуха подать 1 килограмм керосина, то температура газов достигнет примерно 2500° С. При столь высокой температуре газов работа газотурбинной установки была бы весьма эффективной. Однако материал лопаток соплового аппарата и рабочих лопаток турбины не может выдержать такого нагрева. Лучшие современные жаропрочные сплавы, применяемые в авиационных газотурбинных двигателях, позволяют ра­ботать при температуре газов порядка 900° С. В турбинах, работающих на электростанциях, где требуется более длительный срок службы и используются менее дорогие сплавы, допустимая температура газов еще ниже. По­этому в камерах сгорания газотурбинных установок на

1 килограмм керосина или нефти подается 50-80 кило­граммов воздуха. При таком соотношении в конце ка­меры сгорания устанавливается температура газов, допу­скаемая прочностью лопаток.

Проектирование камеры сгорания для газотурбинных установок представляет собой сложную научно-техниче­скую задачу. К камере сгорания предъявляется ряд стро­гих требований, от выполнения которых зависит работо­способность всей установки. Вот важнейшие из этих тре­бований. Во-первых, необходимо обеспечить полное сго­рание топлива. Если топливо не успеет полностью сго­реть в камере сгорания, то часть его энергии будет напрасно потеряна. Экономичность газотурбинной уста­новки понизится. Более того, топливо, не успевшее сгореть в камере сгорания, станет догорать между лопат­ками турбины, что приведет к прогоранию и поломке лопаток, то есть к аварии. Нельзя допускать также, чтобы поступающий в турбину газ вместо одинаковой температуры по всему поперечному сечению имел в одном месте, например, 600° С, а в другом - 1200°. Нужно поэто­му обеспечить хорошее смешение газов перед выходом из камеры, исключить возможность проникновения в турбину отдельных «факелов» газа с повышенной температурой. Наконец, необходимо хорошо охлаждать стенки камеры сгорания, чтобы защитить их от прогорания.

Для решения всех этих задач воздушный поток в ка­мерах сгорания газотурбинных двигателей делят на две части (рис. 9). Меньшая часть потока направляется во внутреннюю часть камеры - в так называемую жаровую трубу. Там топливо сгорает при высокой температуре (высокая температура позволяет достигнуть достаточно

Полного сгорания). Остальная часть воздуха не участвует в горении. Она омывает с внешней стороны жаровую трубу и охлаждает ее. Затем происходит смешивание холодного воздуха с горячими газами. Для лучшего перемешивания в стенках трубы делается большое число мелких отверстий, через которые охлаждающий воздух небольшими порциями вводится внутрь и смешивается с горячими газами. Благодаря такой подаче охлаждаю­щего воздуха температура газа около стенок оказывается ниже, чем в центре жаровой трубы. Это также способ­ствует ее защите от прогорания.

Камера сгорания газотурбинной установки обычно располагается между компрессором и турбиной. При та­ком расположении поток газов идет прямо от входа уста­новки к ее выходу. Но в центре установки проходит вал, соединяющий турбину с компрессором. Этот вал не дол­жен сильно нагреваться, иначе его прочность понизится. Поэтому камеру сгорания делают кольцевой или одну

Общую камеру заменяют 6-10 отдельными камерами, расположенными по окружности вокруг вала.

Вы познакомились с тремя основными частями газо­турбинной установки: воздушным компрессором, камерой сгорания и газовой турбиной. На рис. 10 показана схема газотурбинного двигателя. Вот как он работает.

Компрессор засасывает воздух из атмосферы и сжи­мает его. Сжатый воздух поступает в камеру сгорания, где благодаря сжиганию топлива его температура возра­стает на несколько сот градусов. Давление же газа

Остается примерно постоянным. Поэтому двигатели такого типа называют газотурбинными двигателями с постоян­ным давлением сгорания. Из камеры сгорания газ с вы­соким давлением и температурой, а следовательно, с большим запасом энергии идет в турбину. Там происхо­дит процесс перехода энергии сжатого и нагретого газа в полезную работу.

