Синтез антител. Методика синтеза антител при вирусных инфекциях

Антитела (иммуноглобулины , ИГ, Ig) - это особый класс гликопротеинов, присутствующих на поверхности В-клеток в виде мембраносвязанных рецепторов и в сыворотке крови и тканевой жидкости в виде растворимых молекул. Они являются важнейшим фактором специфического гуморального иммунитета. Антитела используются иммунной системой для идентификации и нейтрализации чужеродных объектов - например, бактерий и вирусов. Антитела выполняют две функции: антиген -связывающую и эффекторную (вызывают тот или иной иммунный ответ, например, запускают классическую схему активации комплемента).

Антитела синтезируются плазматическими клетками, которыми становятся В-лимфоциты в ответ на присутствие антигенов. Для каждого антигена формируются соответствующие ему специализировавшиеся плазматические клетки, вырабатывающие специфичные для этого антигена антитела. Антитела распознают антигены, связываясь с определённым эпитопом - характерным фрагментом поверхности или линейной аминокислотной цепи антигена.

Антитела состоят из двух лёгких цепей и двух тяжелых цепей. У млекопитающих выделяют пять классов антител (иммуноглобулинов) - IgG, IgA, IgM, IgD, IgE, различающихся между собой по строению и аминокислотному составу тяжёлых цепей и по выполняемым эффекторным функциям.

История изучения

Самое первое антитело было обнаружено Берингом и Китазато в 1890 году , однако в это время о природе обнаруженного столбнячного антитоксина , кроме его специфичности и его присутствия в сыворотке иммунного животного, ничего определенного сказать было нельзя. Только с 1937 года - исследований Тизелиуса и Кабата, начинается изучение молекулярной природы антител. Авторы использовали метод электрофореза белков и продемонстрировали увеличение гамма-глобулиновой фракции сыворотки крови иммунизированных животных. Адсорбция сыворотки антигеном , который был взят для иммунизации, снижала количество белка в данной фракции до уровня интактных животных.

Строение антител

Общий план строения иммуноглобулинов: 1) Fab ; 2) Fc ; 3) тяжелая цепь; 4) легкая цепь; 5) антиген-связывающийся участок; 6) шарнирный участок

Антитела являются относительно крупными (~150 кДа - IgG) гликопротеинами , имеющими сложное строение. Состоят из двух идентичныхтяжелых цепей (H-цепи, в свою очередь состоящие из V H , C H1 , шарнира, C H2 и C H3 доменов) и из двух идентичных лёгких цепей (L-цепей, состоящих из V L и C L доменов). К тяжелым цепям ковалентно присоединены олигосахариды. При помощи протеазы папаина антитела можно расщепить на два Fab (англ. fragment antigen binding - антиген-связывающий фрагмент) и один Fc (англ. fragment crystallizable - фрагмент, способный к кристаллизации). В зависимости от класса и исполняемых функций антитела могут существовать как в мономерной форме (IgG, IgD, IgE, сывороточный IgA) так и в олигомерной форме (димер-секреторный IgA, пентамер - IgM). Всего различают пять типов тяжелых цепей (α-, γ-, δ-, ε-и μ- цепи) и два типа легких цепей (κ-цепь и λ-цепь).

Классификация по тяжелым цепям

Различают пять классов (изотипов ) иммуноглобулинов, различающихся:

    величиной

  • последовательностью аминокислот

Класс IgG классифицируют на четыре подкласса (IgG1, IgG2, IgG3, IgG4), класс IgA - на два подкласса (IgA1, IgA2). Все классы и подклассы составляют девять изотипов, которые присутствуют в норме у всех индивидов. Каждый изотип определяется последовательностью аминокислот константной области тяжелой цепи.

Функции антител

Иммуноглобулины всех изотипов бифункциональны. Это означает, что иммуноглобулин любого типа

    распознает и связывает антиген, а затем

    усиливает киллинг и/или удаление иммунных комплексов, сформированных в результате активации эффекторных механизмов.

Одна область молекулы антител (Fab) определяет ее антигенную специфичность, а другая (Fc) осуществляет эффекторные функции: связывание с рецепторами, которые экспрессированы на клетках организма (например, фагоцитах); связывание с первым компонентом (C1q) системы комплемента для инициации классического пути каскада комплемента.

    IgG является основным иммуноглобулином сыворотки здорового человека (составляет 70-75 % всей фракции иммуноглобулинов), наиболее активен во вторичном иммунном ответе и антитоксическом иммунитете. Благодаря малым размерам (коэффициент седиментации 7S, молекулярная масса 146 кДа) является единственной фракцией иммуноглобулинов, способной к транспорту через плацентарный барьер и тем самым обеспечивающей иммунитет плода и новорожденного. В составе IgG 2-3 % углеводов ; два антигенсвязывающих F ab -фрагмента и один F C -фрагмент. F ab -фрагмент (50-52 кДа) состоит из целой L-цепи и N-концевой половины H-цепи, соединённых между собой дисульфидной связью , тогда как F C -фрагмент (48 кДа) образован C-концевыми половинами H-цепей. Всего в молекуле IgG 12 доменов (участки, сформированные из β-структуры и α-спиралей полипептидных цепей Ig в виде неупорядоченных образований, связанных между собой дисульфидными мостиками аминокислотных остатков внутри каждой цепи): по 4 на тяжёлых и по 2 на лёгких цепях.

    IgM представляют собой пентамер основной четырехцепочечной единицы, содержащей две μ-цепи. При этом каждый пентамер содержит одну копию полипептида с J-цепью (20 кДа), который синтезируется антителообразующей клеткой и ковалентно связывается между двумя соседними F C -фрагментами иммуноглобулина. Появляются при первичном иммунном ответе B-лимфоцитами на неизвестный антиген, составляют до 10 % фракции иммуноглобулинов. Являются наиболее крупными иммуноглобулинами (970 кДа). Содержат 10-12 % углеводов. Образование IgM происходит ещё в пре-B-лимфоцитах, в которых первично синтезируются из μ-цепи; синтез лёгких цепей в пре-B-клетках обеспечивает их связывание с μ-цепями, в результате образуются функционально активные IgM, которые встраиваются в поверхностные структуры плазматической мембраны, выполняя роль антиген распознающего рецептора; с этого момента клетки пре-B-лимфоцитов становятся зрелыми и способны участвовать в иммунном ответе.

    IgA сывороточный IgA составляет 15-20 % всей фракции иммуноглобулинов, при этом 80 % молекул IgA представлено в мономерной форме у человека. Секреторный IgA представлен в димерной форме в комплексе секреторным компонентом , содержится в серозно-слизистых секретах (например в слюне , слезах, молозиве , молоке , отделяемом слизистой оболочки мочеполовой и респираторной системы). Содержит 10-12 % углеводов, молекулярная масса 500 кДа.

    IgD составляет менее одного процента фракции иммуноглобулинов плазмы, содержится в основном на мембране некоторых В-лимфоцитов. Функции до конца не выяснены, предположительно является антигенным рецептором с высоким содержанием связанных с белком углеводов для В-лимфоцитов, еще не представлявшихся антигену . Молекулярная масса 175 кДа.

Классификация по антигенам

    так называемые «антитела-свидетели заболевания» , наличие которых в организме сигнализирует о знакомстве иммунной системы с данным возбудителем в прошлом или о текущем инфицировании этим возбудителем, но которые не играют существенной роли в борьбе организма с возбудителем (не обезвреживают ни самого возбудителя, ни его токсины, а связываются со второстепенными белками возбудителя).

    аутоагрессивные антитела , или аутологичные антитела, аутоантитела - антитела, вызывающие разрушение или повреждение нормальных, здоровых тканей самого организма хозяина и запускающие механизм развития аутоиммунных заболеваний .

    аллореактивные антитела, или гомологичные антитела, аллоантитела - антитела против антигенов тканей или клеток других организмов того же биологического вида. Аллоантитела играют важную роль в процессах отторжения аллотрансплантантов, например, при пересадке почки , печени , костного мозга , и в реакциях на переливание несовместимой крови.

    гетерологичные антитела, или изоантитела - антитела против антигенов тканей или клеток организмов других биологических видов. Изоантитела являются причиной невозможности осуществления ксенотрансплантации даже между эволюционно близкими видами (например, невозможна пересадка печени шимпанзе человеку) или видами, имеющими близкие иммунологические и антигенные характеристики (невозможна пересадка органов свиньи человеку).

    антиидиотипические антитела - антитела против антител, вырабатываемых самим же организмом. Причём это антитела не «вообще» против молекулы данного антитела, а именно против рабочего, «распознающего» участка антитела, так называемого идиотипа. Антиидиотипические антитела играют важную роль в связывании и обезвреживании избытка антител, в иммунной регуляции выработки антител. Кроме того, антиидиотипическое «антитело против антитела» зеркально повторяет пространственную конфигурацию исходного антигена, против которого было выработано исходное антитело. И тем самым антиидиотипическое антитело служит для организма фактором иммунологической памяти, аналогом исходного антигена, который остаётся в организме и после уничтожения исходных антигенов. В свою очередь, против антиидиотипических антител могут вырабатываться анти-антиидиотипические антитела и т. д.

Специфичность антител

Имеет в виду то, что каждый лимфоцит синтезирует антитела только одной определенной специфичности. И эти антитела располагаются на поверхности этого лимфоцита в качестве рецепторов.

Как показывают опыты, все поверхностные иммуноглобулины клетки имеют одинаковый идиотип: когда растворимый антиген , похожий на полимеризованный флагеллин , связывается со специфической клеткой, то все иммуноглобулины клеточной поверхности связываются с данным антигеном и они имеют одинаковую специфичность то есть одинаковый идиотип.

Антиген связывается с рецепторами, затем избирательно активирует клетку с образованием большого количества антител. И так как клетка синтезирует антитела только одной специфичности, то эта специфичность должна совпадать со специфичностью начального поверхностного рецептора.

Специфичность взаимодействия антител с антигенами не абсолютна, они могут в разной степени перекрестно реагировать с другими антигенами. Антисыворотка , полученная к одному антигену, может реагировать с родственным антигеном, несущим одну или несколько одинаковых или похожих детерминант . Поэтому каждое антитело может реагировать не только с антигеном, который вызвал его образование, но и с другими, иногда совершенно неродственными молекулами. Специфичность антител определяется аминокислотной последовательностью их вариабельных областей.

Клонально-селекционная теория :

    Антитела и лимфоциты с нужной специфичностью уже существуют в организме до первого контакта с антигеном.

    Лимфоциты, которые участвуют в иммунном ответе, имеют антигенспецифические рецепторы на поверхности своей мембраны. У B-лимфоцитов рецепторы- молекулы той же специфичности, что и антитела, которые лимфоциты впоследствии продуцируют и секретируют.

    Любой лимфоцит несет на своей поверхности рецепторы только одной специфичности.

    Лимфоциты, имеющие антиген , проходят стадию пролиферации и формируют большой клон плазматических клеток. Плазматические клетки синтезируют антитела только той специфичности, на которую был запрограммирован лимфоцит-предшественник. Сигналами к пролиферации служат цитокины , которые выделяются другими клетками. Лимфоциты могут сами выделять цитокины.

Вариабельность антител

Антитела являются чрезвычайно вариабельными (в организме одного человека может существовать до 10 8 вариантов антител). Все разнообразие антител проистекает из вариабельности как тяжёлых цепей, так и лёгких цепей. У антител, вырабатываемых тем или иным организмом в ответ на те или иные антигены, выделяют:

    Изотипическая вариабельность - проявляется в наличии классов антител (изотипов), различающихся по строению тяжёлых цепей и олигомерностью, вырабатываемых всеми организмами данного вида;

    Аллотипическая вариабельность - проявляется на индивидуальном уровне в пределах данного вида в виде вариабельности аллелей иммуноглобулинов - является генетически детерминированным отличием данного организма от другого;

    Идиотипическая вариабельность - проявляется в различии аминокислотного состава антиген-связывающего участка. Это касается вариабельных и гипервариабельных доменов тяжёлой и лёгкой цепей, непосредственно контактирующих с антигеном.

Контроль пролиферации

Наиболее эффективный контролирующий механизм заключается в том, что продукт реакции одновременно служит ее ингибитором . Этот тип отрицательной обратной связи имеет место при образовании антител. Действие антител нельзя объяснить просто нейтрализацией антигена, потому что целые молекулы IgG подавляют синтез антител намного эффективнее, чем F(ab")2 -фрагменты. Предполагают, что блокада продуктивной фазы T-зависимого B-клеточного ответа возникает в результате образования перекрестных связей между антигеном, IgG и Fc - рецепторами на поверхности B-клеток. Инъекция IgM, усиливает иммунный ответ . Так как антитела именно этого изотипа появляются первыми после введения антигена, то на ранней стадии иммунного ответа им приписывается усиливающая роль.

