Столярные, печные, малярные работыизготовление лестниц и оград. Большая энциклопедия нефти и газа

сли известен элементарный состав рабочей массы топлива, можно теоретически определить количество воздуха, необходимого для горения топлива, и количество образующихся дымовых газов.

Количество воздуха, необходимое для горения, вычисляют в кубических метрах при нормальных условиях (0°С и 760 мм рт. ст)-для 1 кг твердого или жидкого топлива и для 1 м 3 газообразного.

Теоретический объем сухого воздуха. Для полного сгорания 1 кг твердого и жидкого топлива теоретически необходимый объем воздуха, м 3 /кг, находят делением массы израсходованного кислорода на плотность кислорода при нормальных условиях ρ Н

О 2 = 1,429 кг/м3 и на 0,21, так как в воздухе содержится 21% кислорода

Для полного сгорания 1 м 3 сухого газообразного топлива необходимый объем воздуха, м3/м3,

В приведенных формулах содержание элементов топлива выражается в процентах по массе, а состав горючих газов СО, Н 2 , СН 4 и др. - в процентах по объему; СmНn - углеводороды, входящие в состав газа, например метан СН 4 (m = 1, n = 4), этан С 2 Н 6 (m = 2, n = 6) и т. д. Эти цифровые обозначения составляют коэффициент (m + n/4)

Пример 5. Определить теоретическое количество воздуха, необходимое для сгорания 1 кг топлива следующего состава: С р =52,1%; Н р =3,8%;

S р 4 = 2,9%; N р =1,1%; O р = 9,1%

Подставляя эти величины в формулу (27), получим B =

0,0889 (52,1 + 0,375 2,9) + 0,265 3,8 - - 0,0333 9,1 = 5,03 м3/кг.

Пример 6. Определить теоретическое количество воздуха, необходимое для горения 1 м3 сухого газа следующего состава:

СН 4 = 76,7%; С 2 Н 6 =4,5%; С 3 Н 8 = 1,7%; С 4 Н 10 = 0,8%; С5Н12 = 0,6%; Н 2 = 1%; С0 2 =0,2%; К, = 14,5%.

Подставляя числовые значения в формулу (29), получим

Теоретический объем дымовых газов. При полном сгорании топлива дымовые газы, уходящие из топки, содержат: двуокись углерода СО 2 , пары Н 2 О (образующиеся при сгорании водорода топлива), сернистый ангидрид SО 2 , азот N 2 - нейтральный газ, поступивший в топку с кислородом воздуха, азот из состава топлива Н 2 , а также кислород избыточного воздуха О 2 . При неполном сгорании топлива к указанным элементам добавляются еще окись углерода СО, водород Н 2 и метан СН 4 . Для удобства подсчетов продукты сгорания разделяют на сухие газы и водяные пары.

Газообразные продукты сгорания состоят из трехатомных газов СО 2 и SО 2 , сумму которых принято обозначать символом RO 2 , и двухатомных газов - кислорода О 2 и азота N 2 .

Тогда равенство будет иметь вид:

при полном сгорании

R0 2 + 0 2 + N 2 = 100%, (31)

при неполном сгорании

R0 2 + 0 2 + N 2 + СО = 100%;

Объем сухих трехатомных газов находится делением масс газов СО 2 и SО 2 на их плотность при нормальных условиях.

Рсо 2 = 1,94 и Psо 2 = 2,86 кг/м3 - плотности двуокиси углерода и сернистого газа при нормальных условиях.

Анализ дымовых газов котлов позволяет выявить и устранить отклонения от нормальных режимов работы, тем самым увеличить эффективность сжигания топлива и уменьшить выбросы токсичных газов в атмосферу. Для того чтобы понимать насколько эффективно работает топливосжигающая установка и как с помощью газоанализатора дымовых газов выявить отклонения в ее работе необходимо знать какие газы и в каких концентрациях присутствуют в дымовых газах.

Ниже приводятся компоненты дымовых газов в порядке уменьшения их концентрации в отходящих дымовых газах.

Азот N2.

