Трансформаторное масло. Определение вязкости трансформаторного масла

Вязкость трансформаторного масла является важным физиче­ским параметром, определяет процесс теплоотдачи обмоток и магнитопроводов в трансформаторах и дугогасящую способность выклю­чателей Для хорошей циркуляции масла в трансформаторах, улучшающей охлаждение обмоток и магнитопроводов, необходимы масла с малой вязкостью. В свою очередь у масла, как и других жидких диэлектри­ков, вязкость сильно возрастает при понижении температуры. При температу­ре 20°С вязкость трансформаторного масла должна быть не более 4,2°Э и не выше 2°Э при температуре 50°С.

Для измерения условной вязкости – ВУ масла применяется вискозиметр Энглера, схема которого показана на рис. 3. Латунный сосуд – 2 помещен внутрь металлического сосуда 1 так, чтобы между ними имелось пространство, заполненное водой. Оба сосуда в центре имеют отверстия, сквозь которые пропущена калиброванная трубка – 3

Схема вискозиметра Энглера.

с диа­метром внутреннего отверстия 2-3 мм. Это отверстие закрывается пробкой - 4. Латунный сосуд за­полняется испытуемой жидкостью по указательные штифты – 5. Одно­временное касание маслом всех трех остриев служит признаком правильной установки на столе, неточность установки выправляют установочными винтами на ножках прибора. Наружный сосуд 1 служит водяной баней, отку­да нагретая на электрической плитке вода равномерно передает тепло маслу. Воду перемешивают мешалкой. Благодаря значитель­ной теплоемкости воды не происходит резких колебаний температу­ры масла во время испытаний.

Перед испытаниями трансформаторного масла вискозиметр Энглера должен быть тщательно промыт и просушен. Вставив пробку - 4 в калиброванную трубку - 3 и установив под сливным отверстием мерную колбу с отметкой на узком горлышке объема в 200мл, заливают масло в латунный сосуд. Закрыв крышку, нагревают воду, перемешивая ее мешалкой - 5. Когда установится требуемая температура масла, что отмечается термометром – Т 2, сливают в колбу масло до отметки-200 мл. При этом пену во внимание не принимают. Время вытекания этого объема масла засекают секундомером.

Вязкостью масла в градусах Энглера называется отношение времени истечения 200 миллилитров масла, нагретого до температуры 50 0 С, к времени истечения такого же объема дистиллированной воды при температуре 20 0 С.

Время истечения 200 мл. воды при температуре 20 0 С называют водным числом прибора.

Наряду с условной вязкостью различают динамическую и кине­матическую. Динамическая вязкость -η вычисляется по формуле:

, Па. с,

где f – сила в (Н), действующая на твердый шарик.

Эта сила равна весу твердого шарика за вычетом (на основании закона Архимеда) веса жидкости объема шарика; r, - радиус шарика, мм; V - скорость движения шарика, м/с;

,

где k - поправочный коэффициент, учитывающий влияние стенок сосуда; r, - радиус сосуда, м; l. - высота сосуда, м; ν - кинематическая вязкость,м/с вычисляется по формуле:

,

где ρ - плотность испытуемой жидкости, кг/м 3 . Кинематическую вязкость часто измеряют в стоксах (Ст) = 10 -4 м 2 /с.

Для измерения вязкости кроме вискозиметра Энглера ис­пользуют шариковые вискозиметры, ротационные, пластовискозиметры, электроротационные и капиллярные.

Шариковые вискозиметры основаны на измерении скорости по­гружении стального шарика в испытуемой жидкости.

Ротационные вискозиметры конструктивно состоят из двух ци­линдров: наружного неподвижного и внутреннего, вращающегося во­круг вертикальной оси под действием определенной силы. Про­странство между ними заполнено испытуемой жидкостью. По затрате мощности на вращение внутреннего цилиндра или по степени замед­ления вращения его определяют вязкость жидкости. При определен­ном конструктивном исполнении ротационного вискозиметра можно совместить определение вязкости и удельного электрического со­противления испытуемой жидкости по току утечки между цилиндра­ми.