АНТИТЕЛА - белки глобулиновой фракции сыворотки крови человека и теплокровных животных, образующиеся в ответ на введение в организм различных антигенов (бактерий, вирусов, белковых токсинов и др.) и специфически взаимодействующие с антигенами, вызвавшими их образование. Связываясь активными участками (центрами) с бактериями или вирусами, антитела препятствуют их размножению или нейтрализуют выделяемые ими токсические вещества. Наличие в крови антител указывает на то, что организм вступал во взаимодействие с антигеном против вызываемой им болезни. В какой степени иммунитет зависит от антител и в какой степени антитела только сопутствуют иммунитету, решается применительно к конкретной болезни. Определение уровня антител в сыворотке крови позволяет судить о напряженности иммунитета даже в тех случаях, когда антитела не играют решающей защитной роли.

Защитное действие антител, содержащихся в иммунных сыворотках, широко используется в терапии и профилактике инфекционных заболеваний (см. Серопрофилактика , Серотерапия). Реакции антител с антигенами (серологические реакции) применяют в диагностике различных заболеваний (см. Серологические исследования).

История

На протяжении длительного времени о хим. природе А. знали очень немного. Известно, что антитела после введения антигена обнаруживаются в сыворотке крови, лимфе, экстрактах тканей и что они специфически реагируют со своим антигеном. О наличии антител судили на основании тех видимых агрегатов, которые образуются при взаимодействии с антигеном (агглютинация, преципитация) или по изменению свойств антигена (нейтрализация токсина, лизис клетки), но о том, с каким химическим субстратом антител связаны, почти ничего не было известно.

Благодаря применению методов ультрацентрифугирования, иммуно-электрофореза и подвижности белков в изоэлектрическом поле доказана принадлежность антител к классу гамма-глобулинов, или иммуноглобулинов.

Антитела представляют собой преформированные в процессе синтеза нормальные глобулины. Иммунные глобулины, полученные в результате иммунизации различных животных одним и тем же антигеном и при иммунизации одного и того же вида животного различными антигенами, обладают неодинаковыми свойствами, так же как неодинаковы сывороточные глобулины различных видов животных.

Классы иммуноглобулинов

Иммуноглобулины вырабатываются иммунокомпетентными клетками лимфоидных органов, различаются между собой по мол. весу, константе седиментации, электрофоретической подвижности, содержанию углеводов и иммунологической активности. Различают пять классов (или типов) иммуноглобулинов:

Иммуноглобулины М (IgM) : молекулярный вес около 1 млн., имеют сложную молекулу; первыми появляются после иммунизации или антигенной стимуляции, оказывают губительное действие на микробы, которые попали в кровь, способствуют их фагоцитозу; слабее, чем иммуноглобулины G, связывают растворимые антигены, токсины бактерии; разрушаются в организме в 6 раз быстрее, чем иммуноглобулины G (например, у крыс период полураспада иммуноглобулина М равен 18 часам, а иммуноглобулина G - 6 дням).

Иммуноглобулины G (IgG) : молекулярный вес около 160 000, их считают стандартными, или классическими, антителами: легко проходят через плаценту; образуются медленнее, чем IgM; наиболее эффективно связывают растворимые антигены, особенно экзотоксины, а также вирусы.

Иммуноглобулины А (IgA) : молекулярный вес около 160 000 или больше, вырабатываются лимфоидной тканью слизистых оболочек, препятствуют деградации ферментов клеток организма и противостоят патогенному действию микробов кишечника, легко проникают через клеточные барьеры организма, содержатся в молозиве, слюне, слезах, слизи кишечника, поте, отделяемом носа, в крови находятся в меньшем количестве, легко соединяются с клетками организма; IgA возникли, по-видимому, в процессе эволюции для защиты слизистых оболочек от агрессии бактериями и передачи пассивного иммунитета потомству.

Иммуноглобулины Е (IgE) : молекулярный вес около 190 000 (по Р. С. Незлину, 1972); по-видимому, ими являются аллергические антитела -так называемые реагины (см. ниже).

Иммуноглобулины D (IgD ): молекулярный вес около 180 000 (по Р. С. Незлину, 1972); в настоящее, время о них известно очень мало.

Структура антител

Молекула иммуноглобулина состоит из двух неидентичных полипептидных субъединиц - легких (L - от английского light) цепей с молекулярным весом 20 000 и двух тяжелых (Н - от английского heavy) цепей с молекулярным весом 60 000. Эти цепи, связанные дисульфидными мостиками, образуют основной мономер LH. Однако в свободном состоянии такие мономеры не встречаются. Большая часть молекул иммуноглобулинов состоит из димеров (LH) 2 , остальные - из полимеров (LH) 2n . Основными N-концевыми аминокислотами человеческого гамма-глобулина являются аспарагиновая и глутаминовая, кроличьего - аланин и аспарагиновая кислота. Портер (R. R. Porter, 1959), воздействуя на иммуноглобулины папаином, нашел, что они распадаются на два (I и II) Fab-фрагмента и Fc-фрагмент (III) с константой седиментации 3,5S и молекулярным весом около 50 000. Основная масса углеводов связана с Fc-фрагментом. По предложению экспертов ВОЗ установлена следующая номенклатура фрагментов антител: Fab-фрагмент - одновалентный, активно соединяющийся с антигеном; Fc-фрагмент - не взаимодействует с антигеном и состоит из С-концевых половин тяжелых цепей; Fd-фраг-мент - участок тяжелой цепи, входящий в Fab-фрагмент. Фрагмент пепсинового гидролиза 5S предложено обозначать как F(ab) 2 , а одновалентный 3,5S-фрагмент - Fab.

Специфичность антител

Одним из важнейших свойств антител является их специфичность, которая выражается в том, что антитела активнее и полнее взаимодействует с тем антигеном, которым организм был стимулирован. Комплекс антиген - антитело в этом случае обладает наибольшей прочностью. Антитела способны различать в антигенах незначительные изменения в структуре. При использовании конъюгированных антигенов, состоящих из белка и включенного простого химического вещества - гаптена, образующиеся антитела специфичны к гаптену, белку и комплексу белок - гаптен. Специфичность обусловлена химической структурой и пространственным рисунком антидетерминант антител (активных центров, реактивных групп), то есть участков антител, которыми они соединяются с детерминантами антигена. Число антидетерминант антител часто называют их валентностью. Так, молекула IgM-антитела может иметь до 10 валентностей, молекулы IgG- и IgA-антител двухвалентны.

По данным Караша (F. Karush, 1962), активные центры IgG состоят из 10-20 аминокислотных остатков, что составляет примерно 1 % всех аминокислот молекулы антител, а, по представлениям Уинклера (М. Н. Winkler, 1963), активные центры состоят из 3-4 аминокислотных остатков. В их составе найдены тирозин, лизин, триптофан и др. Антидетерминанты расположены, очевидно, в аминоконцевых половинах Fab-фрагментов. В образовании активного центра участвуют вариабельные отрезки легких и тяжелых цепей, причем последним принадлежит основная роль. Возможно, легкая цепь лишь частично участвует в формировании активного центра или стабилизирует структуру тяжелых цепей. Наиболее полноценная антидетерминанта создается лишь комбинацией легких и тяжелых цепей. Чем больше точек совпадения связи между антидетерминантами антител и детерминантами антигена, тем выше специфичность. Разная специфичность зависит от последовательности аминокислотных остатков в активном центре антител. Кодирование огромного разнообразия антител по их специфичности неясно. Портер допускает три возможности специфичности .

1. Образование стабильной части молекулы иммуноглобулина контролируется одним геном, а вариабельной части - тысячами генов. Синтезированные пептидные цепи соединяются в молекулу иммуноглобулина под влиянием особого клеточного фактора. Антиген в этом случае выступает в качестве фактора, запускающего синтез антител.

2. Молекула иммуноглобулина кодируется стабильными и изменчивыми генами. В период клеточного деления происходит рекомбинация изменчивых генов, что и обусловливает разнообразие их и вариабельность участков молекул глобулинов.

3. Ген, кодирующий вариабельную часть молекулы иммуноглобулинов, повреждается особым ферментом. Другие ферменты восстанавливают повреждение, но вследствие ошибок допускают различную последовательность нуклеотидов в пределах данного гена. Этим и обусловлена различная последовательность аминокислот в вариабельной части молекулы иммуноглобулина. Имеются и другие гипотезы, напр. Бернета (F. М. Burnet, 1971).

Гетерогенность (неоднородность) антител проявляется по многим признакам. В ответ на введение одного антигена образуются антитела, различающиеся по сродству к антигену, антигенным детерминантам, молекулярному весу, электрофоретической подвижности, N-концевым аминокислотам. Групповые антитела к различным микробам обусловливают перекрестные реакции к разным видам и типам сальмонелл, шигелл, эшерихий, животных белков, полисахаридов. Продуцируемые антитела неоднородны по своей специфичности относительно гомогенного антигена или одной антигенной детерминанты. Гетерогенность антител отмечена не только против белковых и полисахаридных антигенов, но и против комплексных, в том числе конъюгированных, антигенов и против гаптенов. Полагают, что гетерогенность антител определяется известной микрогетерогенностью детерминант антигена. Гетерогенность может быть вызвана образованием антител на комплекс антиген - антитело, что наблюдается при многократной иммунизации, различием клеток, образующих антител, а также принадлежностью антител к разным классам иммуноглобулинов, которые, как и другие белки, обладают сложной антигенной структурой, контролируемой генетически.

Виды антител

Полные антитела имеют не менее двух активных центров и при соединении с антигенами in vitro обусловливают видимые реакции: агглютинацию, преципитацию, связывание комплемента; нейтрализуют токсины, вирусы, опсонизируют бактерии, обусловливают визуальный феномен иммунного прилипания, иммобилизации, набухания капсул, нагрузки тромбоцитов. Реакции протекают в две фазы: специфическая (взаимодействие антитела с антигеном) и неспецифическая (тот или иной из вышеуказанных феноменов). Общепризнано, что различные серологические реакции обусловливаются одним, а не множеством антител и зависят от методики постановки. Различают тепловые полные антитела, реагирующие с антигеном при t° 37°, и холодовые (криофильные), проявляющие эффект при t° ниже 37°. Имеются также антитела, реагирующие с антигеном при низкой температуре, а видимый эффект проявляется при t° 37°; это двухфазные, биотермические антитела, к которым отнесены гемолизины Доната - Ландштейнера. Все известные классы иммуноглобулинов содержат полные антитела. Активность и специфичность их определяются титром, авидностью (см. Авидитет), числом антидетерминант. IgM-антитела более активны, чем IgG-антитела, в реакциях гемолиза и агглютинации.

Неполные антитела (непреципитирующие, блокирующие, агглютиноиды), как и полные антитела, способны соединяться с соответствующими антигенами, но реакция при этом не сопровождается видимым in vitro феноменом преципитации, агглютинации и др.

Неполные антитела обнаружены у человека в 1944 году к резус-антигену, их находили при вирусных, риккетсиозных и бактериальных инфекциях по отношению к токсинам при различных патологических состояниях. Существует ряд доказательств двухвалентности неполных антител. Бактериальные неполные антитела обладают защитными свойствами: антитоксическими, опсонизирующими, бактериологическими; вместе с тем неполные антитела обнаружены при ряде аутоиммунных процессов - при заболеваниях крови, особенно гемолитических анемиях.

Неполные гетеро-, изо- и аутоантитела способны вызвать повреждение клеток, а также играть определенную роль в возникновении медикаментозных лейко- и тромбоцитопении

Нормальными (естественными) принято считать антитела, обычно встречающиеся в сыворотке крови животных и человека при отсутствии явной инфекции или иммунизации. Происхождение антибактериальных нормальных антител может быть связано, в частности, с антигенной стимуляцией нормальной микрофлорой организма. Эти взгляды теоретически и экспериментально обоснованы исследованиями на животных-гнотобионтах и новорожденных в обычных условиях обитания. Вопрос о функциях нормальных антител связан непосредственно со специфичностью их действия. Л. А. Зильбер (1958) полагал, что индивидуальная устойчивость к инфекциям и, кроме того, «иммуногенная готовность организма» определяются их наличием. Показана роль нормальных антител в бактерицидности крови, в опсонизации при фагоцитозе. Работами многих исследователей было показано, что нормальные антитела в основном являются макроглобулина-ми - IgM. Некоторые исследователи находили нормальные антитела в IgA- и IgG-классах иммуноглобулинов. В их составе могут быть как неполные, так и полные антитела (нормальные антитела к эритроцитам - см. Группы крови).

Синтез антител

Синтез антител протекает в две фазы. Первая фаза индуктивная, латентная (1-4 дня), при которой антитела и антителообразующие клетки не обнаруживаются; вторая фаза - продуктивная (начинается после индуктивной фазы), антитела обнаруживаются в плазматических клетках и оттекающей от лимфоидных органов жидкости. После первой фазы антителообразования начинается очень быстрый темп нарастания антител, нередко их содержание может удваиваться каждые 8 часов и даже быстрее. Максимальная концентрация различных антител в сыворотке крови после однократной иммунизации регистрируется на 5, 7,10 или 15-й день; после инъекции депонированных антигенов - на 21- 30-й или 45-й день. Далее через 1-3 или более месяцев титры антител резко падают. Однако иногда низкий уровень антител после иммунизации регистрируется в крови в течение ряда лет. Установлено, что первичная иммунизация большим числом различных антигенов сопровождается появлением вначале тяжелых IgM (19S)-антител, затем в течение короткого срока - IgM и IgG(7S)-антител и, наконец, одних легких 7S-антител. Повторная стимуляция сенсибилизированного организма антигеном вызывает ускорение образования обоих классов антител, укорочение латентной фазы антителообразования, срока синтеза 19S-антител и способствует преимущественному синтезу 7S-антител. Нередко 19S-антитела вовсе не появляются.