Газ совершает в турбине работу в процессе расшире­ния, то есть когда снижается его давление. В большин­стве газотурбинных установок давление газа снижается до атмосферного. Значит, в турбине происходит процесс, обратный тому, который идет в компрессоре.

Если бы температура воздуха на выходе из компрес­сора и при входе в турбину была одинакова, то при рас­ширении воздуха в турбине он совершал бы такую же работу, какая была затрачена на его сжатие в компрес­соре - при том условии, что не было бы никаких потерь энергии на трение воздуха и на его завихрение. А с уче­том этих потерь воздух совершал бы в турбине работу меньшую, чем работа, требуемая для вращения компрес­сора. Ясно, что от такой установки не было бы никакой пользы. Но в компрессоре сжимается холодный воздух, а в турбину поступает сильно нагретый газ. Поэтому работа расширения газа оказывается в 1,5-2 ра­за больше, чем требуется для компрессора. Например, если газовая турбина развивает мощность в 10 ООО лошадиных сил, то на вращение соединенного с ней ком­прессора надо затрачивать примерно 6000 лошадиных

Сил. Оставшаяся свободная мощность в 4000 лошадиных сил может быть использована для вращения электрогене­ратора, судового винта, воздушного винта самолета или каких-либо иных механизмов.

Для работы газотурбинного двигателя необходим ряд вспомогательных агрегатов: топливные насосы, автома­тические приборы, регулирующие его работу, система смазки и охлаждения, система управления и др.

Чтобы запустить газотурбинный двигатель, надо рас­крутить его ротор (рис. 11) до нескольких сот оборотов в минуту. Для этой цели служит небольшой вспомога­тельный двигатель, называемый стартером. У больших газотурбинных двигателей стартером часто служат ма­ленькие газотурбинные двигатели мощностью порядка 100 лошадиных сил, а иногда и более. Эти стартеры в свою очередь раскручиваются небольшими электромото­рами, получающими питание от аккумулятора.

ЖДысль о возможности использовать поток горячих га - *** зов для получения механической работы зароди­лась очень давно. Еще 450 лет назад великий итальян­ский ученый Леонардо да Винчи дал описание колеса с лопастями, установленного в дымоходе над очагом. Под действием газового потока такое колесо могло вра­щаться и приводить в действие вертел. Колесо Леонардо да Винчи можно считать прообразом газовой турбины.

В 1791 году англичанин Джон Барбер взял патент на газотурбинную установку. По рисунку, приложенному к патенту, можно было представить, что установка, по мысли автора, должна была работать на горючем газе, получаемом перегонкой твердого или жидкого топлива. Газ с помощью примитивного компрессора нагнетался в резервуар. Из него он поступал в камеру сгорания, где смешивался с воздухом, подаваемым вторым компрессо­ром, и воспламенялся. Продукты сгорания поступали из камеры на колесо турбины. Однако при существовавшем тогда уровне развития техники осуществить газовую тур­бину не представлялось возможным. Первая газовая тур­бина была создана лишь в самом конце XIX века рус­ским изобретателем П. Д. Кузьминским, который, как мы уже говорили, построил и первую паровую турбину для морских судов.

Газотурбинный двигатель, построенный в 1897 году по проекту П. Д. Кузьминского, состоял из воздушного компрессора, камеры сгорания и радиальной турбины (рис. 12). Кузьминский применил охлаждение камеры сгорания водой. Вода охлаждала стенки и затем посту­пала внутрь камеры. Подача воды снижала температуру и в то же время увеличивала массу газов, поступающих в турбину, что должно было повысить эффективность установки. К сожалению, работа Кузьминского не встре­тила никакой поддержки со стороны царского правитель­ства.

Спустя 7 лет, в 1904 году, за границей была по­строена газовая турбина по проекту немецкого инженера Штольца, но практического применения она не получила, так как имела много недостатков.