Пластовискозиметры способны, наряду с вязкостью, опреде­лять предел прочности.

Электроротационные вискозиметры позволяют непосредственно отсчитывать величину вязкости по шкале измерительного прибора.

Капилярные вискозиметры служат для измерения кинемати­ческой вязкости.

От кинематической вязкости (м 2 /с) к условной вязкости (°Э) можно перейти, используя таблицу 2.

Таблица 2

Кинематическая вязкость Град Э Кинематическая вязкость Град Э Кинематическая вязкость Град Э
м 2 /с сСт ВУ м 2 /с сСт ВУ м 2 /с сСт ВУ
0.000001 1.00 1.00 0.000024 24.0 3.43 0.000054 54.0 7.33
0.000002 2.00 1.10 0.000025 25.0 3.56 0.000055 55.0 7.47
0.000003 3.00 1.20 0.000026 26.0 3.68 0.000056 56.0 7.60
0.000004 4.00 1.29 0.000027 27.0 3.81 0.000057 57.0 7.73
0.0000045 4.5 1.34 0.000028 28.0 3.95 0.000058 58.0 7.86
0.000005 5.0 1.39 0.000029 29.0 4.07 0.000059 59.0 8.00
0.0000055 5.5 1.43 0.000030 30.0 4.20 0.000060 60.0 8.13
0.000006 6.0 1.48 0.000031 31.0 4.33 0.000061 61.0 8.26
0.0000065 6.5 1.53 0.000032 32.0 4.46 0.000062 62.0 8.40
0.000007 7.0 1.57 0.000033 33.0 4.59 0.000063 63.0 8.53
0.0000075 7.5 1.62 0.000034 34.0 4.72 0.000064 64.0 8.66
0.000008 8.0 1.67 0.000035 35.0 4.85 0.000065 65.0 8.80
0.0000085 8.5 1.62 0.000036 36.0 4.98 0.000066 66.0 8.93
0.000009 9.0 1.76 0.000037 37.0 5.11 0.000067 67.0 9.06
0.0000095 9.5 1.81 0.000038 38.0 5.24 0.000068 68.0 9.20
0.000010 10.0 1.86 0.000039 39.0 5.37 0.000069 69.0 9.34
0.000015 15.0 2.37 0.000045 45.0 6.16 0.000075 75.0 10.15
0.000020 20.0 2.95 0.000050 50.0 6.81 . 0.000080 80.0 10.8


При > 8 . 10 –5 м 2 /с (80 сСт) переход от одной системы к другой производится по формуле.

Введение

Любой инженер-энергетик не понаслышке знает, что такое трансформатор, и как он устроен. Что же нужно для надежной работы трансформатора? Одним из критериев является трансформаторное масло. Данная работа поможет больше узнать про трансформаторное масло. Она расскажет не только о самом масле, но и о методах его сушки, а также о технических требованиях при эксплуатации.

Трансформаторное масло

Физические показатели

Плотность трансформаторных масел колеблется в пределах 800-890 кг/м 3 и зависит от его химического состава. Чем больше в масле полициклических ароматических и нафтеновых углеводородов, тем выше его плотность. Молекулярная масса трансформаторных масел колеблется в пределах 230-330 и зависит от их фракционного и химического состава. При близком фракционном составе чем больше в масле ароматических углеводородов, тем меньше молекулярная масса и плотность, то есть по мере углубления очистки масла снижается плотность и увеличивается его молекулярная масса.

Молекулярная масса масел определяется эбуллиоскопическим или криоскопическим методами. Оба метода основаны на законах о разбавленных растворах: первый на измерении повышения температуры кипения чистого растворителя, а второй на измерении понижения температуры кристаллизации чистого растворителя. Поскольку полициклические ароматические и нафтеноароматические углеводороды склонны к ассоциации, молекулярную массу определяют при разной концентрации масла в растворителе и истинную молекулярную массу рассчитывают экстраполяцией к нулевой концентрации.