Выраженные различия между индуктивной и продуктивной фазой антителообразования обнаруживаются при исследовании их чувствительности к ряду воздействий, что имеет принципиальное значение для понимания природы специфической профилактики. Например, известно, что облучение до иммунизации задерживает или полностью угнетает антителообразование. Облучение в репродуктивную фазу антителообразования не влияет на содержание антител в крови.

Выделение и очистка антител

В целях усовершенствования метода выделения и очистки антител были предложены иммуносорбенты. В основе метода лежит перевод растворимых антигенов в нерастворимые путем присоединения их посредством ковалентных связей к нерастворимой основе из целлюлозы, сефадекса или другого полимера. Метод позволяет получить в высокой степени очищенные антитела в больших количествах. Процесс выделения антител с помощью иммуносорбентов включает три этапа:

1) извлечение антител из иммунной сыворотки;

2) отмывание иммуносорбента от неспецифических белков;

3) отщепление антител от отмытого иммуносорбента (обычно буферными растворами с низкими значениями pH). Кроме этого метода, известны и другие методы очистки антител. Их можно разделить на две группы: специфические и неспецифические. В основе первых лежит диссоциация антител из комплекса нерастворимый антиген - антитело (преципитат, агглютинат). Она осуществляется различными веществами; широко распространен метод ферментативного переваривания антигена или флоккулята токсин - антитоксин амилазой, трипсином, пепсином. Используется также тепловая элюция при t° 37-56°.

Неспецифические методы очистки антител основаны на выделении гамма-глобулинов: электрофорез в геле, хроматография на ионообменных смолах, фракционирование гель-фильтрацией через сефадексы. Широко известен метод осаждения сернокислым натрием или аммонием. Эти методы применимы в случаях высокой концентрации антител в сыворотке, например, при гипериммунизации.

Гельфильтрация через сефадексы, а также использование ионообменных смол позволяют разделить антитела по величине их молекул.

Применение антител

Антитела, особенно гамма-глобулины, применяются для терапии и профилактики дифтерии, кори, столбняка, газовой гангрены, сибирской язвы, лептоспирозов, против стафилококков, возбудителей бешенства, гриппа и др. Специально приготовленные и очищенные диагностические сыворотки применяются в серологической идентификации возбудителей инфекций (см. Идентификация микробов). Было установлено, что пневмококки, стафилококки, сальмонеллы, бактериофаги и др., адсорбируя соответствующие антитела, прилипают к тромбоцитам, эритроцитам и другим чужеродным частицам. Этот феномен назван иммунным прилипанием. Было показано, что в механизме этого феномена играют роль белковые рецепторы тромбоцитов и эритроцитов, которые разрушаются трипсином, папаином и формалином. Реакция иммунного прилипания зависит от температуры. Ее учитывают по прилипанию корпускулярного антигена или по гемагглютинации, обусловленной растворимым антигеном в присутствии антител и комплемента. Реакция высокочувствительна и может быть использована как для определения комплемента, так и очень небольших (0,005-0,01 мкг азота) количеств антител. Иммунное прилипание усиливает фагоцитоз лейкоцитами.

Современные теории образования антител

Различают инструктивные теории антителообразования, согласно к-рым антиген прямо или косвенно участвует в формировании специфических иммуноглобулинов, и теории, предполагающие образование генетически предсуществующих антител ко всем возможным антигенам или клеток, синтезирующих эти антитела. К ним относятся селекционные теории и теория репрессии - дерепрессии, допускающая возможность синтеза одной клеткой любых антител. Предложены также теории, стремящиеся осмыслить процессы иммунологического ответа на уровне целостного организма с учетом взаимодействия различных клеток и общепринятых представлений о синтезе белка в организме.

Теория прямой матрицы Гауровитца-Полинга сводится к тому, что антиген, поступив внутрь клеток, вырабатывающих антитела, играет роль матрицы, оказывающей влияние на образование молекулы иммуноглобулина из пептидных цепей, синтез которых протекает без участия антигена. «Вмешательство» антигена наступает лишь во второй фазе формирования белковой молекулы - фазе скручивания пептидных цепей. Антиген так изменяет концевые N-аминокислоты будущего антитела (иммуноглобулина или его отдельных пептидных цепей), что они становятся комплементарными к детерминантам антигена и легко вступают с ним в связь. Образовавшееся таким образом антитела отщепляется от антигена, поступает в кровь, а освободившийся антиген принимает участие в формировании новых молекул антител. Эта теория вызвала ряд серьезных возражений. Она не может объяснить образования иммунологической толерантности; превосходящего количества вырабатываемых клеткой антител в единицу времени на имеющееся в ней во много раз меньшее число молекул антигена; продолжительности выработки антител организмом, исчисляемой годами или всей жизнью, по сравнению со значительно меньшим сроком сохранения антигена в клетках и т. д. Следует также учесть, что клетки плазматического или лимфоидного ряда, вырабатывающие антитела, не ассимилируют антиген, хотя присутствие нативного антигена или его фрагментов в антителосинтезирующих клетках полностью исключить нельзя. В последнее время Гауровитцем (F. Haurowitz, 1965) предложена новая концепция, по которой антиген изменяет не только вторичную, но и первичную структуру иммуноглобулина.

Теория непрямой матрицы Бернета - Феннера получила известность в 1949 году. Ее авторы считали, что макромолекулы антигена и скорее всего его детерминанты проникают в ядра клеток зародышевого типа и вызывают наследственно закрепленные изменения в них, следствием которых является образование антител к данному антигену. Допускается аналогия между описываемым процессом и трансдукцией у бактерий. Приобретенное клетками новое качество образования иммунных глобулинов передается потомству клеток в бесчисленных поколениях. Однако вопрос о роли антигена в описываемом процессе оказался спорным.

Именно это обстоятельство явилось причиной возникновения теории естественной селекции Ерне (K. Jerne, 1955).

Теория естественной селекции Ерне. Согласно этой теории антиген не является матрицей для синтеза антител и не вызывает генетических изменений в клетках-продуцентах антител. Его роль сводится к селекции имеющихся «нормальных» антител, спонтанно возникающих к различным антигенам. Происходит это будто бы так: антиген, попав в организм, находит соответствующее антитело, соединяется с ним; образовавшийся комплекс антиген - антитело поглощается клетками, вырабатывающими антитела, и последние получают стимул производить антитела именно такого рода.

Клонально-селекционная теория Бернета (F. Burnet) явилась дальнейшим развитием идеи Ерне о селекции, но не антител, а клеток, производящих антитела. Бернет полагает, что в результате общего процесса дифференциации в эмбриональном и постнатальном периодах из мезенхимальных клеток образуется множество клонов лимфоидных или иммунологически компетентных клеток, способных реагировать с различными антигенами или их детерминантами и вырабатывать антитела - иммуноглобулины. Характер реагирования лимфоидных клеток на антиген в эмбриональном и постнатальном периодах различен. Зародыш либо совсем не вырабатывает глобулинов, либо синтезирует их немного. Однако допускается, что те его клоны клеток, которые способны вступить в реакцию с антигенными детерминантами собственных белков, реагируют с ними и в результате этой реакции уничтожаются. Так, вероятно, погибают клетки, образующие анти-А-агглютинины у лиц с группой крови А и анти-В-агглютинины - у лиц с группой крови В. Если эмбриону ввести какой-либо антиген, то аналогичным образом он уничтожит соответствующий клон клеток, и новорожденный в течение всей последующей жизни теоретически будет толерантным к данному антигену. Процесс уничтожения всех клонов клеток к собственным белкам зародыша заканчивается к моменту его рождения или выхода из яйца. Теперь у новорожденного осталось только «свое», и любое «чужое», попавшее в его организм, он распознает. Бернет допускает также сохранение «запретных» клонов клеток, способных реагировать с аутоантигенами органов, которые в процессе развития были изолированы от клеток, вырабатывающих антитела. Распознавание «чужого» обеспечивается оставшимися клонами мезенхимальных клеток, на поверхности которых имеются соответствующие антидетерминанты (рецепторы, клеточные антитела), комплементарные к детерминантам «чужого» антигена. Природа рецепторов детерминирована генетически, то есть закодирована в хромосомах и не привносится в клетку вместе с антигеном. Наличие готовых рецепторов неизбежно ведет к реакции данного клона клеток с данным антигеном, следствием которой теперь являются два процесса: образование специфических антител - иммуноглобулинов и размножение клеток данного клона. Бернет допускает, что мезенхимальная клетка, получившая антигенное раздражение, в порядке митоза дает начало популяции дочерних клеток. Если такая клетка осела в мозговом веществе лимфатического узла, она дает начало образованию плазматических клеток, при оседании в лимфатических фолликулах - лимфоцитам, в костном мозге - эозинофилам. Дочерние клетки склонны к соматическим необратимым мутациям. При расчете на весь организм число мутирующих клеток за сутки может составить 100 ООО или 10 млн., и, следовательно, мутации обеспечат клоны клеток к любому антигену. Теория Бернета вызвала огромный интерес исследователей и большое число проверочных экспериментов. Важнейшими подтверждениями теории явились доказательства присутствия на предшественниках антителопродуцирующих клеток (лимфоцитах костномозгового происхождения) антителоподобных рецепторов иммуноглобулиновой природы и наличия в антителопродуцирующих клетках механизма интерцистронного исключения в отношении антител различной специфичности.

Теория репрессии и дерепрессии сформулирована Силардом (L. Szilard) в 1960 году. Согласно этой теории каждая клетка, вырабатывающая антитело, потенциально может синтезировать любое антитело к любому антигену, но этот процесс у нее заторможен репрессором фермента, участвующего в синтезе иммуноглобулина. В свою очередь образование репрессора может затормозиться влиянием антигена. Силард считает, что образование антител контролируется особыми неудваивающимися генами. Число их достигает 10 000 на каждый одинарный (гаплоидный) набор хромосом.

Ледерберг (J. Lederberg) считает, что в генах, ответственных за синтез глобулинов, имеются участки, контролирующие образование активных центров антител. В норме функция названных участков заторможена, и поэтому идет синтез нормальных глобулинов. Под влиянием антигена, а также, возможно, под действием некоторых гормонов происходит растормаживание и стимулирование деятельности участков гена, ответственных за образование активных центров антител, и клетка начинает синтезировать иммунные глобулины.

По мнению H. Н. Жукова-Вережникова (1972), эволюционными предшественниками антител были защитные ферменты, аналогичные появляющимся у бактерий с приобретенной антибиотикорезистентностью. Как и антитела, ферменты состоят из активной (по отношению к субстрату) и пассивной частей молекулы. В силу экономичности механизм «один фермент - один субстрат» сменился механизмом «единых молекул с варьирующей частью», то есть антител с вариабельными активными центрами. Информация об антителообразовании реализуется в зоне «резервных генов», или в «зоне избыточности» на ДНК. Такая избыточность, видимо, может локализоваться в ядерной или плазмидной ДНК, которая хранит «эволюционную информацию..., игравшую роль внутреннего механизма, „начерно“ контролирующего наследственную изменчивость». Эта гипотеза содержит инструктивный компонент, но не является полностью инструктивной.

П. Ф. Здродовский отводит антигену роль дерепрессора определенных генов, контролирующих синтез комплементарных антител. Одновременно антиген, как допускает Здродовский в соответствии с теорией Селье, раздражает аденогипофиз, в результате чего происходит выработка соматотропное (СТГ) и адренокортикотропного (АКТГ) гормонов. СТГ стимулирует плазмоцитарную и антителообразующую реакцию лимфоидных органов, в свою очередь стимулированных антигеном, а АКТГ, воздействуя на кору надпочечников, вызывает выделение ею кортизона. Этот последний в иммунном организме угнетает плазмоцитарную реакцию лимфоидных органов и синтез клетками антител. Все эти положения были подтверждены экспериментально.

Действие системы гипофиз - надпочечники на продукцию антител может выявляться лишь в предварительно иммунизированном организме. Именно эта система организует анамнестические серологические реакции в ответ на введение в организм различных неспецифических раздражителей.

Углубленное изучение клеточных изменений в процессе иммунологического ответа и накопление большого количества новых фактов обосновали положение, согласно которому иммунологический ответ осуществляется лишь в результате кооперированного взаимодействия определенных клеток. В соответствии с этим предложено несколько гипотез.

1. Теория кооперации двух клеток. Накоплено много фактов, свидетельствующих о том, что иммунологический ответ в организме осуществляется в условиях взаимодействия различных типов клеток. Имеются подтверждения того, что макрофаги первыми ассимилируют и модифицируют антиген, но в последующем «инструктируют» лимфоидные клетки о синтезе антител. Одновременно показано, что происходит кооперация и между лимфоцитами, относящимися к различным субпопуляциям: между Т-лимфоцитами (тимусзависимые, антнгенреактивные, происходящие из вилочковой железы) и В-клетками (тимуснезависимые, предшественники антителообразующих клеток, костномозговые лимфоциты).