Азот - основной элемент окружающего воздуха (79%). Азот не участвует в процессе сгорания, является балластом. Нагнетаясь в котел, нагревается и уносит с собой в дымоход потраченную на его нагрев энергию, снижая эффективность работы котла. Газоанализаторами дымовых газов концентрация азота не измеряется.

Углекислый газ CO2.

Образуется при сгорании топлива. Удушающий газ, при концентрациях выше 15% по объему вызывает быструю потерю сознания. Газоанализаторы дымовых газов обычно не измеряют концентрацию углекислого газа, а определяют его расчетным путем по концентрации остаточного кислорода. В некоторых моделях газоанализаторов, например, MRU Vario Plus, могут быть встроены оптические инфракрасные сенсора для измерения концентраций углекислого газа.

  • дизельные горелки - 12,5…14 %
  • газовые горелки - 8…11 %

Кислород О2.

Остаточный кислород, не использованный в процессе сгорания топлива ввиду избыточного воздуха, выбрасывается вместе с отходящими газами. По концентрации остаточного кислорода судят о полноте (эффективности) сгорания топлива. Кроме того, по концентрации кислорода определяются потери тепла с дымовыми газами и концентрация углекислого газа.

Концентрация кислорода в переносных газоанализаторах дымовых газов измеряется с помощью электрохимических сенсоров кислорода, в стационарных газоанализаторах кроме того довольно часто применяются циркониевые сенсоры.

  • дизельные горелки - 2…5 %
  • газовые горелки - 2…6 %

Оксид углерода СО.

Оксид углерода или угарный газ - отравляющий газ, являющийся продуктом неполного сгорания. Газ тяжелее воздуха и при наличии неплотностей или прогаров в дымоходах котлов может выделяться в рабочую среду, подвергая персонал риску отравления. При концентрациях СО до 10000 ppm для его обнаружения обычно применяются электрохимические ячейки. Для измерения концентраций свыше 10000 ppm в основном применяют оптические ячейки, в том числе и в переносных газоанализаторах.

  • дизельные горелки - 80…150 ppm
  • газовые горелки - 80…100 ppm

Оксиды азота (NOx).

При высоких температурах в топке котлов азот образует с кислородом воздуха оксид азота NO. В дальнейшем NO под воздействием кислорода окисляется до NO2. Компоненты NO и NO2 называют оксидами азота NOx.

Концентрация NO измеряется электрохимическими сенсорами. NO2 в простых моделях газоанализаторов определяется расчетным путем и принимается равным 5…10% процентам измеренной концентрации NO. В некоторых случая концентрация NO2 измеряется отдельным электрохимическим сенсором диоксида азота. В любом случае результирующая концентрация оксидов азота NOx равно сумме концентраций NO и NO2.

  • дизельные горелки - 50…120 ppm
  • газовые горелки - 50…100 ppm

Диоксид серы (SO2).

Токсичный газ, образующийся при сжигании топлива, содержащего серу. При взаимодействии SO2 с водой (конденсатом) или водяным паром образуется сернистая кислота H2SO3. Для измерения концентраций SO2 обычно применяют электрохимические ячейки.

Несгораемые углеводороды (СН).

Несгораемые углеводороды СН формируются в результате неполного сгорания топлива. В данную группу входят метан СН4, бутан С4Н10 и бензол С6Н6. Для измерения концентраций несгораемых углеводородов применяют термокаталитические или оптические инфракрасные ячейки.

Для измерения концентраций газов в промышленных выбросах и топочных газах применяются газоанализаторы Каскад-Н 512, ДАГ 500, Комета-Топогаз, АКВТ и др. отечественного производства, или приборы иностранного производства таких производителей как Testo, MSI Drager, MRU, Kane и т.д.

Теоретически необходимое количество воздуха для сжигания генераторного, доменного и коксового газов и их смесей определяют по формуле:

V 0 4,762/100 *((%CO 2 + %H 2)/2 + 2 ⋅ %CH 4 + 3 ⋅ %C 2 H 4 + 1,5 ⋅ %H 2 S - %O 2), нм 3 /нм 3 , где % – по объему.