Показатель преломления характеризует изменение скорости света при переходе из одной среды в другую и измеряется отношением синуса угла падения света к синусу угла его преломления. Показатель преломления зависит от длины волны света и температуры и при заданных значениях этих параметров является характеристикой вещества. Подобно плотности значение показателя преломления снижается при углублении очистки. При близких фракционном составе и вязкости масел показатель преломления удовлетворительно характеризует содержание ароматических углеводородов.

Вязкость характеризует свойство жидкости оказывать сопротивление при перемещении одной части жидкости относительно другой (рисунок 1).

Обычно пользуются понятием кинематической вязкости, представляющей собой отношение динамической вязкости к плотности; за единицу ее принимают в системе СИ 1 м 2 /с.

Вязкость иногда выражают в других единицах - градусах Энглера. За рубежом пользуются градусами Сейболта и Редвуда.

В практике часто важно знать вязкость масла при низких температурах, экспериментальное определение которой сложно. С этой целью определяют вязкость при двух положительных температурах, соединяют значения их прямой на номограмме и экстраполируют до искомой температуры (рисунок 1).

Рисунок 1

Следует учитывать, что номограмма построена исходя из предположения, что в принятом интервале температур масло проявляет себя как ньютоновская жидкость.

При температурах, близких к температуре застывания, проявляется аномалия вязкости. Пользоваться номограммой можно до температур на 10-15 °С выше температуры застывания.

На практике широкое применение нашел индекс вязкости по Дину и Девису. Эти авторы предложили сравнивать вязкость испытуемого масла с вязкостью масляных дистиллятов, полученных из американских нефтей Пенсильванского и Мексиканского заливов. Индекс вязкости первого масла принимается за 100, а второго за 0.

Все масла при 98,9 °С должны иметь одинаковую вязкость.

Плотность, показатель преломления и вязкость масел находятся в зависимости от химического и в первую очередь углеводородного состава масел при близком фракционном составе.

Температура вспышки трансформаторных масел определяется в закрытом тигле в аппарате Мартене--Пенского.

Температурой вспышки называется температура, при которой шары масла, нагреваемого в стандартных условиях, вспыхивают при поднесении к ним пламени.

Температура вспышки для обычных товарных масел колеблется в пределах 130--170, а для арктического масла--от 90 до 115 °С и зависит от фракционного состава, наличия относительно низкокипящих фракций и в меньшей степени от химического состава.

Температуры вспышки масел находятся в зависимости от упругости их насыщенных паров. Чем ниже упругость паров, чем выше температура вспышки, тем лучше можно дегазировать и осушать масло перед заливом в высоковольтное оборудование. Минимальная температура вспышки масел регламентируется не столько по противопожарным соображениям, сколько с точки зрения возможности глубокой их дегазации.

В отношении пожарной безопасности большую роль играет температура самовоспламенения; это температура, при которой масло при наличии воздуха загорается самопроизвольно без поднесения пламени. У трансформаторных масел эта температура около 350--400 °С.

У отечественных трансформаторных масел упругость насыщенных паров при 60 °С колеблется от 8 до 0,4 Па. У зарубежных масел, как правило, упругость паров ниже и составляет от 1,3 до 0,07 Па.

