Понятие о химиотерапии. История открытия химиопрепаратов

В 1935 г. видный немецкий патолог и микробиолог Г. Домагк (1895-1964) первым применил сульфаниламидный препарат стрептоцид при экспериментальной стрептококковой инфекции, обосновал применение сульфаниламидных соединений при кокковых инфекциях и положил начало новому этапу в химиотерапии бактериальных заболеваний. После опубликования работ Домагка в СССР и других странах началась разработка сульфаниламидных соединений. Во Всесоюзном научно-исследовательском химико-фармацевтическом институте были синтезированы белый и красный стрептоцид, сульфидин, сульфазол, норсульфазол, сульгин, фталазол, дисульфан и др. Создание сульфаниламидных препаратов сыграло важную роль в лечении ряда заболеваний. В 1949- 1950 гг. коллектив латвийских ученых под руководством Э. М. Буртнека изучил и внедрил в клиническую практику парааминосалициловую кислоту (ПАСК) - химиотерапевтический препарат для лечения туберкулеза.

В 40-х годах возникла химиотерапия злокачественных новообразований.

Интенсивно шли поиски антибактериальных веществ животного и растительного происхождения. В 1928-1929 гг. А. Флеминг (Англия) установил, что один из видов плесневого грибка выделяет антибактерийное вещество - пенициллин. В 1939- 1940 гг. оксфордские ученые X. Флори и Э. Чейн разработали методику получения стойкого пенициллина, научились концентрировать его в тысячи раз и наладили производство препарата в промышленном масштабе, положив начало новому способу борьбы с микроорганизмами при помощи антибиотиков. После того как в 1942 г. пенициллин впервые был с успехом применен в клинической практике, интерес к антибиотикам пробудился во всем мире. В СССР отечественный препарат пенициллина был получен в 1942 г. в лаборатории 3. В. Ермольевой. В том же году в СССР Г. Ф. Гаузе и другими был получен антибиотик грамицидин. В дальнейшем был выделен ряд новых антибиотиков, обладающих различным действием. В 1944 г. американский ученый 3. Ваксман получил стрептомицин.

Были получены антибиотики ауреомицин (1948), колимицин (1949), альбомицин (1949-1950).

Проблема лечения инфекционных заболеваний имеет такую же долгую историю, как и изучение самих болезней. С точки зрения современного человека, первые попытки в данном направлении были наивны и примитивны, хотя некоторые из них и не были лишены здравого смысла (к примеру, прижигание ран или изоляция больных). Опыт, накопленный тяжёлым путём проб и ошибок, вооружил знахарей знаниями целœебных свойств вытяжек из трав и тканей животных, а также различных минœералов, Изготовление настоев и отваров из растительного сырья было широко распространено в античном мире, их пропагандировал Клавдий Гален.

В средневековье репутацию препаратов из лекарственного сырья значительно ʼʼподмочилиʼʼ всœевозможные зелья, ʼʼизысканияʼʼ алхимиков и, конечно, убеждённость в неизлечимости ʼʼкар Господнихʼʼ. В этой связи следует упомянуть верование в целительное действие рук ʼʼпомазанников Божьихʼʼ, через прикосновение царствующей особы проходили толпы больных. К примеру, Людовик XIV возложил руки на 10 000 больных, а Карл II Стюарт - на 90 000.

Основателœем химиотерапии с полным правом должен считаться Парацельс, названный А.И. Герценым ʼʼпервым профессором химии от сотворения мираʼʼ. Парацельс не без успеха применял для лечения инфекций человека и животных различные неорганические вещества (к примеру, соли ртути и мышьяка). После открытия Нового Света стало известно о свойствах коры дерева ʼʼкина-кинаʼʼ, использовавшейся индейцами для лечения малярии. Популярности этого средства способствовало чудесное излечение жены вице-короля Америки, графини Цинхон, и в Европу кора прибыла уже под названием ʼʼпорошок графиниʼʼ, a позднее её имя присвоили и самому хинному дереву (Cinchona). Такую же славу снискало и другое заокеанское средство - ипекакуана, применявшееся индейцами для лечения ʼʼкровавыхʼʼ поносов.