2. Теории кооперации трех клеток. Согласно взглядам Ройтта (I. Roitt) и др. (1969) антиген захватывается и перерабатывается макрофагами. Такой антиген стимулирует антигенреактивные лимфоциты, подвергающиеся трансформации в бластоидные клетки, обеспечивающие гиперчувствительность замедленного типа и превращающиеся в долгоживущие клетки иммунологической памяти. Эти клетки вступают в кооперацию с антителообразующими клетками-предшественниками, которые в свою очередь дифференцируются, пролиферируя в антителопродуцирующие клетки. По мнению Рихтера (М. Richter, 1969), большинство антигенов обладает слабым сродством для антителообразующих клеток, поэтому для выработки антител необходимо следующее взаимодействие процессов: антиген+макрофаг - переработанный антиген+антигенреактивная клетка - активированный антиген+предшественник антителообразующей клетки - антитела. В случае высокого сродства антигена процесс будет выглядеть так: антиген+предшественник антителообразующих клеток - антитела. Предполагается, что в условиях повторного стимулирования антигеном последний непосредственно вступает в контакт с антителообразующей клеткой или клеткой иммунологической памяти. Это положение подтверждается большей радиорезистентностью повторного иммунологического ответа, чем первичного, что объясняется различной устойчивостью клеток, участвующих в иммунологическом ответе. Постулируя необходимость трехклеточного кооперирования в антителогенезе, Р. В. Петров (1969, 1970) считает, что синтез антител произойдет лишь в том случае, если стволовая клетка (предшественник антителообразующей клетки) одновременно получит из макрофага переработанный антиген, а из антигенреактивной клетки индуктор иммунопоэза, образуемый после ее (антигенреактивной клетки) стимуляции антигеном. Если происходит контакт стволовой клетки только с переработанным макрофагом антигеном, то создается иммунологическая толерантность (см. Толерантность иммунологическая). Если же налицо контакт стволовой клетки только с антигенреактивной клеткой, то происходит синтез неспецифического иммуноглобулина. Предполагается, что эти механизмы лежат в основе инактивации несингенных стволовых клеток лимфоцитами, так как индуктор иммунопоэза, попадая в аллогенную стволовую клетку, является для нее антиметаболитом (сингенные - клетки с идентичным геномом, аллогенные - клетки того же вида, по с иным генетическим составом).

Аллергические антитела

Аллергические антитела - специфические иммуноглобулины, образующиеся под действием аллергенов у человека и животных. При этом имеются в виду циркулирующие в крови антитела при аллергических реакциях немедленного типа. Различают три основных вида аллергических антител: кожно-сенсибилизирующие, или реагины; блокирующие и гемагглютинирующие. Биологические, химические и физико-химические свойства аллергических антител человека своеобразны (табл .).

Эти свойства резко отличаются от свойств преципитирующих, комплементсвязывающих антител, агглютининов и других, описываемых в иммунологии.

Реагинами принято обозначать гомологические кожно-сенсибилизирующие антитела человека. Это важнейший вид аллергических антител человека, основным свойством которых является способность осуществлять реакцию пассивного переноса повышенной чувствительности на кожу здорового реципиента (см. Прауснитца-Кюстнера реакция). Реагины обладают целым рядом характерных свойств, отличающих их от сравнительно хорошо изученных иммунных антител. Многие вопросы, касающиеся свойств реагинов и их иммунологической природы, остаются, однако, нерешенными. В частности, нерешенным является вопрос о гомогенности или гетерогенности реагинов в смысле их принадлежности к определенному классу иммуноглобулинов.

Блокирующие антитела возникают у больных поллинозами в процессе специфической гипосенсибилизирующей терапии к тому антигену, которым производится гипосенсибилизация. Свойства этого вида антител напоминают свойства преципитирующих антител.

Под гемагглютинирующими антителами обычно подразумевают антитела сыворотки крови человека и животных, способные специфически агглютинировать эритроциты, соединенные с пыльцевым аллергеном (реакция непрямой, или пассивной, гемагглютинации). Связывание поверхности эритроцита с аллергеном пыльцы достигается разнообразными методами, напр, с помощью танина, формалина, дважды диазотированного бензидина. Гемагглютинирующие антитела удается обнаружить у людей, имеющих повышенную чувствительность к пыльце растений, как до, так и после специфической гипосенсибилизирующей терапии. В процессе этой терапии происходит трансформация отрицательных реакций в положительные или повышение титров реакции гемагглютинации. Гемагглютинирующие антитела обладают свойством довольно быстро адсорбироваться на эритроцитах, обработанных пыльцевым аллергеном, особенно некоторыми его фракциями. Иммуносорбенты удаляют гемагглютинирующие антитела быстрее, чем реагины. Гемагглютинирующая активность связана в некоторой степени и с кожно-сенсибилизирующими антителами, однако роль кожно-сенсибилизирующих антител в гемагглютинации, по-видимому, невелика, так как не существует никакой корреляции между кожно-сенсибилизирующими и гемагглютинирующими антителами. С другой стороны, существует корреляция между гемагглютинирующими и блокирующими антителами как у лиц с аллергией к пыльце растений, так и у здоровых лиц, иммунизированных растительной пыльцой. Эти два вида антител обладают многими сходными свойствами. В процессе специфической гипосенсибилизирующей терапии происходит повышение уровня как того, так и другого вида антител. Гемагглютинирующие антитела к пенициллину не идентичны кожно-сенсибилизирующим антителам. Основной причиной образования гемагглютинирующих антител явилась пенициллинотерапия. По-видимому, гемагглютинирующие антитела следует отнести к группе антител, именуемых рядом авторов «антитела ми-свидетелями».

В 1962 году Шелли (W. Shelley) предложил специальный диагностический тест, основанный на так называемые дегрануляции базофильных лейкоцитов крови кролика под действием реакции аллергена со специфическим антителами. Однако характер антител, которые принимают участие в данной реакции, и связь их с циркулирующими реагинами недостаточно выяснены, хотя имеются данные о корреляции этого вида антител с уровнем реагинов у больных поллинозом.

Установление оптимальных соотношений аллергена и исследуемой сыворотки является чрезвычайно важным в практическом отношении, особенно при исследованиях с видами аллергенов, сведения о которых еще не содержатся в соответствующей литературе.

К аллергическим антителам животных можно отнести следующие виды антител: 1) антитела при экспериментальной анафилаксии; 2) антитела при спонтанных аллергических заболеваниях животных; 3) антитела, играющие роль при развитии реакции Артюса (типа преципитирующих). При экспериментальной анафилаксии, как общей, так и местной, в крови животных обнаруживают специальные виды анафилактических антител, обладающих свойством пассивно сенсибилизировать кожу животных того же вида.

Было показано, что анафилактическая сенсибилизация морских свинок аллергенами пыльцы тимофеевки луговой сопровождается циркуляцией в крови кожно-сенсибилизирующих антител Эти кожно-сенсибилизирующие тела обладают свойством осуществлять гомологическую пассивную сенсибилизацию кожи in vivo. Наряду с этими гомологическими кожно-сенсибилизирующими антителами при общей сенсибилизации морских свинок аллергенами пыльцы тимофеевки луговой в крови циркулируют антитела, выявляемые реакцией пассивной гемагглютинации с бис-диазотированным бензидином. Кожно-сенсибилизирующие антитела, осуществляющие гомологичный пассивный перенос и имеющие положительную корреляцию с показателем анафилаксии, относят к группе гомологических анафилактических антител, или гомоцитотропных антител. Употребляя термин «анафилактические антитела», авторы приписывают им ведущую роль в реакции анафилаксии. Стали появляться исследования, подтверждающие существование гомоцитотропных антител к белковым антигенам и конъюгатам у различных видов экспериментальных животных. Ряд авторов выделяет три вида антител, участвующих в аллергических реакциях немедленного типа. Это антитела, связанные с новым типом иммуноглобулинов (IgE) у человека и аналогичные антитела у обезьян, собак, кроликов, крыс, мышей. Второй вид антител - антитела типа морской свинки, способные фиксироваться на тучных клетках и изологичных тканях. Они отличаются рядом свойств, в частности, они более термостабильны. Считают, что антитела типа IgG могут быть и у человека вторым видом анафилактических антител. Третий вид - антител, сенсибилизирующие гетерологичные ткани, принадлежащие, например, у морских свинок к классу γ 2 . У человека только антитела типа IgG обладают способностью сенсибилизировать кожу морской свинки.

При заболеваниях животных описаны аллергические антитела, образующиеся при спонтанных аллергических реакциях. Эти антитела термолабильны, обладают кожно-сенсибилизирующими свойствами.

Неполные антитела в судебно-медицинском отношении применяются при определении антигенов ряда изосерологических систем (см. Группы крови) для установления принадлежности крови определенному лицу в случаях уголовных преступлений (убийства, половые преступления, транспортные происшествия, нанесение телесных повреждений и др.), а также при экспертизе спорного отцовства и материнства. В отличие от полных антител, они не вызывают агглютинации эритроцитов в солевой среде. Среди них различают антитела двух видов. Первый из них - агглютиноиды. Эти антитела способны вызвать склеивание эритроцитов в белковой или макромолекулярной среде. Второй вид антител - криптагглютиноиды, которые реагируют в непрямой пробе Кумбса с антигаммаглобулиновой сывороткой.

Для работы с неполными антителами предложен ряд методов, подразделяющихся на три основные группы.

1. Методы конглютинации. Отмечено, что неполные антитела способны вызывать агглютинацию эритроцитов в белковой или макромолекулярной среде. В качестве таких сред используют сыворотку крови группы AB (не содержащую антител), бычий альбумин, декстран, биогель - особо очищенную желатину, приведенную буферным раствором к нейтральному pH, и др. (см. Конглютинация).

2. Ферментные методы. Неполные антитела способны вызвать агглютинацию эритроцитов, предварительно подвергнутых обработке некоторыми ферментами. Для такой обработки применяют трипсин, фицин, папаин, экстракты из хлебных дрожжей, протелин, бромелин и др.

3. Проба Кумбса с антиглобулиновой сывороткой (см. Кумбса реакция).

Неполные антитела, относящиеся к агглютиноидам, могут проявить свое действие во всех трех группах методов. Антитела, относящиеся к криптагглютиноидам, не способны агглютинировать эритроциты не только в солевом растворе, но и в макромолекулярной среде, а также блокировать их в последней. Эти антитела открываются только в непрямой пробе Кумбса, с помощью которой открываются не только антитела, относящиеся к криптагглютиноидам, но и антитела, являющиеся агглютиноидами.

Моноклональные антитела

Из дополнительных материалов, том 29

Классический способ производства антител для диагностических и исследовательских целей заключается в иммунизации животных определенными антигенами и последующем получении иммунных сывороток, содержащих антитела необходимой специфичности. Этот метод имеет ряд недостатков, связанных прежде всего с тем, что иммунные сыворотки включают разнородные и гетерогенные популяции антител, различающихся по активности, аффинности (сродству к антигену) и биологическому действию. Обычные иммунные сыворотки содержат смесь антител, специфичных как в отношении заданного антигена, так и в отношении контаминирую-щих его белковых молекул. Новый тип иммунологических реагентов представляют собой моноклональные антитела, получаемые с помощью клонов гибридных клеток - гибридом (см.). Несомненным преимуществом моноклональных антител является их генетически предопределенная стандартность, неограниченная воспроизводимость, высокая чувствительность и специфичность. Первые гибридомы были выделены в начале 70-х годов 20 века, однако реальное освоение эффективной технологии создания моноклональных антител связано с исследованиями Келера и Милыптейна (G. Kohler, С. Milstein), результаты которых были опубликованы в 1975- 1976 годы. В последующее десятилетие новое направление клеточной инженерии, связанное с получением моноклональных антител, получило дальнейшее развитие.

Гибридомы образуются при слиянии лимфоцитов гипериммунизированных животных с клетками перевиваемых плазмоцитом различного происхождения. Гибридомы наследуют от одного из родителей способность продуцировать специфические иммуноглобулины, а от второго - свойство неограниченно размножаться. Клонированные популяции гибридных клеток могут длительное время продуцировать генетически однородные иммуноглобулины заданной специфичности - моноклональные антитела. Наиболее широко применяются моноклональные антитела, продуцируемые гибридомами, полученными с использованием уникальной мышиной клеточной линии МОРС 21 (РЗ).

К труднопреодолимым проблемам технологии моноклональных антител относятся сложность и трудоемкость получения устойчивых высокопродуктивных гибридных клонов, вырабатывающих моноспецифические иммуноглобулины; сложность получения гибридом, продуцирующих моноклональные антитела к слабым антигенам, неспособным индуцировать образование стимулированных В-лимфоцитов в достаточном количестве; отсутствие у моноклональных антител некоторых свойств иммунных сывороток, напр, свойства образовывать преципитаты с комплексами других антител и антигенов, на котором основаны многие диагностические тест-системы; низкая частота слияния лимфоцитов, продуцирующих антитела, с миеломными клетками и ограниченная стабильность гибридом в массовых культурах; низкая стабильность в процессе хранения и повышенная чувствительность препаратов моноклональных антител к изменениям pH, температуры инкубации, а также к замораживанию, оттаиванию и воздействию химических факторов; сложность получения гибридом или перевиваемых продуцентов человеческих моноклональных антител.