Трансформаторные масла и другие жидкие диэлектрики применяют для заливки электрических трансформаторов, масляных выключате­лей, систем циркуляционного охлаждения, других высоковольтных аппаратов, где их используют в качестве изолирующей и теплоотво­дящей среды, для гашения электрической дуги, возникающей между контактами выключателя, а также в качестве охлаждающего агента. Электрические аппараты работают в условиях повышенной темпера-


Показатель Норма по маркам
Масла без присадок Масла с присадками
Т22 Т30 Т46 Т57 Тп-22 Тп-30 Тп-46
Кинематическая вязкость, сСт: при 50° С при 40ºС 20-23 - 28-32 - 44-48 - 55-59 - 20-23 - - 41,4-50,6 - 61,2-74,8
Индекс вязкости, не менее
Кислотное число, мг КОН/г масла, не более 0,02 0,02 0,02 0,05 0,07 0,5 0,5
Число деэмульсации, с, не более
Цвет, ед. ЦНТ, не более 2,0 2,5 3,0 4,5 2,5 3,5 5,5
Температура, °С: вспышки (открытый тигель), не ниже застывания, не выше -15 -10 -10 - -15 -10 -10
Плотность при 20°С, кг/м 3 , не более
Зольность базового масла, %, не более 0,005 0,005 0,010 0,020 - 0,005 0,005
Стабильность против окисления: осадок после окисления, %, не более кислотное число после окисления, мг КОН/г 0,10 - 0,10 - 0,10 - - - 0,005 - 0,01 0,4 0,008 1,5

­туры (70-80 0 С). При электрических разрядах температура еще бо­лее повышается, что ускоряет процессы окисления диэлектриков и приводит к образованию нерастворимого осадка (шлама), а во время гашения электрической дуги - к образованию частиц углерода и воды.

Шлам и частицы углерода, отлагаясь на поверхности внутренних элементов электроаппарата, ухудшают теплообмен, нарушают элек­трическую изоляцию, что может явиться причиной аварии. Появле­ние воды в диэлектрике приводят к понижению его электрической прочности. Присутствие кислот вызывает коррозию металлических частей аппарата и разрушение хлопчатобумажной изоляции.



Таблица 9. Нормы качества трансформаторных масел по

ГОСТ 9972-74* и 3274-72*

Показатель Масла нефтяного происхождения марок Масло синтетическое ОМТИ
Тп-22С/Тп-22Б Тп-30 Тп-46
Вязкость кинематическая при 50 0 С, мм 2 /с 20-23 28-32 44-48 28-29
0,07/0,02 0,03 0,05 0,04
Стабильность: массовая доля осадка после окисления, %, не более 0,005/0,01 0,005 0,005 -
Кислотное число после окисления, мг КОН на 1 г масла, не более 0,1/0,35 0,6 0,7 -
Выход золы, %, не более 0,005/0,01 0,005 0,005 0,15
Число деэмульсации, мин, не более 3/5 3,0 3,0 3,0
Температура вспышки, определяемая в открытом тигле, 0 С, не ниже 186/180
Температура самовоспламенения в воздухе, 0 С, не ниже -
-15 -10 -10 -17

Примечание. Цифры в обозначении марки означают среднюю кинематическую вязкость масла.

В связи с этими важнейшими требованиями к качеству диэлектри­ка являются высокая устойчивость (стабильность) против окисле­ния, отсутствие воды и механических примесей, достаточно низкая температура застывания, высокая электрическая прочность и низкие диэлектрические потери.

Диэлектрические потери в диэлектрике обусловлены токами про­водимости, возникающими в результате процесса поляризации мо­лекул и ионов под действием переменного электрического поля. Но­сителями зарядов могут быть ионы, образующиеся вследствие дис­социации молекул, а также более крупные коллоидные частицы. Ди­электрические потери оцениваются тангенсом угла диэлектрических потерь tgδ. Чем меньше tgδ, тем ниже диэлектрические потери в масле. Значение tgδ для данного диэлектрика зависит от его темпе­ратуры и растет при нагревании масла. Электрическую прочность и tgδ определяют по ГОСТ 6581-75.

Срок службы диэлектрика в трансформаторах 5-10 лет. В связи с этим к его качеству предъявляют весьма высокие требования.