В 1906 году французские инженеры Арманго и Ле- маль построили газовую турбину мощностью в 25 лоша­диных сил, а затем другую - мощностью уже в 400 ло­шадиных сил. Коэффициент полезного действия этой установки составлял всего 3%.

Испытания первых газотурбинных установок показали, что для повышения их эффективности необходимо до­биться значительного увеличения коэффициента полез­ного действия компрессора и турбины, а также поднять

Температуру газов в камере сгорания. Это побудило мно­гих изобретателей искать другие конструкции газовых турбин. Возникло желание избавиться от компрессора, чтобы избежать больших потерь энергии при сжатии воз­духа. Но турбина может работать лишь тогда, когда давление газов в камере сгорания выше, чем за турби­ной. Иначе газ не потечет из камеры в турбину и не при­ведет в действие ее рабочее колесо. При непрерывном процессе горения в камере неизбежно применение ком­прессора, подающего сжатый воздух. Однако, если сде­лать процесс горения прерывистым, то можно отказаться

От компрессора или использовать компрессор, дающий не­большое сждтие воздуха и соответственно с этим потреб­ляющий меньшую мощность. В такую пульсирующую ка­меру воздух подается в то время, когда в ней нет горения и давление очень низкое. После входа воздуха и впрыска горючего входное отверстие камеры закрывается, проис­ходит вспышка. Так как камера закрыта и газы расши­риться не могут, то давление в ней резко возрастает. После то­го как газы вытекут из камеры в турбину, впускной клапан от­крывается и в камеру входит новая порция воздуха. Так, осуще­ствляя процесс горе­ния при постоянном объеме газов, то есть в замкнутой камере, можно повысить их давление без помощи компрессора.

В 1908 году рус­ский инженер В. В.

Кароводин создал опытную модель та­кой газовой турбины (рис. 13). Закрытие камеры в период го­рения топлива осу­ществлялось в ней с помощью специального клапана. Тур­бина имела четыре камеры сгорания, из которых газ по четырем длинным соплам шел к рабочему колесу. При испытаниях модель развивала мощность 1,6 лошадиной силы; коэффициент полезного действия равнялся всего 3%. Для промышленного применения эта турбина также еще не годилась.

Над созданием газовых турбин с постоянным объе­мом сгорания долго работал и немецкий инженер Хольц - варт. По его проектам в период 1914-1920 годов было
построено несколько турбин мощностью от 500 до 2000 ло­шадиных сил. Однако ни одна из них не годилась для промышленной эксплуатации. Лишь в 30-х годах швей­царской фирме «Броун-Бовери» удалось создать не­сколько пригодных для практической эксплуатации тур­бин с горением при постоянном объеме. В настоящее время работы над подобными турбинами почти полно­стью прекращены.

Наши ученые пошли по другому пути. Инженер

В. X. Абианц в своей книге «Теория авиационных газовых турбин» пишет о трудах советских специалистов:

«Одна из главных заслуг советских ученых заклю­чается в том, что они обосновали целесообразность и перспективность развития турбин с постоянным давле­нием сгорания, в то время как зарубежные (в частности, немецкие) газотурбинисты работали в области турбин с постоянным объемом сгорания. Все последующее разви­тие газовых турбин, в том числе и авиационных, бле­стяще подтвердило прогнозы советских ученых, ибо стол­бовой дорогой развития газовых турбин оказался путь создания турбин с постоянным давлением сгорания».

Трудами советских ученых было доказано, что газо­турбинные установки с постоянным давлением сгорания при достаточно высокой температуре газов могут иметь высокий коэффициент полезного действия.

В 1939 году профессором В. М. Маковским была по­строена на Харьковском турбогенераторном заводе газо­вая турбина с постоянным давлением сгорания. Ее мощ­ность составляла 400 киловатт. Вал, диск и полые ло­патки турбины охлаждались водой. Турбина Маковского предназначалась для работы на горючем газе, получае­мом в результате подземной газификации каменного угля. Она была установлена и успешно испытана на одной из шахт в Горловке.