Практически все клетки в популяции клонированных гибридом продуцируют моноклональные антитела одного и того же класса и подкласса иммуноглобулинов. Моноклональные антитела можно модифицировать с помощью методов клеточной иммунной инженерии. Так, можно получать «триомы» и «квадромы», продуцирующие моноклональные антитела двойной заданной специфичности, изменять продукцию пента-мерных цитотоксических IgM на продукцию пентамерных нецитотоксических IgM, мономерных нецитотоксических IgM или IgM с уменьшенной аффинностью, а также переключать (с сохранением антигенной специфичности) секрецию IgM на секрецию IgD, а секрецию IgGl - на секрецию IgG2a, IgG2b или IgA.

Мышиный геном обеспечивает синтез свыше 1*10 7 различных вариантов антител, специфически взаимодействующих с эпитопами (антигенными детерминантами) белковых, углеводных или липидных антигенов, присутствующих в клетках или микроорганизмах. Возможно образование тысяч различных антител к одному антигену, отличающихся по специфичности и аффинности; например, в результате иммунизации однородными человеческими клетками индуцируется до 50 000 различных антител. Использование гибридом позволяет отбирать практически все варианты моноклональных антител, которые могут быть индуцированы к данному антигену в организме экспериментального животного.

Многообразие моноклональных антител, получаемых к одному и тому же белку (антигену), обусловливает необходимость определения их более тонкой специфичности. Характеристика и отбор иммуноглобулинов с требуемыми свойствами среди многочисленных видов моноклональных антител, взаимодействующих с исследуемым антигеном, превращаются зачастую в более трудоемкую экспериментальную работу, чем получение моноклональных антител. Эти исследования включают разделение набора антител на группы, специфичные к тем или иным эпитопам, с последующим отбором в каждой группе оптимального варианта по аффинности, стабильности и другим параметрам. Для определения эпитопной специфичности наиболее часто используют метод конкурентного иммуноферментного анализа.

Рассчитано, что первичная последовательность из 4 аминокислот (обычный размер эпитопа) может встречаться до 15 раз в последовательности аминокислот белковой молекулы. Однако перекрестные реакции с моноклональными антителами наблюдаются с гораздо меньшей частотой, чем можно было бы ожидать, исходя из этих расчетов. Происходит это потому, что далеко не все указанные участки экспрессируются на поверхности белковой молекулы и узнаются антителами. Кроме того, моноклональные антитела обнаруживают последовательности аминокислот только в определенной конформации. Следует учитывать и то обстоятельство, что последовательность аминокислот в белковой молекуле не распределяется среднестатистически, а участки связывания антител бывают значительно крупнее, чем минимальный эпитоп, содержащий 4 аминокислоты.

Использование моноклональных антител открыло недоступные ранее возможности для изучения механизмов функциональной активности иммуноглобулинов. Впервые с помощью моноклональных антител удалось выявить антигенные различия у белков, ранее серологически неразличимых. Были установлены новые субтиповые и штаммовые различия между вирусами и бактериями, открыты новые клеточные антигены. С помощью моноклональных антител обнаружены антигенные связи между структурами, существование которых невозможно было достоверно доказать с использованием поликлональных (обычных иммунных) сывороток. Применение моноклональных антител позволило идентифицировать консервативные антигенные детерминанты вирусов и бактерий, обладающие широкой групповой специфичностью, а также штаммоспецифические эпитопы, отличающиеся большой вариабельностью и изменчивостью.

Принципиальное значение имеет обнаружение с помощью моноклональных антител антигенных детерминант, индуцирующих выработку защитных и нейтрализующих антител к возбудителям инфекционных болезней, что важно для создания лечебно-профилактических препаратов. Взаимодействие моноклональных антител с соответствующими эпитопами может приводить к возникновению стерических (пространственных) препятствий для проявления функциональной активности белковых молекул, а также к аллостерическим изменениям, которые преобразуют конформацию активного участка молекулы и блокируют биологическую активность белка.

Только с помощью моноклональных антител удалось исследовать механизмы кооперативного действия иммуноглобулинов, взаимного потенцирования или взаимного ингибирования антител, направленных к различным эпитопам одного и того же белка.

Для производства массовых количеств моноклональных антител чаще используют асцитные опухоли мышей. Более чистые препараты моноклональных антител могут быть получены на бессывороточных средах в ферментируемых суспензионных культурах или в диализных системах, в микроинкапсулированных культурах и устройствах типа капиллярных культур. Для получения 1 г моноклональных антител требуется примерно 0,5 л асцитной жидкости или 30 л культуральной жидкости, инкубированной в ферментерах со специфическими гибридомными клетками. В производственных условиях вырабатывают очень большие количества моноклональных антител. Значительные затраты на производство моноклональных антител оправдываются высокой эффективностью очистки белков на иммобилизованных моноклональных антителах, причем коэффициент очистки белка в одноступенчатой процедуре аффинной хроматографии достигает нескольких тысяч. Аффинная хроматография на основе моноклональных антител применяется при очистке гормона роста, инсулина, интерферонов, интерлейкинов, продуцируемых измененными с помощью методов генетической инженерии штаммами бактерий, дрожжей или эукариотических клеток.

Быстро развивается использование моноклональных антител в составе диагностических наборов. К 1984 году в США было рекомендовано для клинических исследований около 60 диагностических тест-систем, приготовленных с применением моноклональных антител. Основное место среди них занимают тест-системы для ранней диагностики беременности, определения содержания в крови гормонов, витаминов, лекарственных препаратов, лабораторной дртгностики инфекционных болезней.

Сформулированы критерии отбора моноклональных антител для их использования в качестве диагностических реагентов. К ним относятся высокая аффинность к антигену, обеспечивающая связывание при низкой концентрации антигена, а также эффективная конкуренция с антителами организма хозяина, уже связавшимися с антигенами в исследуемом образце; направленность против антигенного участка, обычно не распознаваемого антителами организма хозяина и потому не маскированного этими антителами; направленность против повторяющихся антигенных детерминант поверхностных структур диагностируемого антигена; поливалентность, обеспечивающая более высокую активность IgM по сравнению с IgG.

Моноклональные антитела можно использовать в качестве диагностических препаратов для определения гормонов и лекарственных препаратов, токсических соединений, маркеров злокачественных опухолей, для классификации и подсчета лейкоцитов, более точного и быстрого определения групповой принадлежности крови, для выявления антигенов вирусов, бактерий, простейших, для диагностики аутоиммунных заболеваний, обнаружения аутоантител, ревматоидных факторов, определения классов иммуноглобулинов в сыворотке крови.

Моноклональные антитела позволяют успешно дифференцировать поверхностные структуры лимфоцитов и с большой точностью идентифицировать основные субпоиуля-ции лимфоцитов, классифицировать на семейства клетки лейкозов и лимфом человека. Новые реагенты на основе моноклональных антител облегчают процедуру определения В-лимфоцитов и Т-лимфоцитов, подклассов Т-лимфоцитов, превращая ее в один из простых этапов подсчета формулы крови. С помощью моноклональных антител можно избирательно удалять ту или иную субпопуляцию лимфоцитов, выключая соответствующую функцию системы клеточного иммунитета.

Обычно диагностические препараты на базе моноклональных антител содержат иммуноглобулины, меченные радиоактивным йодом, пероксидазой или другим ферментом, применяемым в иммуноферментных реакциях, а также флюорохромами, например флюоресцеинизотиоцианатом, используемыми в иммунофлюоресцентном методе. Высокая специфичность моноклональных антител представляет особую ценность при создании усовершенствованных диагностических препаратов, повышении чувствительности и специфичности радиоиммуно логических, иммуноферментных, иммунофлюорес-центных методов серологического анализа, типировании антигенов.

Терапевтическое применение моноклональных антител может оказаться эффективным при необходимости нейтрализации токсинов различного происхождения, а также антигеноактивных ядов, для достижения иммунодепрессии при трансплантации органов, для индукции зависимого от комплемента цитолиза опухолевых клеток, для коррекции состава Т-лимфоцитов и иммунорегуляции, для нейтрализации бактерий, устойчивых к антибиотикам, пассивной иммунизации против патогенных вирусов.

Основным препятствием на пути терапевтического использования моноклональных антител является возможность развития побочных иммунологических реакций, связанных с гетерологичным происхождением моноклональных иммуноглобулинов. Для преодоления этого необходимо получение человеческих моноклональных антител. Успешные исследования в этом направлении позволяют применять моноклональные антитела в качестве векторов для целенаправленной доставки ковалентно связанных лекарственных препаратов.

Разрабатываются терапевтические препараты, специфичные к строго определенным клеткам и тканям и обладающие направленной цитотоксичностью. Это достигается конъюги-рованием высокотоксичных белков, напр, дифтерийного токсина, с моноклональными антителами, узнающими клетки-мишени. Направляемые моноклональными антителами, химиотерапевтические агенты способны избирательно уничтожать в организме опухолевые клетки, несущие специфический антиген. Моноклональные антитела могут выполнять роль вектора и при встраивании в поверхностные структуры липосом, что обеспечивает доставку к органам или клеткам-мишеням значительных количеств лекарственных препаратов, заключенных в липосомах.

Последовательное применение моноклональных антител не только повысит информативность обычных серологических реакций, но и подготовит появление принципиально новых подходов к исследованию взаимодействия антигенов и антител.

СВОЙСТВА РАЗЛИЧНЫХ ВИДОВ АЛЛЕРГИЧЕСКИХ АНТИТЕЛ ПРИ РЕАКЦИЯХ НЕМЕДЛЕННОГО ТИПА [по данным Сихона (A. Sehon), 1965; Стануорта (D. Stanworth), 1963, 1965]

Исследуемые параметры

Виды антител

кожно-сенсибилизирующие (реагины)

блокирующие

гемагглютинирующие

Принцип определения антител

Реакция с аллергеном в коже

Блокирование реакции аллерген- реагин в коже

Реакция непрямой гемагглютинации в пробирке

Устойчивость при t° 50°

Термолабильные

Термостабильные

Термостабильные

Способность проходить через плаценту

Отсутствует

Нет данных

Способность осаждаться 30% сернокислым аммонием

Не осаждаются

Осаждаются

Частично осаждаются, частично остаются в растворе

Хроматография на ДЕАЕ -Целлюлозе

Рассеяны в нескольких фракциях

В 1-й фракции

В 1-й фракции

Абсорбция иммуно-сорбентами

Медленная

Нет данных

Преципитация с пыльцевыми аллергенами

Нет, даже после концентрации антител

Есть, после концентрации антител

Преципитирующая активность не совпадает с гемагглютинирующей

Инактивация меркаптанами

Происходит

Не происходит

Нет данных

Расщепление папаином

Медленное

Нет данных

Константа седиментации

Больше 7(8-11)S

Электрофоретические свойства

Преимущественно γ1-глобулины

γ2-глобулины

Большая часть связана с γ2-глобулинами

Класс иммуноглобулинов

Библиография

Бернет Ф. Клеточная иммунология, пер. с англ., М., 1971; Гаурови ц Ф. Иммунохимия и биосинтез антител, пер. с англ., М., 1969, библиогр.; Доссе Ж. Иммуногематология, пер. с франц., М., 1959; Здродовский П. Ф. Проблемы инфекции, иммунитета и аллергии, М., 1969, библиогр.; Иммунохи-мический анализ, под ред. Л. А. Зильбера, с. 21, М., 1968; Кэбот Е. и Мейер М. Экспериментальная иммунохимия, пер. с англ., М., 1968, библиогр.; Незлин Р. С. Строение биосинтеза антител. М., 1972, библиогр.; Носсе л Г. Антитела и иммунитет, пер. с англ., М., 1973, библиогр.; Петров Р. В. Формы взаимодействия генетически различающихся клеток лимфоидных тканей (трехклеточная система иммуногенеза), Усп. совр. биол., т. 69, в. 2, с. 261, 1970; Утешев Б. С. и Бабичев В. А. Ингибиторы биосинтеза антител. М., 1974; Эфроимсон В. П. Иммуногенетика, М., 1971, библиогр.