Трансформаторные масла получают из малосернистых и серни­стых нефтей. Из малосернистых нефтей вырабатывают масла двух марок: трансформаторные без присадки и трансформаторные с анти­окислительной присадкой ионол. Масла подвергают сернокислотной очистке с последующей нейтрализацией щелочью и иногда с доочи­сткой отбеливающей землей.

Из сернистых нефтей вырабатывают две марки трансформаторно­го масла: масло селективной фенольной очистки с антиокислитель­ной присадкой ионол и масло с гидрогенизационной очисткой. Мас­ла с повышенным содержанием ароматических углеводородов име­ют большую окислительную и электрическую стойкость, в меньшей степени выделяют газы при воздействии на них электрических раз­рядов. Полное удаление ароматических углеводородов из масла в процессе очистки ухудшает его антиокислительные свойства, однако, излишнее количество ароматических углеводородов, особенно полициклических, повышает tgδ трансформаторных масел. Поэтому для каждого типа масел устанавливают оптимальное соотношение нафтеновых и ароматических углеводородов. Характеристика ос­новных свойств трансформаторных масел приведена в табл. 9

Таблица 10 Основные свойства жидких и пластичных диэлектриков

Показатель Нефтяное масло Кремний-органическая жидкость ПЭСЖ-Д Вазелин конденсаторный нефтяной
трансформаторное для конденсаторов
Плотность при 20 0 С, кг/м 3 880-890 900-920 990-1000 820-840
Кислотное число, мг КОН на 1 г масла, не более 0,01-0,05 0,01-0,015 0,05-0,07 0,03-0,04
Температура застывания, 0 С, не выше -45 -45 -80 37-40
Температура вспышки паров, 0 С, не ниже - -
Зольность, %, не более 0,005 0,0015 - 0,004
Вязкость при 20 0 С, 10 -6 м 2 /c 28-30 35-40 70-80 -
Удельное объемное сопротивление при 20 0 С, Ом · м 10 12 -10 13 10 12 -10 13 10 10 -10 12 10 12 -10 13
Относительная диэлектрическая проницаемость при 20 0 С 2,1-2,4 2,1-2,3 2,6-2,0 3,8-4,0
Тангенс угла диэлектрических потерь при 20 0 С и 50 Гц 0,001-0,003 0,003-0,005 0,0002-0,003 0,0002
Электрическая прочность при 20 0 С и 50 Гц, МВ/м 15-20 20-25 18-20 20-22

Примечание. Трансформаторное масло выпускается четырех марок: ТК, Т -750, T-1500, ПТ.

Все электроизоляционные жидкости (масла) не должны содер­жать водорастворимых кислот, щелочей и механических примесей.

Казалось бы, где масло, а где электроприборы? Тем более трансформаторы, внутри которых блуждают огромные токи, и формируется высокое напряжение. Тем не менее подобные электрические установки работают с применением технических жидкостей, и это отнюдь не антифриз и не дистиллированная вода.

Наверное, все видели огромные трансформаторы на подстанциях, и энергоблоках промышленных предприятий. Все они снабжены расширительными емкостями в верхней части.

Именно в эти бочонки заливается трансформаторное масло. Выглядит это вполне привычно для обывателя: корпус электрической установки (по аналогии картера двигателя автомобиля), внутри расположены рабочие узлы. И все это богатство залито маслом до самого верха. Как мы понимаем, о смазке деталей речь не идет: в трансформаторе нет движущихся частей.

Область применения трансформаторного масла

Для начала, развеем некоторые стереотипы. Существует устойчивое заблуждение, что все жидкости являются проводниками. На самом деле далеко не все, и не так явно, как металлы.

Важное свойство трансформаторного масла – высокое сопротивление электрическому току. Настолько высокое, что жидкость фактически является диэлектриком (в разумных пределах, разумеется).

Такая характеристика, как смазывающая способность, в электрике интересна в последнюю очередь. А вот теплопроводность напротив, очень важна.