Теоретически необходимое количество воздуха для сжигания природного газа:

V 0 4,762/100* (2 ⋅ %CH 4 + 3,5 ⋅ %C 2 H 6 + 5 ⋅ %C 3 H 8 + 6,5 ⋅ %C 4 H 10 + 8 ⋅ %C 5 H 12), нм 3 /нм 3 , где % – по объему.

Теоретически необходимое количество воздуха для сжигания твердых и жидких топлив:

V 0 = 0,0889 ⋅ %C P + 0,265 ⋅ %H P – 0,0333 ⋅ (%O P - %S P), нм 3 /кг, где % – по массе.

Действительное количество воздуха для горения

Необходимой полноты горения при сжигании топлива с теоретически необходимым количеством воздуха, т.е. при V 0 (α = 1), можно достичь только в том случае, если топливо полностью смешается с воздухом, идущим для горения, и представляет собой готовую горячую (стехиометрическую) смесь в газообразном виде. Этого достигают, например, при сжигании газообразного топлива с помощью горелок беспламенного горения и при сжигании жидкого топлива с предварительной их газификацией с помощью специальных горелок.

Действительное количество воздуха для сжигания топлива всегда больше, чем теоретически необходимое, так как в практических условиях для полноты сжигания почти всегда требуется некоторый избыток воздуха. Действительное количество воздуха определяют по формуле:

V α = αV 0 , нм 3 /кг или нм 3 /нм 3 топлива,

где α - коэффициент избытка воздуха.

При факельном способе сжигания, когда топливо с воздухом перемешивается в процессе горения, для газа, мазута и пылевидного топлива коэффициент избытка воздуха α = 1,05–1,25. При сжигании газа, предварительно полностью смешанного с воздухом, и при сжигании мазута с предварительной газификацией и интенсивным перемешиванием мазутного газа с воздухом α = 1,00–1,05. При слоевом способе сжигания углей, антрацита и торфа в механических топках при непрерывной подаче топлива и золоудалении – α = 1,3–1,4. При ручном обслуживании топок: при сжигании антрацитов α = 1,4 , при сжигании каменных углей α = 1,5–1,6 , при сжигании бурых углей α = 1,6–1,8. Для полугазовых топок α = 1,1–1,2.

Атмосферный воздух содержит некоторое количество влаги – d г/кг сухого воздуха. Поэтому объем влажного атмосферного воздуха, необходимого для горения, будет больше, чем рассчитанный по вышеприведенным формулам:

V B о = (1 + 0,0016d) ⋅ V о, нм 3 /кг или нм 3 /нм 3 ,

V B α = (1 + 0,0016d) ⋅ V α , нм 3 /кг или нм 3 /нм 3 .

Здесь 0,0016 = 1,293/(0,804*1000) представляет собой коэффициент пересчета весовых единиц влаги воздуха, выраженных в г/кг сухого воздуха, в объемные единицы – нм 3 водяных паров, содержащихся в 1 нм 3 сухого воздуха.

Количество и состав продуктов горения

Для генераторного, доменного, коксового газов и их смесей количество отдельных продуктов полного горения при сжигании с коэффициентом избытка воздуха, равным α:

Количество двуокиси углерода

V CO2 = 0,01(%CO 2 + %CO + %CH 4 + 2 ⋅ %C 2 H 4), нм 3 /нм 3

Количество сернистого ангидрида

V SO2 = 0,01 ⋅ %H 2 S нм 3 /нм 3 ;

Количество водяных паров

V H2O = 0,01(%H 2 + 2 ⋅ %CH 4 + 2 ⋅ %C 2 H 4 + %H 2 S + %H 2 O + 0,16d ⋅ V α), нм 3 /нм 3 ,

где 0,16d V B á нм 3 /нм 3 – количество водяных паров, вносимое влажным атмосферным воздухом при его влагосодержании d г/кг сухого воздуха;

Количество азота, переходящего из газа и вносимого с воздухом

Количество свободного кислорода, вносимого избыточным воздухом

V O2 = 0,21 (α - 1) ⋅ V O , нм 3 /нм 3 .