Аллергические А. - Адо А. Д. Аллергия, Многотомн. руководство по пат. физиол., под ред. H. Н. Сиротинина, т. 1, с. 374, М., 1966, библиогр.; Адо А. Д. Общая аллергология, с. 127, М., 1970; Польнер А. А., Вермонт И. Е. иСерова Т. И. К вопросу об иммунологической природе реагинов при поллинозах, в кн.: Пробл. аллергол., под ред. А. Д. Адо и А. А. Подколзина, с. 157, М., 1971; Bloch К. J. The anaphylactic antibodies of mammals including man, Progr. Allergy, v. 10, p. 84, 1967, bibliogr.; Ishizaka K. a. Ishizaka T. The significance of immunoglobulin E in reaginic hypersensitivity, Ann. Allergy, v. 28, p. 189, 1970, bibliogr.; Lichtenstein L. М., Levy D. A. a. Ishizaka K. In vitro reversed anaphylaxis, characteristics of anti-IgE mediated histamine release, Immunology, v. 19, p. 831, 1970; Sehon A. H. Heterogeneity of antibodies in allergic sera, в кн.: Molec. a. celL basis of antibody formation, ed. by J. Sterzl, p. 227, Prague, 1965, bibliogr.; Stanworth D. R. Immunochemical mechanisms of immediate-type hypersensitivity reactions, Clin. exp. Immunol., У. 6, p. 1, 1970, bibliogr.

Моноклональные антитела - Гибридомы: новый уровень биологического анализа, под ред. Р. Г. Кеннета и др., М., 1983; Рохлин О. В. Моноклональные антитела в биотехнологии и медицине, в кн.: Биотехнология, под ред. А. А. Баева, с. 288, М., 1984; N о w i n s k i R. C. a. o. Monoclonal antibodies for diagnosis of infectious diseases in humans, Science, v. 219, p. 637, 1983; Ollson L. Monoclonal antibodies in clinical immunobiology, Derivation, potential and limitations, Allergy, v. 38, p. 145, 1983; Sinko vies J. G. a. D r e e s m a n G. R. Monoclonal antibodies of hybridomas, Rev. infect. Dis., v. 5, p. 9, 1983.

М. В. Земсков, H. В. Журавлева, В. М. Земсков; А. А. Польнер (алл.); А. К. Туманов (суд.); А. С. Новохатский (Моноклональные антитела).

/ 16
ХудшийЛучший

Структура иммуноглобулинов

Иммуноглобулины (Ig) - это белки сыворотки крови, синтезируемые В-лимфодитами и плазматическими клетками, которые при электрофорезе образуют фракцию у-глобулинов. В строении иммуноглобулиновой молекулы различают 2 тяжелые (Н - heavy) и 2 легкие (L - light) полипептидные цепи, соединенные между собою дисульфидными связями. Существует 2 разновидности L-цепей (?-каппа и?-лямбда) и 5 разновидностей Н-цепей - гамма (?), мю (?), альфа (?), эпсилон (?) и дельта (?). Тяжелые цепи определяют принадлежность иммуноглобулинов к соответствующему классу: IgG - тяжелая цепь - ?, IgA - ?, IgM - ?, IgD - ?, IgE - ?.

В цепях молекулы иммуноглобулинов различают константные (С) и вариабельные (V) фрагменты. Биологически активные участки цепей иммуноглобулина получили название доменов. Различают CL, CH1, СН2 и СНЗ домены, в V-фрагменте - VH и VL домены (в зависимости от цепи). Вариабельные домены тяжелой (VH) и легкой (VL) цепей иммуноглобулинов формируют активный центр молекулы иммуноглобулина (антитела), которая связывает антиген. Та часть активного центра Ig, которая непосредственно соединяется с детерминантой антигена (эпитопом) называется паратопом. Между СН1 и СН2 доменами тяжелой цепи локализуется подвижный - " шарнирный" участок молекулы иммуноглобулина, чувствительный к протеолитическим ферментам (папаину, пепсину, трипсину). Под действием папаина молекула иммуноглобулина расщепляется на 2 Fab-фрагмента (fragment antigen binding - фрагмент, связывающий антиген) и Fc-фрагмент (fragment crystalline - фрагмент кристаллизующийся).

Когда молекула Ig связывает антиген, СН2 домен Fc-фрагмента иммуноглобулина активирует комплемент по классическому пути, СНЗ домен может связываться с Fc-рецепторами, имеющимися на лейкоцитах и других клетках.

Классы (изотипы) иммуноглобулинов

Иммуноглобулины класса G. Составляют основную массу иммуноглобулинов сыворотки крови (75-85%). Их средняя концентрация в крови - 10 г/л (8-12 г/л). Они неоднородны по строению Fc-фрагмента и различают их четыре субкласса: Gl, G2, G3, G4, процентное соотношение которых-60:20:15:5.

Снижение концентрации IgG обозначается как гипогаммаглобулинемия IgG, увеличение - гипергаммаглобулинемия IgG.

Антитела класса IgG появляются в большом количестве при вторичном иммунном ответе, поэтому основную массу антител против бактерий и вирусов составляют IgG. При образовании комплекса с антигеном IgG активирует комплемент по классическому пути. IgG является единственным иммуноглобулином, проникающим через плаценту в организм плода. Будучи антителом, он защищает новорожденных и детей раннего возраста от инфекций.

Иммуноглобулины класса М. Содержатся в сыворотке крови в концентрации от 0.8 до 1.5 г/л, в среднем - 1 г/л. В крови они находятся в виде пентамеров, состоящих из 5-ти мономеров. Такие молекулы содержат 10 активных центров и могут связывать больше антигенных детерминант (от 5 до 10). IgM синтезируются в организме при первичном иммунном ответе, антитела эти низкоаффинны, но высокоавидны из-за большого числа активных центров. В комплексе с антигеном они более эффективно активируют комплемент по сравнению с IgG. Мономеры IgM являются рецепторами В-клеток.

Иммуноглобулины класса А. Имеются в крови и секретах слизистых оболочек. В сыворотке крови содержится 2 г/л (от 1,5 до 3 г/л) IgA. В крови IgA присутствуют в виде мономеров, а в секретах в форме димеров или тримеров (рис.6). Димеры характеризуются наличием дополнительной J-цепи, сшивающей два мономера в районе Fc-фрагмента, и секреторного компонента, который присоединяется к IgA при прохождении через эпителиальные клетки. Секреторный компонент обеспечивает защиту IgA от расщепления протеолитическими ферментами секретов. Секреторные IgA, будучи антителами, обеспечивают местный иммунитет, препятствуют адгезии микроорганизмов к эпителию слизистых оболочек, опсонируют микробные клетки, усиливают фагоцитоз. Кроме этого, они препятствуют адсорбции и репродукции вирусов в клетках эпителия. Новорожденные получают секреторный IgA с молоком матери.

Иммуноглобулины класса D. Содержатся в сыворотке крови в концентрации 0.03-0.04 г/л. Эти иммуноглобулины служат рецепторами созревающих В-лимфоцитов. Количество IgD увеличивается при некоторых вирусных инфекциях.

У новорожденных в крови имеется только материнский IgG (8-10 г/л). Уровень его снижается к 5-6 месяцам (до 5 г/л). Количество IgA и IgM очень небольшое (0,02-0,1 г/л), к году уровень их увеличивается. У 2-х летних детей уровень иммуноглобулинов близок к нормам взрослых, а полностью соответствует им к 10 годам.

Аллотипы иммуноглобулинов - это вариации в их строении у разных индивидумов, обусловленные разными аллелями соответствующих генов.

Тяжелые цепи IgM отличаются по GT маркеру (вместо аспарагина и глютамина в участке их цепи имеются глютамин и метионин).

Fc -рецепторы. Для иммуноглобулинов - важная группа молекул, находящихся на поверхности различных клеток, особенно лейкоцитов. Они связывают Fc-фрагменты иммуноглобулинов различных изотипов (классов). Их разновидности обозначаются греческими буквами соответственно обозначениям тяжелых цепей иммуноглобулинов, которые они связывают: Fc?R связывает IgG, Fc?R связывает IgM, Fc?R - IgA, Fc?R - IgD, Fc?R - IgE. Субтипы этих рецепторов обозначают прописными цифрами - Fc?RI (CD64) Fc?RII (CD32) и Fc? RIII (CD16), Fc? RI и Fc? RII (CD23). В скобках указано каким CD-молекулам они соответствуют при выявлении моноклональными антителами. Каждый FcR состоит из нескольких субъединиц (?, ?,?) и иногда переходит с мембраны в растворимую форму. Клетка, связавшая иммуноглобулин-антитело своим Fc-рецептором, может специфично взаимодействовать с соответствующим антигеном и выделять после этого медиаторы и ферменты. Значительная часть иммуноглобулинов связана с Fc-рецепторами лейкоцитов, тогда как несвязанные циркулируют, в сыворотке крови, где их можно определить. При болезнях экспрессия Fc-рецепторов на клетках, как и концентрация иммуноглобулинов в крови, меняется; взаимоотношение " Fc-рецепгор-иммуноглобулин" определяет их уровень в крови и на клетках, от чего зависит развитие патологического процесса.

Механизм этого процесса был выяснен с помощью опытов по культивированию отдельных клеток, образующих антитела. Оказалось, что синтез антител протекает под контролем генов

Д. Носсаль

Организм человека в состоянии производить любое из тысяч, а может быть, даже миллионов различных антител; каждое антитело приспособлено для связывания специфического антигена. Каким же образом человеческий организм осуществляет столь сложную задачу? Синтезируются ли антитела в клетках, подобно остальным белкам, под контролем специальных генов? Предположим, что это так; тогда для синтеза различных антител в клетках должно содержаться огромное количество специальных генов. Кроме того, необходим сложный механизм регуляции, включающий нужный ген при попадании в организм того или иного антигена: бактерии, вируса или другого инородного объекта белковой природы.

Работая с культурами клеток, мы попытались получить ответы на все эти вопросы. Вообще говоря, производство антител в клетках напоминает крупное промышленное производство, выпускающее на разных специализированных фабриках широкий ассортимент товаров. Анализируя эту систему, можно выделить в ней три элемента: во-первых, сами фабрики-клетки, синтезирующие антитела; во-вторых, продукция - молекулы антитела; в-третьих, потребители, определяющие, так сказать, спрос,- молекулы антигена. Мы подробно рассмотрим каждый из элементов и попробуем показать, каким образом достигается столь высокая продуктивность всей системы.

Еще лет двадцать назад господствовало мнение, что антитела образуются в больших клетках, поглощающих антигены,- так называемых макрофагах или «пожирающих клетках».

Позднее шведская исследовательница Астрид Фагреус в своей классической работе впервые высказала предположение, что на самом деле антитела образуются в особых специализированных клетках, так называемых плазмацитах; плазмациты в большом количестве появляются в месте заражения, как только начинается воспаление. Фагреус обнаружила, что примерно через два дня после внутривенного введения вакцины подопытному животному в его селезенке (основном источнике лейкоцитов) начинали появляться «плазмабласты».

Эти молодые плазмациты быстро делились и спустя несколько дней становились более специализированными: клеточное ядро съеживалось, а окружающая цитоплазма увеличивалась в объеме, причем было обнаружено, что она богата рибонуклеиновой кислотой (РНК). Но известно, что РНК контролирует синтез белка; следовательно, плазмацит должен был активно производить белок, иными словами - антитело. Впоследствии А. Куне и его сотрудники подтвердили, что в плазмацитах действительно содержится антитело.

«Молекулы и клетки», под ред. Г.М.Франка


Прежде всего мы выяснили, что макрофаги очень активно заглатывают антиген. Макрофаги, лежащие в глубине лимфатических узлов, оказались, как мы и ожидали, переполненными антигеном. Антиген был обнаружен, кроме того, еще в одной системе, не известной до сих пор. В наружной части лимфатического узла мы заметили настоящее сплетение тонких нитей - выростов цитоплазмы макрофага (смотрите рисунок ниже).…


Организм наделен многочисленными клонами клеток, причем клетки каждого клона потенциально способны взаимодействовать только с одним антигеном. Этот антиген лишь пускает в ход уже готовые клетки, которые начинают производить антитела определенного типа. Как мы видели, плазмабласты, скапливающиеся вокруг наполненной антигеном сети лимфатического узла, находятся в тесном контакте с антигеном. Не исключено, что простого поверхностного контакта клеток…



Благодаря исследованиям, проведенным в нашей лаборатории, мы можем теперь с уверенностью сказать, что эти клетки действительно образуют антитела. Нам удалось проследить этот процесс, культивируя отдельные плазмациты в маленьких капельках. Этот метод позволяет измерять количество образованных живыми клетками антител и изучать их природу и химические свойства. В первых опытах мы выбрали в качестве антигена белок, выделенный…



Действие антител настолько специфично, что они быстро обездвиживают Salmonella typhi, но совершенно не влияют, даже в высокой концентрации, на близко родственный штамм Salmonella paratyphi А (смотрите рисунок ниже). Опыт, показывающий специфичность антител Крысе ввели антиген, вызывающий иммобилизацию клеток Salmonella typhi. Затем выделили клетки, образующие антитела. Если эти клетки привести в контакт с бактериями Salmonella typhi,…


Создается впечатление, что отдельный плазмабласт претерпевает, как правило, девять последовательных делений, дающих «клон» или колонию клеток, после чего деление прекращается. Клон состоит не только из зрелых плазмацитов, но также и из некоторого числа «запоминающих» клеток, которые при любой повторной встрече с тем же антигеном будут его активно нейтрализовать. Не исключено, что эти клетки способны соединяться…