О свойствах поговорим отдельно, они вытекают из двух областей применения:


Эксплуатационные показатели подобных устройств поражают воображение: напряжение несколько сотен тысяч вольт, и сила тока до 50 тысяч ампер.

Масло в этих устройствах имеет две функции. Разумеется, изоляционные свойства, как и в трансформаторах. Но главное назначение – эффективное гашение электрической дуги.

При размыкании (замыкании) контактов на электрических коммутационных устройствах с такими параметрами, возникает электрическая дуга, способная разрушить контактную группу за несколько циклов.

Электрическая дуга при размыкании контактов (происшествие на подстанции) — видео

Однако проблемы возникают лишь в воздушной среде. Если внутренняя полость заполнена трансформаторным маслом – искрения и дуги не возникнет.

К сведению

Объективности ради, заметим: существует и другое решение. Помимо масляных, активно применяются вакуумные выключатели. Правда, они качественно выполняют лишь одну функцию: гашение дуги. Диэлектрические свойства вакуума сопоставимы с обычным воздухом.

Однако, это тема другой статьи.

Технические характеристики трансформаторного масла

Так же, как и минеральное моторное, трансформаторное масло производится путем перегонки подготовленной сырой нефти (очищенной), методом кипячения сырья. После возгонки при температуре 300°C — 400°C, остается так называемый соляровый дистиллят.

Собственно, эта субстанция является основой для получения трансформаторного масла. Во время очистки, снижается насыщенность ароматическими углеродами и не углеродными соединениями. В результате повышается стабильность продукта.

При возгонке и выделении дистиллята, можно управлять физическими и химическими процессами. Манипулируя базовым сырьем и технологией, можно менять свойства трансформаторного масла. Они определяются полученным соотношением компонентов:

Интересно, что этот продукт экологически чист. При его производстве, использовании и утилизации, воздействие на природу не выше, чем у исходного сырья (сырой нефти). В состав не включаются добавки, синтезированные искусственным путем.

Как и нефть, масло для трансформаторов и выключателей не токсично (насколько это можно сказать о нефтепродуктах), не разрушает озоновый слой, и бесследно разлагается в природной среде.

Одна из важных характеристик – плотность трансформаторного масла. Типичная величина лежит в диапазоне 0,82 – 0,89 * 10³ кг/м³. Цифры зависят от температуры: рабочий диапазон в пределах 0°C – 120°C.

При нагреве она уменьшается, этот фактор принимается во внимание при проектировании радиаторной системы охлаждения трансформаторов.

Поскольку масла относительно универсальны, эта характеристика может варьироваться в зависимости от потребностей заказчика. Трансформаторные подстанции располагаются в различных климатических зонах, зачастую в условиях крайнего Севера и Сибири.

Не только плотность меняется в зависимости от температуры

Вязкость трансформаторного масла может радикально изменить общие показатели электроустановки.

Показатели ТКп Масло селективной очистки Т-1500У гк вг АГК МВТ
Кинематическая вязкость, им2/с* при температуре
50°С 9 9 - 9 9 5 -
40°С - - 11 - - - 3,5
20°С - 28 - - - - -
-30°С 1500 1300 1300 1200 1200 - -
-40°С - - - - - 800 150
Кислотное число, мг КОН/г, не более 0,02 0,02 0,01 0,01 0,01 0,01 0,02
Температура, °С
Вспышки в закрытом тигле, не ниже 135 150 135 135 135 125 95
Застывания, не выше -45 -45 -45 -45 -45 -60 -65
Этот параметр – порождение компромисса. Для обеспечения электрической прочности масла, вязкость должна быть высокой. Практически, как твердый диэлектрик. Но изоляция проводников, это не единственное предназначение рассматриваемой жидкости.