Общее количество продуктов горения генераторного, доменного, коксового газов и их смесей равно сумме их отдельных составляющих:

V дг = 0,01 (%CO 2 + %CO + %H 2 + 3 ⋅ %CH 4 + 4 ⋅ %C 2 H 4 + 2 ⋅ %H 2 S + %H 2 O + %N 2) + + V O (α + 0,0016 dα - 0,21), нм 3 /нм 3 .

Для природного газа количество отдельных продуктов полного горения определяют по формулам:

V CO2 = 0,01(%CO 2 + %CH 4 + 2 ⋅ %C 2 H 6 + 3 ⋅ %C 3 H 8 + 4 ⋅ %C 4 H 10 + 5 ⋅ %C 5 H 12) нм 3 /нм 3 ;

V H2O = 0,01(2 ⋅ %CH 4 + 3 ⋅ %C 2 H 6 + 4 ⋅ %C 3 H 8 + 5 ⋅ %C 4 H 10 + 6 ⋅ %C 5 H 12 + %H 2 O + 0,0016d V α) нм 3 /нм 3 ;

V N2 = 0,01 ⋅ %N 2 + 0,79 V α , нм 3 /нм 3 ;

V O2 = 0,21(α - 1) V O , нм 3 /нм 3 .

Общее количество продуктов горения природного газа:

V дг = 0,01(%CO 2 + 3 ⋅ %CH 4 + 5 ⋅ %C 2 H 6 +7 ⋅ %C 3 H 8 + 9 ⋅ %C 4 ⋅H 10 + 11 ⋅ %C 5 H 12 + %H 2 O + + %N 2) + V O (α + 0,0016dα - 0,21), нм 3 /нм 3 .

Для твердого и жидкого топлив количество отдельных продуктов полного горения:

V CO2 = 0,01855 %C P , нм 3 /кг (здесь и далее, % – процентное содержание в рабочем газе элементов по массе);

V SO2 = 0,007 % S P нм 3 /кг.

Для твердого и жидкого топлива

V H2O ХИМ = 0,112 ⋅ %H P , нм 3 /кг,

где V H2O ХИМ – водяные пары, образующиеся при горении водорода.

V H2O МЕХ = 0,0124 %W P , нм 3 /кг,

где V H2O МЕХ – водяные пары, образующиеся при испарении влаги рабочего топлива.

Если для распыления жидкого топлива подается пар в количестве W ПАР кг/кг топлива, то к объему водяных паров надо добавить величину 1,24 W ПАР нм 3 /кг топлива. Влага, вносимая атмосферным воздухом при влагосодержании d г/кг сухого воздуха, составляет 0,0016 d V á нм 3 /кг топлива. Следовательно, общее количество водяных паров:

V H2O = 0,112 ⋅ %H P + 0,0124 (%W P + 100 ⋅ %W ПАР) + 0,0016d V á , нм 3 /кг.

V N2 = 0,79 ⋅ V α + 0,008 ⋅ %N P , нм 3 /кг

V O2 = 0,21 (α - 1) V O , нм 3 /кг.

Общая формула для определения продуктов горения твердого и жидкого топлива:

V дг = 0,01 + V O (α + + 0,0016 dα - 0,21) нм 3 /кг.

Объем дымовых газов при сжигании топлива с теоретически необходимым количеством воздуха (V O нм 3 /кг, V O нм 3 /нм 3) определяют по приведенным расчетным формулам с коэффициентом избытка воздуха, равным 1,0, при этом в составе продуктов горения будет отсутствовать кислород.

Регулирование процесса горения (Основные принципы горения)

>> Вернуться к содержанию

Для оптимального горения необходимо использовать большее количество воздуха, чем следует из теоретического расчёта химической реакции (стехиометрический воздух).

Это вызвано необходимостью окислить всё имеющееся в наличии топливо.

Разница между реальным количеством воздуха и стехиометрическим количеством воздуха называется избытком воздуха. Как правило, избыток воздуха находится в пределах от 5% до 50% в зависимости от типа топлива и горелки.