Пауль Эрлих и его сотрудник Киеси Шига испытал: более 500 красителœей (от бриллиантового зелёного до генцианового фиолетового) и обнаружили один, способный защищать от гибели мышей, заражённых трипаносомами. Авторы так его и назвали - трипановый красный, но вскоре оказалось, что препарат не действует на микроорганизмы, укрывшиеся в тканях. Дальнейшие их поиски выявили трипановый синий и другие красители, обладавшие бактерицидным эффектом in vitro, но не in vivo. Неудача с красителями не остановила Эрлиха, им овладела другая идея - излечивать сифилис.

К этому времени медицина обогатилась новым противотрипаносомозным средством атоксилом (органическое производное мышьяка). Атоксил с успехом применил Роберт Кох для лечения сонной болезни, но через несколько месяцев выяснилось страшное побочное действие препарата - дегенерация зрительного нерва.

Эрлиха это не смутило, так как атоксил эффективно применяли для лечения малокровия у кур, возбудитель которого был поразительно похож на возбудителя сифилиса. Под своим любимым девизом ʼʼне спеша и без усталиʼʼ Эрлих с легендарным упорством испытывал всё новые и новые производные атоксила. Успех ждал исследователя на 606-м соединœении. Он назвал его сальварсаном (спасающим), и, действительно, препарат спас жизни тысячам больным различными спирохетозами (сифилис, фрамбезия и др.).

После блестящих открытий Эрлиха всœе поиски лекарственных средств окутались покровом тайны. Специалисты ведущих фармацевтических фирм исследовали каждое новое соединœение, не разглашая полученные результаты.

В 1908 ᴦ. австрийский химик П. Гельмо получил сульфаниламид из каменноугольной смолы. Позднее химик фирмы ʼʼБайерʼʼ X. Герляйн установил, что присоединœение сульфаниламида к кислым красителям улучшает качество окраски, и предложил новый кирпично-красный краситель- хризоидин.

Уже в 1913 ᴦ. специалисты фирмы ʼʼБайерʼʼ установили его способность убивать различные бактерии. В 1932 ᴦ. фирма ʼʼИГ Фарбениндустриеʼʼ запатентовала оранжево-красное вещество с необычным для красителœей названием стрептозон. В лабораториях фирмы его детально изучил выдающийся бактериолог Г. Домагк, опубликовавший свои результаты в знаменитой статье ʼʼВклад в химиотерапию бактериальных инфекцийʼʼ, ознаменовавшей рождение нового класса химиотерапевтических агентов. Монопольные права на стрептозон (получивший название пронтозил или красный стрептоцид) позволили ʼʼИГ Фарбениндустриеʼʼ захватить рынок антимикробных лекарственных средств.

Но дельцы от фармацевтики не придали значения открытию П. Гельмо и не запатентовали сульфаниламид, а исследования группы Э. Фурно из парижского Пастеровского института показали, что действующим началом пронтозила является его бесцветная фракция. Под названием ʼʼбелый стрептоцидʼʼ данный препарат стали широко тиражировать во многих странах.

При изучении сибирской язвы Пастер заметил, что заражение животного смесью возбудителя и других бактерий часто мешает развитию заболевания, что позволило ему предположить, что конкуренция между микробами может блокировать патогенные свойства возбудителя . Впервые идею о возможности применения существующего антагонизма между микробами для лечебных целœей высказал И.И. Мечников.

Позднее было показано, что такими свойствами обладают не только микробы, но и их стерилизованные продукты. Эти находки положили начало развитию двух направлений в подходе к лечению инфекций: применение стерилизованных микробных культур (чему особый толчок дало открытие и применение туберкулина Коха) и особых ингибирующих агентов, продуцируемых микробами.

В последующем было установлено, что отдельные почвенные спорообразующие бактерии выделяют вещества, убивающие бактерии других видов. В 70-х годах XIX в. русские врачи В.А. Манасеин и А.Г. Полотебнов установили бактерицидные свойства плесневых грибов и эффективность экстрактов их культур при лечении инфицированных язв и ран. Для этого направления ведущее значение имело открытие А. Флемингом пенициллинов (1928). Следствием этой знаменитой ʼʼслучайностиʼʼ (в открытую чашку Петри со стафилококками нечаянно попала плесень P. notatum, образовавшая зону задержки роста) явилось получение чистого пенициллина (X. Флори и Э. Чейн, 1940) и начало новой эры в химиотерапии.