Принцип работы масляного трансформатора — видео

  • Теплоотвод – возможен при достаточно жидком теплоносителе. То есть, для нормального охлаждения электроустановки вязкость должна быть как можно более низкой.
  • Гашение электрической дуги. Как это работает? В обычной воздушной среде, при размыкании (замыкании) контактов под высокой нагрузкой, возникает дуга, подобная сварочной.

Густое масло, механически не сможет быстро заполнить пространство при движении контактов. Образовавшиеся воздушные полости станут поводом для дугообразования. И напротив, достаточно жидкий наполнитель постоянно будет поддерживать среду без пузырьков.

Вспышка и воспламенение

Интересный с точки зрения физики процесса, такой параметр, как температура вспышки трансформаторного масла. Для любых нефтепродуктов, это температура воспламенения жидкой среды, при контакте с открытым источником пламени.

Однако внутри трансформатора не создаются условия для горения, по причине отсутствия достаточного количества кислорода. А вот открытое пламя теоретически возможно: если при размыкании контактов образуется кратковременная дуга.

Поэтому в свойства масел закладывается увеличение температуры вспышки. Это значение постепенно уменьшается, по причине дефектов трансформаторного оборудования. При нормальной работе, температура вспышки напротив, увеличивается. Допустимое значение – более 155°C.

Электрическая дуга или как горят трансформаторы — видео

Для понимания механизма – температура вспышки связана с испаряемостью масла. То есть, оно должно быть достаточно жидким, но при этом не переходить в газообразное состояние при нормальных условиях эксплуатации.

Кроме традиционного параметра, есть такое понятие, как температура самовоспламенения, характерное именно для трансформаторов. В нашем случае эта величина составляет 350°C – 400°C.

Если обмотки нагреются до такой температуры – возникает неконтролируемое горение и взрыв трансформатора. К счастью, подобные случаи происходят крайне редко. Разумеется, при условии соблюдения условий эксплуатации.

Поэтому, вместе с подбором качественного масла, необходимо постоянно следить за состоянием электроустановок. При проведении тестовых отборов жидкости, можно понять, какие проблемы есть в самом трансформаторе или высоковольтном выключателе.

После проведенных исследований, оцениваются такие показатели, как преломление вязкости, плотность, диэлектрические свойства, и пр. Результаты сравниваются с табличными значениями, установленными стандартом применения масел.

В таблице показаны основные показатели трансформаторного масла:

Температура t,
°С
Плотность р,
кг/м3
Cp, кДж/(кгК) λ, Вт/(м"К) а-10**8, м2/с μ-10**4, Пас v-10**6, м2/с ß-10**4, К"1 Рг
0 892,5 1,549 0,1123 8,14 629,8 70:5 6,80 866
10 886.4 1,620 0,1115 7,83 335,5 37,9 6.85 484
20 880,3 1,666 0,1106 7,56 198,2 22,5 6,90 298
30 874,2 1,729 0,1008 7,28 128,5 14.7 6.95 202
40 868,2 1,788 0,1090 7,03 89.4 10,3 7,00 146
50 862,1 1,846 0,1082 6,80 65.3 7,58 7,05 111
60 856,0 1,905 0,1072 6,58 49,5 5,78 7,10 87,8
70 850,0 1,964 0,1064 6,36 38.6 4,54 7,15 71.3
80 843,9 2,026 0,1056 6,17 30.8 3,66 7,20 59,3
90 837.8 2.085 0,1047 6,00 25,4 3,03 7,25 50,5
100 831,8 2,144 0,1038 5,83 21.3 2,56 7,30 43.9
110 825,7 2,202 0,1030 5,67 18.1 2,20 7,35 38,8
120 819,6 2,261 0,1022 5,50 15.7 1,92 7,40 34,9
  • cp — удельная массовая теплоемкость, без изменения рабочего давления;
  • λ – теплопроводность: общий коэффициент;
  • a – температурная проводимость: общий коэффициент;
  • μ — динамический коэффициент вязкости;
  • ν — кинематический коэффициент вязкости;
  • β — объемное расширение: общий коэффициент;
  • Pr — критерий Прандтля.