В настоящее время наши заводы производят различ­ные типы высокоэффективных газовых турбин.

Хотя газотурбинная установка по своему устройству более проста, чем поршневой двигатель внутреннего сго­рания, для создания ее потребовалось провести огромную научно-исследовательскую работу. Вот почему только в наше время, на основе современных достижений науки и техники, удалось создать эффективный газотурбинный двигатель.

Какие же научные проблемы надо было решить уче­ным, прежде чем сделать возможным создание газотур­бинных установок?

При создании газовой турбины необходимо было стре­миться к тому, чтобы возможно полнее использовать энер­гию газа, предельно снизить ее потери на трение и вихре - образование. Большая скорость движения газа через турбину позволяет получить и большую мощность неболь­шой по - размерам установки. Но в то же время такая скорость таит в себе опасность больших потерь энергии. Чем больше скорость движения жидкости или газа, тем больше потери энергии на трение и образование вихрей.

Чтобы построить газотурбинную установку с высоким коэффициентом полезного действия, надо было выбрать наивыгодные размеры, форму и взаимное расположение частей компрессора и турбины. А для этого требовалось изучить движение газов и узнать, как они воздействуют на обтекаемые ими твердые тела. Изучение движения газа требовалось для развития многих отраслей техники.

Первой задачей ученых в этой области было исследо­вать движение газа при сравнительно малых скоростях, когда он практически не сжимается. Поскольку движение несжимаемого газа подчиняется тем же законам, что и движение жидкости, этот раздел науки получил название гидродинамики («гидр» - по-гречески вода).

Одновременно развивалась наука о молекулярном строении газа, о процессах изменения его состояния под действием давления и температуры. Она называется тер­модинамикой (от латинского слова «термо» - теплота).

В процессе развития гидродинамики возникла необхо­димость учитывать характерные особенности газа, отли­чающие его от жидкости. И вот на базе гидродинамики возникла аэродинамика - наука о законах течения воз­духа и обтекания тел воздушным потоком. В то же время появление паровых турбин побудило ученых-термодина - миков исследовать и такие вопросы, как истечение газов и паров из сопел.

В процессе своего развития гидродинамика и термо­динамика, расширяя круг изучаемых вопросов, проникая все глубже и глубже в сущность физических явлений, приближались друг к другу. Так возник еще один новый раздел науки - газовая динамика, изучающая законы движения газа с большими скоростями и тепловые про­цессы, происходящие в газовом потоке.

Эта наука и послужила теоретической основой для развития газотурбинных двигателей. Первые фундамен­тальные работы по теории газовых турбин были выпол­нены выдающимся чешским ученым Стодола, советскими профессорами В. М. Маковским, В. В. Уваровым и рядом других ученых.

Разработка теоретических основ газотурбинной тех­ники и начавшиеся во многих странах мира эксперимен­тальные работы в этой области показали, что важнейшей задачей в развитии двигателей такого типа являлось усо­вершенствование их проточной части, т. е. тех элементов двигателя, по которым течет газ: воздухозаборника, ком­прессора, камеры сгорания, турбины и сопла. В первую очередь стоял вопрос о разработке теории компрессоров и турбин, которые часто называют одним термином «ло­паточные машины». Именно решением этой фундамен­тальной задачи и занялись советские ученые. На основе гениальных трудов Эйлера, Бернулли, Жуковского, Чап­лыгина советские ученые создали теорию газотурбинных двигателей.

Исключительно ценный вклад в теорию газотурбин­ных двигателей внес академик Б. С. Стечкин. Его тру­дами была создана стройная теория лопаточных машин. Им были разработаны методы расчета осевых и центро­бежных компрессоров. Он является творцом теории са­мых распространенных в современной авиации газотур­бинных воздушно-реактивных двигателей.