Первый отечественный пенициллин (крустозип ) был получен З.В. Ермольевой из P. crustosum в 1942 ᴦ. Безусловно, без предшествующих многолетних исследований, в т.ч. и отечественных учёных, эта ʼʼслучайностьʼʼ вряд ли бы была столь плодотворной. Более того, в 1985 ᴦ. в архивах Лионского университета была найдена диссертация рано скончавшегося студента-медика (Эрнест Августин Дюшене), за сорок лет до Флеминга подробно характеризующая открытый им препарат из плесени P. notatum, активный против многих патогенных бактерий.


Основоположником химиотерапии является немецкий химик, лауреат Нобелевской премии П. Эрлих, который установил, что химические вещества, содержащие мышьяк, губительно действуют на спирохеты и трипаносомы, и получил в 1910 г. первый химиотерапевтический препарат - сальварсан (соединение мышьяка, убивающее возбудителя, но безвредное для макроорганизма).

В 90-х годах 19 века русский врач Д. Л. Романовский установил, что лечебное действие хинина при малярии является этиотропным, т. е. направленным на возбудителя болезни.

В первом десятилетии текущего столетия немецкий исследователь П. Эрлих предпринял планомерные поиски лекарственных веществ, действующих на возбудителей некоторых инфекций (при трипанозомозах, спирохетозах).

В результате длительных исследований Эрлиху и его сотрудникам удалось синтезировать сальварсан, обладающий лечебным действием при трипанозомных (сонная болезнь) и спирохетных (сифилис, возвратный тиф, фрамбезия) инфекциях. Практическое значение приобрел неосальварсан (новарсенол), обладающий значительно лучшей растворимостью, чем сальварсан. Эрлих ввел термин «химиотерапия» и сформулировал основные ее принципы.

В 1907-1908 гг. в химиотерапию были введены соединения сурьмы (Мениль и др.).

В 1916 г. немецкий исследователь Рель открыл высокоактивный трипаноцидный препарат германии (наганин), который приобрел широкое применение для борьбы с трипанозомозами человека и животных. С этого момента изыскание антипротозойных и противоспирохетных средств приобрело широкий размах. В 1921 г. было открыто противосифилитическое действие соединений висмута (Сазерак и Левадити, Франция). В 1926 г. был предложен противомалярийный препарат плазмохин (Рель и др., Германия). В 30-х годах XX века в Германии был открыт один из лучших антималярийных препаратов атебрин (акрихин) и мощное пироплазмоцидное средство - акаприн (пироплазмин). В 1935 г. немецкий исследователь Домагк опубликовал сообщение о первом антибактериальном химиотерапевтическом средстве - пронтозиле (красный стрептоцид) чем было положено начало созданию химиотерапии бактериальных инфекций.

Крупной вехой на пути развития химиотерапии является введение в практику в 40-х годах антибиотиков - пенициллина (Флеминг и Флори) и стрептомицина (Ваксман).

Открытие стрептомицина положило начало химиотерапии туберкулеза, крупные успехи которой связаны с открытием парааминосалициловой кислоты (1946) и производных гидразида изоникотиновой кислоты (1952). Параллельно с этим появляется много других высокоактивных химиотерапевтических препаратов: палюдрин, хлорохин, дараприн и примахив

(противомалярийные препараты), антрицид (противотрипанозомное средство), антибиотики широкого спектра действия (хлорамфеникол, хлор-тетрациклин, окситетрациклин, тетрациклин, эритромицин), противогрибковые антибиотики (нистатин, амфотерицин).

В 40-х годах 20 века было положено начало химиотерапии злокачественных новообразований.

В 1935 г. другой немецкий химик Г. Домагк обнаружил среди анилиновых красителей вещество - пронтозил, или красный стрептоцид, спасавший экспериментальных животных от стрептококковой инфекции, но не действующий на эти бактерии вне организма. За это открытие Г. Домагк был удостоен Нобелевской премии. Позднее было выяснено, что в организме происходит распад пронтозила с образованием сульфаниламида, обладающего антибактериальной активностью как in vivo, так и in vitro.