Мы предвидели, что специализация должна быть достаточно строгой; действительность превзошла все наши ожидания. Оказалось, что, за редким исключением, каждая клетка производит антитела только одного типа, даже если остальные плазмациты в лимфатических узлах заняты выработкой антител другого типа. Иначе говоря, существует четкое разделение труда. Преобладает принцип: одна клетка - одно антитело. Примерно в одном случае из…


Организм, получивший прививку или перенесший инфекцию, отвечает на повторное введение того же антигена столь быстрым и интенсивным синтезом соответствующего антитела, что инфекция пресекается в самом начале. В чем же здесь дело? Производят ли плазмациты больше антител, чем в первый раз, или же повторное введение антигена стимулирует образование самих плазмацитов? Экспериментальным путем мы установили, что организм…


Мы воспользовались радиоавтографией (смотрите рисунок ниже) для определения скорости, с которой наши клетки синтезируют рибонуклеиновую кислоту (РНК), дезоксирибонуклеиновую кислоту (ДНК) и белки. Схема изотопного метода Прежде всего (1) в среду, содержащую плазмабласт, добавляют тритий, радиоактивный изотоп водорода (капля этой среды наносится на нижнюю поверхность покровного стекла). Меченый водород включается в тимидин, который затем в виде…



В клетках многих типов рибосомы соединяются в так называемые полисомы1, напоминая бусинки на нитке, причем такой «ниткой» в полисоме служит молекула информационной РНК, в которой закодирована информация о синтезе белков; рибосомы считывают эту информацию с цепи РНК так же, как машина считывает задание с перфорированной ленты. Судя по некоторым электронным микрофотографиям, рибосомы в плазмацитах также,…


Как известно, при нейтрализации антигена антителом они каким-то образом связываются друг с другом. Где же в четырехкомпонентной струк-туре антитела может находиться активный центр связывания, который «запирается» на антигене? Существует два мнения на этот счет. По данным Р. Портера, соединительный центр находится в А-цепи. В то же время Г. Эдельман, основываясь на результатах своих экспериментов, полагает,…


3090 0

Функции Т-клеток

Одной из ключевых эффекторных функций активированной СD4+-Т-клетки является синтез антиген неспецифичных растворимых факторов - цитокинов. Выделяемые СD4+-Т-клетками цитокины влияют на функции множества типов клеток, в том числе СD8+-Т-клеток, В-клеток, миелоидных клеток (таких как макрофаги и эозинофилы), а также на дифференцировку костномозговых клеток-предшественников. По этой причине потеря CD4+-T-клеток при СПИДе является такой разрушительной.

Свойства цитокинов, которые продуцируют Т-лимфоциты и другие клетки. Многие важные функции Т-клеток будут обсуждаться в следующих главах, посвященных клеточно-опосредованному иммунитету и трансплантациям. Сконцентрируемся на гетерогенности цитокинов, которые образуют СD4+-Т-клетки, а затем опишем важные аспекты взаимодействия CD4-Т-лимфоцитов и В-клеток и, наконец, обсудим функции CD8+-T- клеток.

Субпопуляции СD4+-Т-клеток, отличающиеся по выделяемым цитокинам

Наивная СD4+-Т-клетка после стимуляции пептидом, связанным с молекулой МНС, начинает синтезировать IL-2. Активированная СD4+-Т-клетка может дифференцироваться дальше, чтобы синтезировать более широкий набор цитокинов. Однако после антигенной стимуляции не все СD4+-Т-клетки синтезируют одинаковые цитокины. Исследования функционирования Т-клеток у мыши и человека показали, что активированные антигеном СD4+-Т-клетки могут быть разделены по меньшей мере на три субпопуляции на основании продукции различных цитокинов: ТH0, Тн1 и Тн2. Как показано на рис. 10.5, Тн1 и Тн2 образуются в результате вызываемой антигеном дифференцировки клеток Тн0, которые синтезируют IL-2, IFNγ и IL-4.

Тн1-клетки, которые синтезируют IL-2, IFNγ и TNFβ, и Тн2-клетки, синтезирующие IL-4, IL-5, IL-10 и IL-13, играют разные важные роли в иммунном ответе. Поскольку разные цитокины взаимодействуют с различными клетками-мишенями, главным следствием продукции уникальных наборов цитокинов Тн1- и Тн2-клетками является то, что каждая субпопуляция обладает разной эффекторной функцией. Так, цитокины, синтезируемые Тн1-клетками, активируют клетки, вовлеченные в клеточно-опосредованный иммунитет: СD8+-Т-клетки, NK-клетки и макрофаги.

Кроме того, цитокины, выделяемые Тн1-клетками, индуцируют В-клетки к синтезу таких изотипов Ig, как IgG2, которые усиливают фагоцитоз возбудителей фагоцитирующими клетками. Напротив, цитокины, синтезируемые Тн2-клетками, переключают В-клетки на продукцию антител класса IgE и активацию эозинофилов; такая модель характерна для ответа на аллергены и гельминты.

Пока результаты попыток охарактеризовать поверхностные молекулы, по которым можно было бы отличать субпопуляции Тн1- и Тн2-клеток, не дали однозначных результатов, а сами эти исследования интенсивно продолжаются. Результаты некоторых недавних исследований показали, что, возможно, Тн1- и Тн2-клетки экспрессируют различные молекулы, используемые при межклеточном взаимодействии в процессе хоминга, в том числе различные хемокиновые рецепторы; однако для подтверждения или изменения этих выводов необходимы дальнейшие исследования.

Рис. 10. 5. Цитокиновый контроль образования Тн1- и Тн2-субпопуляций CD4+-T-клеток. Волнистые линии означают угнетение

Тн1-клетки развиваются, если в момент антигенной стимуляции присутствует IL-12. Как показано в начале этой главы, IL-12 и другие провоспалительные цитокины образуются дендритными клетками и другими АПК в самом начале ответа на такие возбудители, как бактерии и вирусы. Эти цитокины также синтезируются другими клетками врожденного иммунитета, в том числе NK-клетками. Напротив, присутствие IL-4 в начале иммунного ответа приводит к дифференцировке в сторону Тн2-клеток. Источник этого IL-4 до сих пор не ясен; он может образовываться или активированными СD4+-Т-клетками, или тучными клетками. Предполагается, что и другие факторы, такие как концентрация и путь введения антигена, степень аффинности взаимодействия между комплексом пептид-МНС и TCR и природа АПК, участвовавшей в ответе, могут влиять на то, какая субпопуляция СD4+-Т-клеток разовьется.

На рис. 10.5 также показано, что цитокины, выделяемые Тн1, могут угнетать функции Тн2, и наоборот. Например, IFNγ, образуемый Тн1-клетками, угнетает размножение Тн2-клеток, a IL-4 и 1L-10, образуемые Тн2-клетками, угнетают размножение Тн1-клеток. В табл. 10.1 представлены две важные характеристики субпопуляций Тн1 и Тн2 СD4+-T-клеток. Во-первых, субпопуляции синтезируют несколько общих цитокинов, в том числе IL-3 и гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ КСФ) . Во-вторых, субпопуляции Тн1 и Тн2 CD4+-T-клеток больше различаются у мышей, чем у человека.

Таблица 10.1. Синтез цитокинов субпопуляциями Тн1 и Тн2 СD4+-Т-клеток

Цитокин


Рис. 10.6. В-клетки захватывают антиген путем взаимодействия с молекулами lg, процессируют его и презентируют CD4+-T-клеткам антиген, связанный с молекулами МНС II класса

Т-В-кооперация

Почти все белки являются тимусзависимыми антигенами. Их называют так потому, что для синтеза антител им необходима «помощь» или кооперация СD4+-Т-клеток с В-клетками. По этой причине группу СD4+-Т-клеток, которые участвуют в иммунном ответе, помогая продуцировать антитела на тимусзависимые антигены, называют Т-клетками-хелперами (Тн). Т-клетка-хелпер и В-клетка, которые взаимодействуют в ответе на конкретный тимусзависимый антиген, должны быть специфичны к нему. Тн-клетка и В-клетка обычно отвечают на разные эпитопы антигена, но для эффективной кооперации Т-хелпера и В-клетки эти эпитопы должны быть частью одной белковой последовательности. По этой причине кооперацию Т- и В-лимфоцитов при ответе на тимусзависимый антиген также называют связанным распознаванием.

Ключевые стадии Т-В-клеточной кооперации, приводящие к синтезу антител, представлены на рис. 10.6 и 10.7. На рис. 10.6 показано, как В-клетка выступает в качестве АПК для СD4+-Т-клетки. Вначале В-клетка, экспрессирующая иммуноглобулин, специфичный к конкретному белковому антигену, захватывает антиген путем связывания его с Ig на мембране клетки. После этого комплекс антигена с Ig перемещается внутрь клетки и антиген подвергается процессингу в вакуолях с кислым содержимым. Некоторые пептиды, образованные при разрушении антигена, избирательно связываются с молекулами МНС II класса, также присутствующими в этих вакуолях с кислым содержимым. Комплексы пептид -МНС II класса транспортируются к поверхности В-клетки, где взаимодействуют с СD4+-Т-клеткой, обладающей подходящим TCR (вверху на рис. 10.7).

В дополнение к комплексу пептид-МНС, презентируемому В-клеткой для TCR подходящей Т-клетки, на поверхностях Т- и В-лимфоцитов взаимодействуют еще несколько пар молекул (см. рис. 10.7). Эти взаимодействия необходимы для взаимной активации Т- и В-клеток; в результате Т-клетка синтезирует цитокины, а В-клетка - антитела. Пары адгезионных молекул CD11a/CD18- CD54 (LFA-1/ICAM-1) и CD2-CD58, которые описаны ранее в этой главе на примере взаимодействия АПК и Т-клетки, поддерживают контакт между Т- и В-клетками. Костимуляторные пары В7-CD28 и CD40-CD154 также играют ключевую роль во взаимодействии В- и Т-лимфоцитов.


Рис. 10.7. Ключевые участники Т-В-кооперации. Штриховкой обозначены элементы, экспрессия которых усиливается при активации. Также показаны цитокины, образуемые T-клеткой, и их влияние на изотип Ig, секретируемый В-клеткой

Презентация В-клеткой комплекса пептид-МНС II класса для TCR увеличивает экспрессию CD154 (лиганд CD40 или CD40L) на Т-клетке-хелпере. Взаимодействие CD40-CD154 в свою очередь усиливает экспрессию костимуляторной молекулы В7 на В-клетке, и В7 взаимодействует с CD28, экспрессированном на Т-клетке. Как указано ранее в подразделе, посвященном взаимодействию АПК с СD4+-T-клетками, взаимодействия CD40-CD154 и В7-CD28 стимулируют в активированной Т-клетке синтез цитокинов, которые индуцируют пролиферацию. Продукция цитокинов Т-хелперной клеткой ведет к пролиферации как самого Т-хелпера, так и В-клетки и синтезу Ig, что обеспечивается за счет увеличения количества цитокиновых рецепторов на активированной В-клетке.

Взаимодействие CD40-CD154 также необходимо для переключения В-клетки на синтез других изотипов Ig, отличающихся от IgM. например IgG (переключение изотипов). Если такого взаимодействия не происходит, возможен синтез только IgM. Эта ситуация описана у людей с нефункциональным CD154 при клиническом состоянии, названном гипep-IgM-синдром, и у так называемых «нокаутных» мышей, не имеющих гена CD154. В обеих ситуациях продуцируются только антитела класса IgM, а антитела других изотипов отсутствуют.

Для переключения изотипов В-клетками также необходимы цитокины, синтезируемые активированными Т-клетками. На рис. 10.7 показано, что изотип антител, которые синтезирует В-клетка, зависит от цитокинов, продуцируемых Т-клеткой. Так, если Т-клетка секретирует IL-4, то В-клетка переключается на продукцию преимущественно IgE и IgG4, а если Т-клетка выделяет IFNγ, то В-клетка переключается на продукцию таких подтипов IgG, которые активируют комплемент.

В-клетки являются особенно эффективными АПК для CD4+-T-клеток при ответах на антигены, с которыми обе клетки уже встречались ранее. Это взаимодействие обычно происходит в специализированных участках лимфатических узлов - фолликулах - с последующей активацией В-клеток, соматическими мутациями и индукцией В-клеток памяти, происходящей в зародышевом центре лимфатического узла. Однако, как уже ранее описывалось в данной главе, наивные СD4+-Т-клетки наиболее эффективно активируются антигенами, которые прошли процессинг и презентируются дендритными клетками. Т-клетки, активированные дендритными клетками при первичном ответе, затем, вероятно, взаимодействуют и активируют В-клетки, которые захватывают антиген с использованием описанных ранее механизмов.

Значение вовлечения Т-клеток в синтез антител В-клетками может быть адекватно оценено с учетом данных об антигенах, для ответа на которые не требуется помощь Т-клеток, - так называемых Т-независимых антигенах, которые обсуждаются далее в этой главе. Эти антигены не приводят к образованию В-клеток памяти, а В-клетки при ответе на них не переключают изотипы синтезируемых Ig, секретируя только IgM.