Глубокие теоретические исследования и плодотворную экспериментальную работу по компрессорам провели профессора К. А. Ушаков, В. Н. Дмитриевский, К. В. Хол­щевников, П. К. Казанджан и ряд других ученых. Значи­тельным вкладом в теорию лопаточных машин явился труд украинского академика Г. Ф. Проскура «Гидродина­мика турбомашины», изданный еще в 1934 году.

Теории газовых турбин и газотурбинных двигателей в целом были посвящены работы профессоров Г. С. Жи -

Ридкого, А. В. Квасникова, П. И. Кириллова, Я. И. Шнеэ, Г. П. Зотикова и многих других.

Большая работа была проделана учеными по созда­нию наиболее выгодной формы турбинных лопаток. Ра­бота лопаток турбины имеет много общего с работой крыла самолета. Однако между ними имеются и суще­ственные различия. Крыло работает изолированно, а тур­бинная лопатка - в соседстве с другими лопатками. В последнем случае получается, как принято говорить, «решетка профилей». Влияние соседних лопаток сильно изменяет картину обтекания газом профиля лопатки. Кроме того, крыло обдувается потоком воздуха, имею­щим перед встречей с самолетом одинаковую скорость вдоль всего размаха крыла. А скорость газа относи­тельно лопатки турбины не одинакова по ее длине. Она зависит от окружной скорости лопаток. Так как лопатки делают довольно длинными, то окружная скорость у корня лопатки значительно меньше, чем у ее конца. Зна­чит, и скорость газа относительно лопатки у ее корня будет иная, чем у внешней окружности рабочего колеса. Поэтому профиль лопатки должен быть таким, чтобы лопатка по всей своей длине работала с наибольшей эффективностью. Задача создания таких лопаток была решена трудами профессора В. В. Уварова и других ученых.

Важнейшей проблемой, от решения которой зависело создание экономичных газотурбинных двигателей, была проблема жаропрочных материалов. Экономичность газо­турбинной установки увеличивается с ростом темпера­туры газов. Но чтобы турбина могла надежно работать при высокой температуре, необходимо изготавливать ее лопатки и диск из таких сплавов, прочность которых со­храняется и при большом нагреве. Поэтому для развития газотурбинной техники требовался высокий уровень раз­вития металлургии. В настоящее время металлургами созданы сплавы, способные выдерживать большие тем­пературы. Лопатки турбины, изготовленные из таких сплавов, могут без специального охлаждения работать при температуре поступающих в турбину газов до 900° С.

Кроме сплавов, существуют и другие жаростойкие материалы, например особая керамика. Но керамика довольно хрупка, это препятствует ее применению в газо­вых турбинах. Дальнейшие работы по усовершенствова­нию жаропрочной керамики могут оказать, однако, суще­ственное влияние на развитие газовых турбин.

Конструкторы газовых турбин разрабатывают также лопатки с искусственным охлаждением. Внутри лопаток делают каналы, по которым пропускают воздух или жид­кость. Диск турбины обычно обдувается воздухом.

Условия горения топлива в газотурбинных установках существенно отличаются от условий в топках паровых котлов или в цилиндрах поршневых двигателей. Газо­турбинный двигатель способен при малых размерах про­изводить громадную работу. Но для этого надо сжигать в малом объеме камеры большое количество горючего. Этого можно добиться лишь при очень большой скорости горения. Частицы топлива находятся в камере сгорания газотурбинного двигателя менее сотой доли секунды. За такое короткое время должно произойти хорошее пере­мешивание топлива с воздухом, его испарение и полное сгорание.

Чтобы успешно решить задачу, необходимо изучить физику горения. Над этим работают в наше время круп­ные коллективы ученых.