Механизм действия сульфаниламидов (сульфонамидов) на микроорганизмы был открыт Р. Вудсом, установившим, что сульфаниламиды являются структурными аналогами парааминобензойной кислоты (ПАБК), участвующей в биосинтезе фолиевой кислоты, необходимой для жизнедеятельности бактерий. Бактерии, используя сульфаниламид вместо ПАБК, погибают.

Первый природный антибиотик был открыт в 1929 г. английским бактериологом А. Флемингом. При изучении плесневого гриба Penicillium notatum, препятствующего росту бактериальной культуры, А. Флеминг обнаружил вещество, задерживающее рост бактерий, и назвал его пенициллином. В 1940 г. Г. Флори и Э. Чейн получили очищенный пенициллин. В 1945 г. А Флеминг, Г. Флори и Э. Чейн стали Нобелевскими лауреатами.

Как уже сказано, химиотерапевтическими средствами мы называем такие, которые губительно действуют на возбудителя болезни. Следовательно, эти препараты должны угнетать жизнедеятельность микроорганизмов и вне макроорганизма. Действительно, в подавляющем большинстве случаев это имеет место: химиотерапевтические вещества подавляют развитие микроорганизмов in vitro часто даже в более низких концентрациях, чем те, которые получаются в крови и органах макроорганизма при использовании препаратов с лечебной целью. В тех немногих случаях, когда химиотерапевтические препараты слабо влияют на микробы in vitro, доказано их превращение в организме хозяина в активные соединения.

Следует иметь в виду, что только немногие вещества, активные против микробов in vitro, обладают химиотерапевтическим действием при введении в организм. Очень многие вещества действуют губительно не только на микробные клетки, но и на клетки органов и тканей больного организма. Другие же вещества, хотя и не обладают высокой токсичностью, однако теряют свою антимикробную активность в жидкостях и тканях организма. Естественно, что ни в первом, ни во втором случае вещества не могут быть использованы в качестве химиотерапевтических средств. Поэтому при экспериментальном изучении новых химиотерапевтических препаратов ни в коем случае нельзя ограничиться изучением активности препаратов in vitro. Необходимо изучать лечебное действие препаратов у животных, зараженных соответствующим возбудителем, или, как принято выражаться, на экспериментальных инфекционных моделях.

На инфекционных моделях изучают как эффективные, так и токсические дозы препаратов. Соотношение между первыми и вторыми дозами называют химиотерапевтическим индексом. Он характеризует так называемую терапевтическую широту, т. е. расстояние между лечебными и токсическими дозами. Чем больше терапевтическая широта, тем лучше, при прочих равных условиях, химиотерапевтический препарат.

Химиотерапевтические вещества могут оказывать как профилактическое, так и лечебное действие, т. е. могут предупреждать или лечить инфекцию. Лечебное действие может быть радикальным или митигирующим. В последнем случае болезнь не излечивается полностью, а лишь значительно смягчается ее течение.

Химиотерапевтические препараты лишь подавляют жизнедеятельность микроорганизма и прекращают его размножение. Окончательное уничтожение возбудителя инфекции зависит от защитных сил макроорганизма (последние не должны подавляться химиотерапевтическими препаратами).

В процессе лечения может возникать устойчивость (резистентность) возбудителя к химиотерапевтическому препарату. Особенно часто это наблюдается при длительном лечении хронических инфекций (например, туберкулеза). Возникновение устойчивости снижает эффективность лечения. Лекарственная устойчивость имеет групповую специфичность. Это означает, что микробы, устойчивые к какому-либо хпмиотерапевтическому веществу, будут устойчивы также и к другим веществам той же химической группы (т. е. обладающим таким же интимным механизмом действия на микробную клетку), но они сохраняют полную чувствительность к препаратам, принадлежащим к другим химическим рядам. Это обстоятельство необходимо учитывать при длительном лечении хронических инфекций.

В настоящее время имеется огромное количество химиотерапевтических препаратов, которые применяются для лечения заболеваний, вызванных различными микроорганизмами.

При комбинированном применении одновременно нескольких химиотерапевтических веществ резистентность микробов развивается с большим трудом или совершенно не развивается. Поэтому такие хронические инфекции, как туберкулез или проказа (лепра), в настоящее время лечат путем комбинированного применения нескольких химиотерапевтических препаратов.