Обычно, чем труднее окислить топливо, тем большее количество избыточного воздуха требуется.

Избыточное количество воздуха не должно быть чрезмерным. Чрезмерное количество подаваемого воздуха для горения снижает температуру дымовых газов и увеличивает тепловые потери теплогенератора. Кроме того, при определённом предельном количестве избыточного воздуха, факел слишком сильно охлаждается и начинают образовываться CO и сажа. И наоборот, недостаточное количество воздуха вызывает неполное сгорание и те же самые проблемы, указанные выше. Поэтому, чтобы обеспечить полное сгорание топлива и высокую эффективность горения количество избыточного воздуха должно быть очень точно отрегулировано.

Полнота и эффективность сгорания проверяются измерениями концентрации угарного газа CO в дымовых газах. Если угарного газа нет, значит сгорание произошло полностью.

Косвенно уровень избыточного воздуха можно рассчитать, измеряя концентрацию свободного кислорода O 2 и/или двуокиси углерода СO 2 в дымовых газах.

Количество воздуха будет примерно в 5 раз больше, чем измеренное количество углерода в объёмных процентах.

Что касается СO 2 , то его количество в дымовых газах зависит только от количества углерода в топливе, а не от количества избыточного воздуха. Его абсолютное количество будет постоянным, а процент от объёма будет изменяться в зависимости от количества избыточного воздуха, находящегося в дымовых газах. При отсутствии избыточного воздуха количество СO 2 будет максимальным, при увеличении количества избыточного воздуха, объёмный процент СO 2 в дымовых газах понижается. Меньшее количество избыточного воздуха соответствует большему количеству СO 2 и наоборот, поэтому горение идет более эффективно, когда количество СO 2 близко к своему максимальному значению.

Состав дымовых газов можно отобразить на простом графике с помощью "треугольника горения" или треугольника Оствальда, который строится для каждого типа топлива.

С помощью этого графика, зная процентное содержание СO 2 и O 2 , мы можем определить содержание CO и количество избыточного воздуха.

В качестве примера на рис. 10 приведен треугольник горения для метана.

Рисунок 10. Треугольник горения для метана

По оси X указано процентное содержание O 2 , по оси Y указано процентное содержание СO 2 . гипотенуза идет от точки А, соответствующей максимальному содержанию СO 2 (в зависимости от топлива) при нулевом содержании O 2 , до точки В, соответствующей нулевому содержанию СO 2 и максимальному содержанию O 2 (21%). Точка А соответствует условиям стехиометрического горения, точка В -отсутствию горения. Гипотенуза - это множество точек, соответствующих идеальному горению без CO.

Прямые линии, параллельные гипотенузе, соответствуют различному процентному содержанию CO.

Предположим, что наша система работает на метане и анализ дымовых газов показал, что содержание СO 2 составляет 10%, а содержание O 2 составляет 3%. Из треугольника для газа метана мы находим, то содержание CO равно 0, а содержание избыточного воздуха равно 15%.

В таблице 5 показано максимальное содержание СO 2 для разных видов топлива и значение, которое соответствует оптимальному горению. Это значение рекомендованное и рассчитано на основе опыта. Следует отметить, что когда из центральной колонки берётся максимальное значение необходимо произвести измерение выбросов, по процедуре описанной в главе 4.3.

Природный газ — это самое распространенное топливо на сегодняшний день. Природный газ так и называется природным, потому что он добывается из самых недр Земли.

Процесс горения газа является химической реакцией, при которой происходит взаимодействия природного газа с кислородом, который содержится в воздухе.

В газообразном топливе присутствует горючая часть и негорючая.

Основным горючим компонентом природного газа является метан — CH4. Его содержание в природном газе достигает 98 %. Метан не имеет запаха, не имеет вкуса и является нетоксичным. Предел его воспламеняемости находится от 5 до 15 %. Именно эти качества позволили использовать природный газ, как один из основных видов топлива. Опасно для жизни концентрация метана более 10 %, так может наступить удушье, вследствие нехватки кислорода.