Учеными детально исследован и вопрос о максималь­ном использовании тепла, выделяемого при горении топ­лива в газотурбинных установках. Из рабочего колеса турбины газы выходят с высокой температурой и, сле­довательно, уносят с собой в атмосферу большое коли­чество внутренней энергии. Возникло естественное жела­ние использовать тепло отходящих газов. Для этого была предложена следующая схема установки. Газы из рабо­чего колеса, прежде чем выйти в атмосферу, проходят через теплообменник, где передают часть своего тепла сжатому воздуху, вышедшему из компрессора. Воздух, нагреваясь в теплообменнике, повышает свою энергию без расхода на это какого-либо количества горючего. Из теплообменника воздух направляется в камеру сгорания, где его температура поднимается еще выше. Устройством таких теплообменников можно значительно сократить расход топлива на нагревание газа и тем самым повы­сить экономичность установки. Теплообменник представ­ляет собой канал, по которому текут горячие газы. Внутри канала помещается пучок стальных труб, распо­ложенных по потоку газов или перпендикулярно к нему. Внутри этих труб течет воздух. Газ нагревает стенки труб и текущий внутри них воздух. Происходит возврат части тепла из уходящих газов в рабочий воздух. Этот процесс называется процессом регенерации тепла. И теп­лообменники часто называют регенераторами.

Газотурбинные установки с регенерацией тепла яв­ляются значительно более экономичными, чем обычные турбины. К сожалению, теплообменники очень громоздки по своим размерам, что затрудняет их применение на некоторых транспортных установках.

В числе научных проблем, лежащих в основе разви­тия газотурбинной техники, следует отметить и проч­ность конструкций. Для постройки прочных камер сго­рания необходимо знать методы расчета тонкостенных оболочек. Этим занимается один из новых разделов науки о сопротивлении материалов. Сложной задачей является обеспечение прочности рабочих лопаток турбины. Ротор турбины совершает очень большое число оборотов (5000-10 ООО оборотов в минуту, а в некоторых конструк­циях и более), и на лопатки действуют большие центро­бежные силы (несколько тонн на каждую лопатку).

Мы рассказали здесь только о самых главных научных проблемах, решение которых потребовалось для развития газотурбинной техники. Ученые и инженеры продолжают работать над совершенствованием газотурбинных двига­телей. Перед ними стоит еще много нерешенных вопро­сов, много интересных и важных проблем.

Например, исключительно большое значение имеют работы по созданию газовых турбин, использующих в качестве топлива каменный уголь. Известно, что камен­ного угля добывается больше, чем нефти, и он дешевле ее. Сжигание угля в камере сгорания газовой турбины - трудная задача. Его приходится размельчать, превра­щать в угольную пыль. Газы, выходящие из камеры сго­рания, надо очищать от золы. Если в газе содержатся частицы золы размером даже в 0,03-0,05 миллиметра, то лопатки турбины начнут разрушаться, и турбина вый­дет из строя.

Создание очистителей газа - дело сложное. Но ре­шить такую задачу для газотурбинного двигателя можно. У двигателей внутреннего сгорания сжатие воздуха, сго­рание и расширение газа происходят в одном месте - в цилиндре. Установить в цилиндре какой-нибудь очисти­тель оказалось невозможным. Поэтому до сих пор по­пытки сжигания угля в цилиндрах двигателей внутрен­него сгорания ни к чему не привели. В газотурбинной же установке сжатие, сгорание и расширение совершаются в разных местах. Сжатие воздуха осуществляется в ком­прессоре, нагревание - в камере, а расширение - в тур­бине. Очиститель можно поместить между камерой и тур­биной. Нужно только, чтобы он не сильно снижал давле­ние проходящих через него газов и не был слишком велик по размерам.

В наши дни ведутся исследования и по созданию атомных газотурбинных двигателей. В этих двигателях нагрев воздуха осуществляется не за счет сжигания топ­лива, а за счет тепла, выделяющегося в атомном котле. Много трудностей предстоит преодолеть ученым на этом пути. Но нет сомнения, что атомным газотурбинным дви­гателям предстоит большое будущее.



Похожие публикации