Лекарственная устойчивость может возникать и при воздействии вещества на возбудитель in vitro. Этим методом нередко пользуются для изучения законов развития описываемого интересного феномена. Лекарственноустойчивые штаммы бактерий могут отличаться от исходных и по другим свойствам (вирулентность, культуральные, биохимические и антигенные свойства), однако это имеет место не всегда.

Длительное воздействие лекарственного вещества на бактерии может привести к появлению так называемых лекарственнозависимых штаммов. Последние растут и развиваются только в присутствии лекарственного препарата, а без него роста не происходит. Лекарственнозависимые штаммы не вызывают у животных заболевания, однако если одновременно вводится и лекарственное вещество, то развивается смертельная инфекция.

Действие химиотерапевтических препаратов характеризуется известной специфичностью. Нельзя один и тот же препарат применять для лечения любой инфекции. Однако эта специфичность в большинстве случаев не является очень строгой. Иногда препараты действуют лишь на несколько видов возбудителей, в других случаях их действие распространяется на очень многие болезни (химиотерапевтические препараты с узким и широким спектром действия).

В связи с указанным обстоятельством возникает затруднение при классификации химиотерапевтических препаратов по виду заболеваний, на которые они действуют. Наиболее последовательной была бы классификация препаратов по химическим группам. Однако в этом случае возникают неудобства, связанные с отрывом описания от медицинского назначения препаратов. В связи с этим мы прибегли к разделению препаратов по признаку их влияния на группы инфекций с последующей классификацией по химическому принципу.



Виды химиотерапии

В соответствии с тем, на уничтожение чего направлена химиотерапия, выделяют:

антибактериальную химиотерапию, или антибиотикотерапию;

противогрибковую химиотерапию;

противоопухолевую (цитостатическую, или цитотоксическую) химиотерапию;

противовирусную химиотерапию;

Принятие других препаратов во время химиотерапии

Некоторые лекарства могут вступать в реакцию с препаратами, используемыми при химиотерапии. Врач должен изучить список всех лекарств, которые принимает пациент, прежде чем приступить к лечению. В такой список должны входить все принимаемые средства, в том числе витамины, препараты против аллергии и др., а также минеральные или растительные добавки.

Антибиотики.

В борьбе за существование микроорганизмы создали и усовершенствовали оружие, которое позволяет им отстаивать свою среду обитания. Это оружие – специальные вещества, названные антибиотиками. Они безвредны для хозяина, но смертельно опасны для его врагов. С их помощью микроорганизмы успешно защищают, а при случае и расширяют “свои территории”. Наблюдение за жизнью микроорганизмов, позволившее человеку создать новый класс лекарств – антибиотики, заставило отступить многие ранее непобедимые болезни.

Считается, что открытие антибиотиков прибавило примерно 20 лет к средней продолжительности жизни человека в развитых странах. В каждой семье есть человек, который остался в живых благодаря антибиотикам. Микробиолог Зинаида Ермольева, получившая в 1942 году первые в СССР образцы пенициллина, объясняла значение антибиотиков так: “Если бы в XIX веке был пенициллин, Пушкин бы не умер от раны”.

История антибиотиков насчитывает чуть более 70 лет, хотя роль микроорганизмов в развитии инфекционных заболеваний была известна уже со второй половины XIX века. Начало этой истории положили наблюдения Флеминга за борьбой микроорганизмов между собой.

Термин “антибиотики” ввел в обращение американский микробиолог З. Ваксман, получивший в 1952 году Нобелевскую премию за открытие стрептомицина. Именно он предложил называть все вещества, вырабатываемые микроорганизмами для уничтожения или нарушения развития других микроорганизмов-противников, антибиотиками. Сам же термин антибиос (“анти” – против, “биос” – жизнь), отражающий форму сосуществования микроорганизмов в природе, когда один организм убивает или подавляет развитие “противника” путем выработки особых веществ, был придуман Л. Пастером, вложившим в него определенный смысл – “жизнь – против жизни” (а не “против жизни”).