Функции СD8+-Т-клеток

Рассмотрим другую важную субпопуляцию Т-клеток - СD8+-Т-клетки. Их основной функцией является уничтожение (киллинг) клеток, которые заражены бактериями или вирусами. СD8+-Т-клетки также ответственны за гибель пересаженных чужеродных клеток при отторжении трансплантата и за уничтожение опухолевых клеток. По этой причине СD8+-Т-клетки часто называют Т-киллерами или цитотоксическими Т-лимфоцитами (ЦТЛ) .

Клетка, уничтожаемая ЦТЛ, называется мишенью. В этой роли может выступать специализированная АПК, такая как дендритная клетка, или любая другая клетка организма. В отличие от рецепторов СD4+-Т-клеток TCR СD8+-Т-клеток распознают комбинацию пептидов, связанных с молекулами МНС I класса на поверхности клеток. Это взаимодействие в присутствии соответствующих вторых сигналов (обсуждаются далее) приводит к гибели клетки, представившей пептид.

СD8+-Т-клетки также синтезируют цитокины, в основном те, которые ассоциируются с фенотипом Тн1 СD4+-Т-клеток. В частности, это IFNγ, который необходим при некоторых вирусных и бактериальных инфекциях, а также TNFβ, участвующий в уничтожении клетки-мишени. Однако некоторые СD8+-Т-клетки синтезируют такие цитокины, как IL-4, которые ассоциированы с профилем Тн2 СD4+-Т-клеток.

Активация СD8+-Т-клеток

Выходящие из тимуса СD8+-Т-клетки не могут уничтожать клетки; вначале они должны активироваться, чтобы затем пролиферировать и дифференцироваться. Для активации необходимо присутствие как первого сигнала - взаимодействия комплекса пептид-МНС с TCR, так и вторых, или костимуляторных. Развитие цитолитической функции также требует синтеза цитокинов, в том числе IL-2, IFNγ и IL-12.

На рис. 10.8 показаны два наиболее важных способа активации ЦТЛ в ответ на вирусную инфекцию. В его верхней части показан первый способ, в котором принимают участие СD4+-Т-клетки, специфичные к вирусу и продуцирующие IL-2. При наличии клетки-мишени, инфицированной вирусом, и IL-2, выделяемого СD4+-T-клеткой, индуцируются пролиферация и дифференцировка СD8+-Т-клеток. При таком ответе вирусспецифичные СD4+-Т-клетки активируются при презентации вирусного антигена молекулами МНС II класса на АПК, такой как дендритная клетка или макрофаг. При этом пути активации вирусный эпитоп, который активирует CD4+-T-клетку, вероятнее всего будет отличаться от эпитопа, активирующего СD8+-Т-клетку.


Рис. 10.8. Активация и уничтожение клеток-мишеней CD8+-ЦТЛ

В средней части рис. 10.8 показано, как CD8+-Т-клетки могут активироваться без участия CD4+-Т-клеток. Такой механизм описан при ответе на некоторые вирусы. В этой ситуации используется перекрестное примирование. При таком пути активации вирусные антигены переносятся от мертвой или умирающей инфицированной клетки в профессиональные АПК, такие как дендритные клетки. Затем дендритные клетки процессируют вирусный антиген, размещают его в молекулы МНС I класса и представляют пептиды вирусспецифичным CD8+-T-клеткам.

Так как дендритные клетки также экспрессируют костимуляторные молекулы, такие как В7, они могут активировать вирусспецифичные наивные СD8+-Т-клетки. При этом пути активации СD8+-Т-клетка, вероятно, самостоятельно продуцирует цитокины, необходимые для пролиферации и дифференцировки. Предполагают, что перекрестное примирование может играть важную роль при активации ответов СD8+-Т-клеток на клетки инфицированной ткани, у которых отсутствуют костимуляторные молекулы, а также при ответах на клетки некоторых опухолей.

Какие бы межклеточные взаимодействия ни участвовали в активации СD8+-Т-клеток, весьма вероятно, что первые события этой активации похожи на описанные ранее стадии активации СD4+-Т-клеток. Как и CD4, CD8 связан с тирозиновой киназой Lck, а также взаимодействуют те же пары костимуляторных и адгезионных молекул, что и при активации СD4+-Т-клеток: CD28-В7, CD110/CD18-CD54 (LFA-1-ICAM-1) и CD2-CD58.

Уничтожение СD8+-Т-клетками клеток-мишеней

После активации теперь уже зрелые СD8+-Т-клетки начинают уничтожение клетки-мишени с того, что прикрепляются к ней. В нижней части рис. 10.8 показано, что пары адгезионных молекул, экспрессируемые и на Т-клетке, и на клетке-мишени, помогают поддерживать контакт между клетками в течение нескольких часов. На рисунке также показано, что активированная СD8+-Т-клетка обладает гранулами, в которых содержатся цитотоксические белки, и экспрессирует на поверхности клетки молекулу CD178 (Fas-лиганд). Далее описано, почему эти молекулы являются ключевыми для уничтожения клеток-мишеней.

Предполагают, что СD8+-Т-клетки могут уничтожать мишени двумя способами. Первым и, вероятно, преимущественным путем уничтожения большинства мишеней является выделение цитотоксических веществ, содержащихся в гранулах внутри Т-клеток. После прикрепления к клетке-мишени СD8+-Т-клетка перемещает гранулы к поверхности мембраны, обращенной к мишени, и с помощью процесса, называемого экзоцитозом, выделяет их содержимое на поверхность уничтожаемой клетки. Эти цитотоксические вещества образуют поры в мембране клетки-мишени.

Основными компонентами гранул, участвующих в уничтожении клеток-мишеней, являются перфорин и гранзимы. Перфорин - это молекула, которая полимеризуется с образованием кольцевидных трансмембранных каналов (или пор) в мембране клеток-мишеней. Это приводит к повышению проницаемости клеточной мембраны и, неизбежно, к смерти клетки. Действие перфорина на мембрану клетки похоже на действие мембраноатакующего комплекса комплемента. При уничтожении клеток этим способом ЦТЛ дополнительно используют гранзимы, набор сериновых протеаз.

Гранзимы попадают в уничтожаемую клетку через поры, образуемые при полимеризации молекул перфорина, и взаимодействуют с внутриклеточными компонентами клетки-мишени, стимулируя апоптоз. Поскольку клеточная смерть путем апоптоза не приводит к высвобождению клеточного содержимого, уничтожение инфицированной клетки по этому механизму может предотвращать распространение инфекционного агента (вируса) в другие клетки.

Вторым способом уничтожения клеток-мишеней является взаимодействие CD178 (Fas-лиганда) на поверхности Т-клетки с CD95 (Fas) Fas-рецептором, поверхностной молекулой, экспрессируемой на многих клетках организма. Это взаимодействие активирует апоптоз клетки-мишени путем последовательной активации протеолитических ферментов каспазы внутри клетки. Это приводит к тому, что клетка умирает в течение нескольких часов. После того как СD8+-Т-клетка запустит один или оба описанных механизма уничтожения, она отрывается от клетки-мишени, чтобы атаковать и уничтожить следующие клетки-мишени.

Как будет показано в следующих подразделах, активация СD8+-Т-клеток и уничтожение клетки-мишени являются не связанными событиями. Это можно продемонстрировать на препарате СD8+-Т-клеток человека, инфицированного вирусом. Эти вирусспецифичные цитотоксические клетки способны уничтожать клетки, инфицированные вирусом, и за пределами организма. При уничтожении инфицированных клеток-мишеней не нужно добавлять никакие дополнительные факторы.

Еще раз повторим концепцию МНС-рестрикции Т-клеточного ответа, о которой уже упоминалось в предыдущих главах. Вирусспецифичный СD8+-ЦТЛ распознает, а впоследствии уничтожает клетку-мишень, экспрессируюшую специфическую комбинацию вирусного пептида и определенной молекулы МНС I класса. Это означает, что СD8+-ЦТЛ, специфичный к вирусу гриппа и HLA-A2, например, уничтожает только клетки, которые экспрессируют HLA-A2, нагруженный пептидом, полученным из вируса гриппа. Этот ЦТЛ не уничтожит нормальную неинфицированную клетку организма, экспрессирующую HLA-A2, в отсутствие пептида гриппа.

Кроме того, эта вирусспецифичная СD8+-Т-клетка не уничтожит клетки-мишени, экспрессирующие другие комбинации пептидов с молекулами МНС, такие как пептид из вируса кори с HLA-A2 или даже тот же пептид вируса гриппа, связанный с HLA-B3. Эти открытия Р. Цинкернагеля (R.Zinkernagel) и П.Догерти (P.Doherty) (оба получили Нобелевскую премию в 1996 г.) позволили разработать концепцию МНС-рестрикции Т-клеточного ответа, согласно которой Т-клетка распознает комбинацию антигена с молекулой МНС, а не собственно молекулу антигена.

Экспрессия комплексов пептидов возбудителя с МНС I класса на поверхности клетки приводит к распознаванию инфицированной клетки СD8+-Т-клетками и ее последующему уничтожению. Таким образом, уничтожение СD8+-Т-клетками обеспечивает механизм элиминации любой клетки организма, инфицированной патогенным агентом. Очевидно, что элиминация патогена приводит к разрушению клеток организма-хозяина, но это приемлемая цена, которую организм может заплатить за удаление источника инфекции.

СD8+-Т-клетки практически всегда выступают в качестве цитотоксических клеток как у человека, так и у мыши. Однако существенная часть СD4+-Т-клеток у человека и некоторые - у мыши также обладают цитотоксическими функциями. Как можно предположить из продолжающегося обсуждения МНС-рестрикции, эти цитотоксические СD4+-Т-клетки активируются к уничтожению при распознавании комплекса пептид - МНС II класса на АПК или клетке-мишени. Поскольку активированные СD4+-Т-клетки экспрессируют CD178, но не содержат гранул с цитотоксической активностью, вероятно, они используют взаимодействие CD95-CD178 как основной метод уничтожения клеток-мишеней.

Окончание иммунного ответа: индукция клеток памяти

Антигенная стимуляция увеличивает количество лимфоцитов, специфичных к стимулирующему антигену, а также число лимфоцитов и других эффекторных клеток, которые рекрутируются цитокинами, синтезированными в ходе ответа. Однако, когда антиген уже уничтожен, необходимо уменьшить объем этого пула активированных клеток; в противном случае организм вскоре переполнится размножающимися клеточными популяциями. На рис. 10.9 показан основной механизм уничтожения активированных Т-клеток - клеточная смерть, вызванная активацией.


Рис. 10.9. Клеточная смерть, вызванная активацией. После стимуляции антигеном Т-клетка может уничтожить: 1) саму себя путем выделения растворимой формы CD178 (FasL), который взаимодействует с CD95 (Fas) на той же клетке; 2) другую Т-клетку с CD95, который будет взаимодействовать либо с растворимой, либо мембранной формой CD178

Исследования показывают, что Т-клетки чувствительны к апоптозу после того, как они были активированы, и особенно после повторной стимуляции антигеном. Апоптоз развивается в результате взаимодействия CD95-CD178, которое описано в этой главе ранее. Активированные Т-клетки экспрессируют одновременно и CD95, и CD178 (экспрессия последнего индуцируется активацией). После удаления антигена, например после того, как активированные ЦТЛ уничтожили свои инфицированные мишени, эти ЦТЛ взаимодействуют друг с другом и индуцируют апоптоз.

На рис. 10.9 также показано, что активированные клетки выделяют CD178, и эти секретированные молекулы также могут взаимодействовать с экспрессируемыми на поверхности клеток CD95 и вызывать апоптоз. Предполагают, что взаимодействие CD95- CD178 играет ключевую роль в уничтожении большинства активированных CD4+- и СD8+-Т-клеток по окончании антигенной стимуляции .

Однако не все клетки, активированные антигеном, умирают; выживает небольшая популяция долгоживущих антигенспецифичных клеток. Они образуют популяцию Т-клеток памяти для антигена и CD4+- или СD8+-Т-клетки памяти. Вторичные (с участием клеток памяти) Т-клеточные ответы более эффективны, чем первичные. Одна из причин этого в том, что стартовый объем клонирования популяции памяти, специфичной для определенного антигена, больше, чем размер непримированной популяции, даже после того, как посредством клеточной смерти, вызванной активацией, удалится большинство размножившихся клеток. Также предполагают, что для индукции полной активации Т-клетки памяти не нуждаются в костимуляторных взаимодействиях В7-CD28.

Никаких поверхностных молекул, уникальных для Т-клеток памяти, не обнаружено. Скорее, выявлены небольшие различия в уровне экспрессии тех же молекул (для одних больше, для других меньше) между непримированными Т-клетками и клетками памяти. Также описываются изменения изоформ мембранной фосфатазы CD45; предполагается, что при активации CD45 переходит из формы CD45RA в форму CD45RO, что вызвано альтернативным сплайсингом РНК, транскрибированной с ее гена. Не ясно, необходимо ли наличие антигена, хотя бы и в самой незначительной концентрации, при персистировании клеток памяти; результаты некоторых исследований показывают, что при отсутствии примирующего антигена клетки памяти умирают.

Р.Койко, Д.Саншайн, Э.Бенджамини



Похожие публикации