Для обнаружения утечки газа, газ подвергают одоризации, иначе говоря добавляют сильнопахнущее вещество (этилмеркаптан). При этом газ можно обнаружить уже при концентрации 1 %.

Кроме метана в природном газе могут присутствовать горючие газы — пропан, бутан и этан.

Для обеспечения качественного горения газа необходимо в достаточном количестве подвести воздух в зону горения и добиться хорошего перемешивания газа с воздухом. Оптимальным считается соотношение 1: 10. То есть на одну часть газа приходится десять частей воздуха. Кроме этого необходимо создание нужного температурного режима. Чтобы газ воспламенился необходимо его нагреть до температуры его воспламенения и в дальнейшем температура не должна опускаться ниже температуры воспламенения.

Необходимо организовать отвод продуктов сгорания в атмосферу.

Полное горение достигается в том случае, если в продуктах сгорания выходящих в атмосферу отсутствуют горючие вещества. При этом углерод и водород соединяются вместе и образуют углекислый газ и пары воды.

Визуально при полном сгорании пламя светло-голубое или голубовато-фиолетовое.

Полное сгорание газа.

метан + кислород = углекислый газ + вода

СН 4 + 2О 2 = СО 2 + 2Н 2 О

Кроме этих газов в атмесферу с горючими газами выходит азот и оставшийся кислород. N 2 + O 2

Если сгорание газа происходит не полностью, то в атмосферу выбрасываются горючие вещества – угарный газ, водород, сажа.

Неполное сгорание газа происходит вследствие недостаточного количества воздуха. При этом визуально в пламени появляются языки копоти.

Опасность неполного сгорания газа состоит в том, что угарный газ может стать причиной отравления персонала котельной. Содержание СО в воздухе 0,01-0,02% может вызвать легкое отравление. Более высокая концентрация может привести к тяжелому отравлению и смерти.

Образующаяся сажа оседает на стенках котлов ухудшая тем самым передачу тепла теплоносителю снижает эффективность работы котельной. Сажа проводит тепло хуже метана в 200 раз.

Теоретически для сжигания 1м3 газа необходимо 9м3 воздуха. В реальных условиях воздуха требуется больше.

То есть необходимо избыточное количество воздуха. Эта величина обозначаемая альфа показывает во сколько раз воздуха расходуется больше, чем необходимо теоретически.

Коэффициент альфа зависит от типа конкретной горелки и обычно прописывается в паспорте горелки или в соответствие с рекомендациями организации производимой пусконаладочные работы.

С увеличением количества избыточного воздуха выше рекомендуемого, растут потери тепла. При значительном увеличение количества воздуха может произойти отрыв пламени, создав аварийную ситуацию. Если количество воздуха меньше рекомендуемого то горение будет неполным, создавая тем самым угрозу отравления персонала котельной.

Для более точного контроля качества сгорания топлива существуют приборы — газоанализаторы, которые измеряют содержание определенных веществ в составе уходящих газов.

Газоанализаторы могут поступать в комплекте с котлами. В случае если их нет, соответствующие измерения проводит пусконаладочная организация при помощи переносных газоанализаторов. Составляется режимная карта в которой прописываются необходимые контрольные параметры. Придерживаясь их можно обеспечить нормальное полное сгорание топлива.

Основными параметрами регулирования горения топлива являются:

  • соотношение газа и воздуха подаваемых на горелки.
  • коэфициент избытка воздуха.
  • разряжение в топке.
  • Кэфициент полезного действия котла.

При этом под коэфициентом полезного действия котла подразумевают соотношение полезного тепла к величине всего затраченного тепла.

Состав воздуха

Название газа Химический элемент Содержание в воздухе
Азот N2 78 %
Кислород O2 21 %
Аргон Ar 1 %
Углекислый газ CO2 0.03 %
Гелий He менее 0,001 %
Водород H2 менее 0,001 %
Неон Ne менее 0,001 %
Метан CH4 менее 0,001 %
Криптон Kr менее 0,001 %
Ксенон Xe менее 0,001 %


Похожие публикации