Первый антибиотик – пенициллин – был выделен из плесневого гриба пенициллиум нотатум, чему и обязан своим названием. За его создание в 1945 году три ученых Флеминг, Флори и Чейн были удостоены Нобелевской премии. История создания первого в мире антибиотика довольно интересна. В 20-х годах в одной из лондонских больниц работал Александр Флеминг. Он готовил для учебника по бактериологии статью о стрептококках (вид бактерий) и ставил эксперименты. Однажды Флеминг обнаружил, что плесень, случайно попавшая на поверхность среды с культурой стрептококка, как бы растворила ее. Стало очевидным, что плесень вырабатывает какое-то удивительное вещество, с огромной силой действующее на бактерий. Это гипотетическое вещество Флеминг назвал пенициллином (от латинского penicillium – плесень). В 1929 году он опубликовал свое открытие, а в 1936 – рассказал о нем на II Международном конгрессе микробиологов. Однако научная общественность осталась равнодушной, отчасти может быть из-за того, что Флеминг, по признанию современников, был плохим оратором. Дальнейшая разработка пенициллина была связана с работой, так называемой Оксфордской группы, во главе которой стояли Говард Флори и Эрнст Чейн. Чейн занимался выделением пенициллина, а Флори – испытанием его на животных. В результате был получен малотоксичный и эффективный пенициллин. 12 февраля 1941 года пенициллин был впервые применен для лечения человека. Первым пациентом оказался лондонский полицейский, умиравший от заражения крови. После нескольких инъекций ему стало лучше, через день он уже ел без посторонней помощи. Но запас с таким трудом полученного пенициллина закончился, и больной скончался.

Промышленный выпуск препарата был налажен только в 1943 году в США, куда Флори передал технологию получения нового лекарства. Причем американский штамм (подвид) плесени был найден на одной из гнилых дынь, выброшенных на помойку.

В нашей стране пенициллин создали в 1942 году два биолога З.В. Ермольева и Т.И. Балезина с сотрудниками. В одном из московских подвалов они обнаружили штамм пенициллиум крустозум, который оказался продуктивнее английских и американских родичей. Это отметил и Флори, приезжавший в январе 1944 года в СССР с американским штаммом. Он был удивлен и восхищен тем, что у нас есть более продуктивный штамм и уже налажено промышленное производство пенициллина.

У пенициллина оказалось столько достоинств, что он до сих пор широко применяется в медицинской практике. Главные из них – высочайшая антибактериальная активность и безопасность для человека. Поначалу его действие вообще производило впечатление волшебной палочки: очищались гнойные раны, зарастали кожей ожоги и отступала гангрена. Так получилось, что изучение свойств пенициллина совпало по времени со второй мировой войной, и он быстро нашел применение для лечения раненых солдат. Введение пенициллина сразу после ранения позволяло предупреждать нагноение ран и заражение крови. В результате в строй возвращались свыше 70% раненых.

После того, как была доказана возможность получения антибиотиков из микроорганизмов, открытие новых препаратов стало вопросом времени. И, действительно, в 1939 году был выделен грамицидин, в 1942 – стрептомицин, в 1945 – хлортетрациклин, в 1947 – левомицетин (хлорамфеникол), а уже к 1950 году было описано более 100 антибиотиков. Многие антибиотики были выделены из микроорганизмов, обитающих в почве. Оказалось, что в земле живут смертельные враги многих болезнетворных для человека микроорганизмов – возбудителей тифа, холеры, дизентерии, туберкулеза и других. Так стрептомицин, который с успехом применяется до сих пор для лечения туберкулеза, тоже был выделен из почвенных микроорганизмов. При этом, чтобы отобрать нужный штамм, З. Ваксман (автор стрептомицина) исследовал за три года более 500 культур, прежде чем нашел подходящую – выделяющую в среду обитания достаточные количества (больше, чем другие) стрептомицина.

Поиск новых антибиотиков – процесс длительный, кропотливый и дорогостоящий. В ходе подобных исследований изучаются и отбраковываются сотни, а то и тысячи культур микроорганизмов. И только единицы отбираются для последующего изучения. Но это еще не значит, что они станут источником новых лекарств. Низкая продуктивность культур, сложность процессов выделения и очистки лекарственных веществ ставят дополнительные, порой непреодолимые барьеры на пути новых препаратов. Поэтому со временем, когда очевидные возможности были уже исчерпаны, разработка каждого нового природного препарата стала чрезвычайно сложной исследовательской и экономической задачей. А новые антибиотики были очень нужны. Выявлялись все новые возбудители инфекционных болезней, и спектр активности существующих препаратов становился недостаточным для борьбы с ними. К тому же микроорганизмы быстро приспосабливались и становились невосприимчивыми к действию казалось бы уже проверенных препаратов. Поэтому, наряду с поиском природных антибиотиков, активно велись работы по изучению структуры существующих веществ, с тем, чтобы модифицируя их, получать новые и новые, более эффективные и безопасные препараты. Таким образом, следующим этапом развития антибиотиков стало создание полусинтетических, сходных по строению и по действию с природными антибиотиками, веществ.