Технические жидкости для обеспечения работы трансформаторных подстанций закупаются в огромных объемах, это достаточно затратно. Каждая партия тестируется перед использованием, и в процессе работы.

Испытание трансформаторного масла на пробой — видео

Ежегодно, техническая жидкость требует масштабной очистки. Этим занимаются специальные службы. А каждые 5-6 лет, требуется регенерация (практически полная замена масла в электроустановке). Процедура недешевая, но без ее выполнения эксплуатация трансформатора станет небезопасной.

В качестве компромисса, широко применяется восстановление свойств. Отработка сдается на нефтехимическое предприятие, где масло приобретает первоначальные свойства. Стоимость добавленных присадок многократно ниже, в сравнение с полной заменой материала.

Второстепенные характеристики трансформаторного масла

Устойчивость масла к окислению – это не что иное, как противодействие старению. Есть две негативные стороны этого явления:

  1. Связывание молекулами кислорода активных добавок, которые обеспечивают базовые параметры жидкости.
  2. Отложение продуктов окисления на поверхностях деталей трансформатора: обмотках, проводниках, контактных группах. Это приводит к снижению теплоотвода, с последующим закипанием масла в точках соприкосновения.
  3. Зольность – наличие посторонних примесей и причина их появления. После промывки нового масла, в его составе остаются химические моющие средства (это касается и регенерации старой жидкости).

Если их не удалить – образуются зольные фракции, которые оседают на рабочих частях трансформаторов и выключателей. Для борьбы с этим явлением, в масло добавляются присадки, нейтрализующие солевые и мыльные отложения.

Температура текучести (застывания) характеризует превращение жидкости в консистентную смазку. Этот показатель (от — 35°C до — 50°C) применим лишь при холодном пуске электроустановки. Работающий трансформатор сам является источником тепла, и поддерживает жидкость в рабочем состоянии.

Объемный вес масла для трансформаторов не является фиксированной паспортной величиной. Понятно, что данное масло, как и любая другая жидкость, при ее помещении в различные сосуды будет иметь разный объем. Поэтому поговорим о характеристике паспортной, такой как объемный вес трансформаторного масла.

Определение объемного веса

Начнем с определения. Объемный вес масла – это отношение его веса при температуре +20 ºС к весу воды, занимающей тот же объем, но уже при температуре +4 ºС.

Показатели нормы объемного веса масла для трансформаторов

Данный показатель не является нормированным. При температуре +20 ºС для трансформаторного масла он равен 0,856-0,886. Если производить нагревание, то значение объемного веса будет уменьшаться, а при охлаждении – наоборот увеличиваться.

Коэффициент изменения

Чтобы осуществить определение объемного веса масла при температуре, которая отличается от +20 ºС, нужно при ее повышении отнять, а при понижении добавить коэффициент изменения объемного веса на каждый градус. Обычно для электроизоляционных масел численное значение этого показателя составляет 0,0007 на 1 ºС.

ГОСТ

Можно для определения объемного веса также использовать специальную методику, изложенную в ГОСТ-3900-47. Там же приводится таблица, в которой размещены поправки на температуру, не равную +20 ºС.

Приборы для определения объемного веса трансформаторного масла

На практике наиболее простым способом определения объемного веса является использование прибора ареометра (нефтеденсиметра). Порцию испытуемого масла набирают в стеклянный цилиндр, а потом туда помещают и ареометр. Отсчет ведется по верхнему краю мениска.

Влияние температур

Если температуру масла изменить на +100 ºС, например, от -35 ºС до +65 ºС, то его объем изменится приблизительно на 7%. Учитывая тот факт, что при эксплуатации температура может меняться в более широких пределах, объем расширителя нужно подбирать на уровне 9-10% объема масла.



Похожие публикации