Сначала в 1957 году удалось получить феноксиметилпенициллин, устойчивый к действию желудочного сока, который можно принимать в виде таблеток. Природные пенициллины, полученные ранее феноксиметилпенициллина, были неэффективны при приеме внутрь, так как они разрушались в кислой среде желудка. Впоследствии был создан метод получения полусинтетических пенициллинов. Для этого молекулу пенициллина “разрезали” с помощью фермента пенициллиназы и, используя одну из частей, создавали новые соединения. Таким способом удалось получить препараты более широкого спектра действия (амоксициллин, ампициллин, карбенициллин), чем исходный пенициллин.

Другой антибиотик, цефалоспорин, выделенный в 1945 году из сточных вод на острове Сардиния, дал жизнь новой группе полусинтетических антибиотиков – цефалоспоринам, оказывающим сильнейшее антибактериальное действие и практически безопасным для человека. Цефалоспоринов получено уже более 100. Некоторые из них способны убивать и грамположительные, и грамотрицательные микроорганизмы, другие действуют на устойчивые штаммы бактерий.

В настоящее время число выделенных, синтезированных и изученных антибиотиков исчисляется десятками тысяч, около 1 тысячи применяются для лечения инфекционных болезней, а также для борьбы со злокачественными заболеваниями.

Использование антибиотиков отодвинуло на второй план многие ранее смертельные заболевания (туберкулез, дизентерия, холера, гнойные инфекции, воспаление легких и многие другие). С помощью антибиотиков удалось значительно снизить детскую смертность. Большую пользу приносят антибиотики в хирургии, помогая ослабленному 3хирург XIX века А. Вельпо с горечью писал: “Укол иглой уже открывает дорогу смерти”. Эпидемии послеоперационной горячки уносили в могилу до 60% всех прооперированных, и такая огромная смертность тяжелым грузом лежала на совести хирургов. Теперь с большинством больничных инфекций можно успешно бороться при помощи антибиотиков. Так началось время, которое врачи справедливо называют “веком антибиотиков”.

Существуют антибиотики с антибактериальным, противогрибковым и противоопухолевым действием. В этом разделе мы рассматриваем антибиотики, влияющие преимущественно на бактерии.

В чем же главное отличие антибактериальной терапии от других видов медикаментозного лечения, и почему мы выделяем ее в отдельную тему? Отличие заключается в том, что антибактериальная терапия – это лечение, направленное на устранение причины заболевания (этиотропная терапия). В отличие от патогенетической, борющейся с развитием болезни, этиотропная терапия направлена на уничтожение возбудителя, вызвавшего конкретное заболевание.

Что общего у двух мировых войн с лекарством против рака? Как ни странно, но именно химическое оружие, созданное во время первой, и трагедия во время второй позволили современным врачам если не излечивать, то приостанавливать развитие злокачественных опухолей.

Иприт как потенциальное лекарство

Иприт, или горчичный газ, был впервые применен в 1917 году. Тогда немецкие войска обстреляли противника у бельгийского города Ипра снарядами, в которых содержалась маслянистая жидкость. Попадая на кожу, иприт, хоть и не сразу, вызывает сильнейшие химические ожоги, а при вдыхании - делает то же самое с дыхательными путями, вызывая кровотечение и отек легких.

С тех пор горчичный газ не единожды применялся во время военных действий - как до, так и после подписания Женевского протокола в 1925-м, который запрещал использование “удушающих, ядовитых или других подобных газов и бактериологических средств”.

В конце 1943 года, уже во время второй мировой войны, немецкая авиация разбомбила грузовые суда союзников, находившиеся в порту итальянского города Бари. Одно из них, “Джон Харви”, тайно перевозило значительное количество химических бомб, начиненных ипритом.

Попадание немецких снарядов в судно вызвало огромный взрыв. Бомбы с ядовитым газом хоть и были без взрывателей, но оказались повреждены - и вырвавшийся из них иприт поразил значительную территорию. От отравления пострадало более шестисот человек, часть из них не выжила.

Изучить последствия катастрофы отправили доктора Стюарта Александера, эксперта по химическому оружию. Во время вскрытия жертв он обнаружил практически полное отсутствие лейкоцитов в их костном мозге и лимфоузлах. О подобном воздействии иприта было известно еще со времен Первой мировой, но Александер в своем отчете еще раз подчеркнул тот факт, что горчичный газ нарушает способность к делению определенных клеток в организме. А это, в свою очередь, может потенциально использоваться при лечении некоторых видов рака, например, злокачественных заболеваний лимфоидной ткани.

Первые разработки

К тому моменту над ипритом и его производными, по заказу министерства обороны США, работали два фармаколога - Луис Гудман и Альфред Гилман. Выводы доктора Александера только подтвердили их наработки. Поскольку горчичный газ был слишком летуч и опасен для лабораторных экспериментов, Гудман и Гилман изменили его состав и получили более стабильный вариант, так называемый азотистый иприт, нитроген мустард. Он и стал прототипом первого препарата для химиотерапии.

Эксперименты с новым типом лекарств, проведенные на мышах, прошли успешно. Вскоре, совместно с Густафом Линдскогом, торакальным хирургом, врачи испытали “газ HN2” (впоследствии получивший название “хлорметин”) на добровольце с неходжкинской лимфомой. Результат превзошел ожидания - опухолевые массы значительно уменьшились в размерах. Однако положительный эффект сохранялся совсем недолго - буквально пару недель, а затем рак с новой силой атаковал больного.

Но это уже был прорыв - прежде никто не пытался лечить онкологию с помощью определенного типа мощных лекарств. Эксперименты на добровольцах продолжались. Воздействие хлорметина приводило к быстрому уменьшению и даже полному исчезновению опухоли. Но не надолго: неизбежные рецидивы сопровождались устойчивостью новых раковых клеток к “газу HN2”.

Первое время все исследования велись в рамках строжайшей секретности, поэтому Гудман и Гилман смогли опубликовать свою работу только после войны, в 1946-м. Публикация вызвала огромный интерес у врачей и фармацевтов, начали разрабатываться новые типы химических препаратов, нацеленных на воздействие на другие типы рака.

Новые типы лечения

Вскоре после войны доктор Сидни Фарбер из Гарвардской медицинской школы, начал изучать воздействие фолиевой кислоты на пациентов с лейкемией. Ему удалось выявить, что кислота стимулирует распространение клеток острого лимфобластного лейкоза у больных детей. В качестве противодействия этому процессу он использовал синтезированные антагонисты фолиевой кислоты - аминоптерин и аметоптерин. Последний, под названием метотрексат, активно используется для лечения различных видов опухолей и по сей день.

В 1951 году Джейн Райт доказала, что метотрексат дает ремиссию рака груди: это было первой демонстрацией позитивного воздействия химического препарата на иные опухоли, помимо различных видов лейкемии.

Следующий прорыв в области химиотерапии пришелся на 1965 год, когда было выдвинуто предположение о необходимости комбинировать несколько препаратов с различными механизмами действия. Раковые клетки очень быстро мутируют, приспосабливаясь к одному лекарству и теряя к нему восприимчивость. Одновременное применение метотрексата, винкристина, меркаптопурина и преднизона дало длительные ремиссии в случаях острого лимфобластного лейкоза.

Далее химиотерапия начала применяться в комбинации с хирургическим вмешательством - сперва вырезалась основная опухоль, затем применялись лекарственные средства, для уничтожения оставшихся злокачественных клеток (адъювантная терапия).

Поскольку химиотерапия (как это понятно из самой истории ее становления) требует введения в организм крайне ядовитых веществ, пациенты страдают от серьезных побочных эффектов. Однако она доказала свою действенность при лечении определенных типов рака: от полного исцеления до снижения риска рецидивов после оперативного удаления опухоли.

На сегодняшний день было разработано множество препаратов для химической борьбы с раком, менее деструктивных для организма, чем их ранние предшественники, а также других способов воздействия на опухоли: пересадка костного мозга, антигормональная, таргетная терапия.



Похожие публикации