Введение технологического процесса. Нормы технологического режима

" статьёй Способы умягчения воды . Где опишем основные существующие способы и , как можно из жёсткой воды сделать мягкую воду. А также подробнее остановимся на одном из них, наиболее распространённом и надёжном.

Способы умягчения воды можно разделить на три и большие группы:

  1. химические способы.
  2. физические.
  3. экстрасенсорные.

Перед тем, как перейти к описанию способов, давайте для начала определимся с терминами. А именно с термином "умягчение воды ". Ранее, в статье "Жёсткая вода " мы затрагивали вопрос жёсткости воды и причин, которые её вызывают — а также последствий использования жёсткой воды. Соответственно, существует несколько определений термина "умягчение воды ", в зависимости от того, на каком этапе идёт воздействие —

  • на этапе борьбы с причинами жёсткости воды или
  • на этапе борьбы с последствиями использования жёсткой воды.

Понятное дело, этап воздействия на причину жёсткости воды будет бороться и с последствиями жёсткой воды. Но не наоборот. Соответственно, теперь можно перейти к способам умягчения воды. Химические реагентные способы умягчения воды мы затронем в другой статье, а сейчас поговорим про ионный обмен .

Химический способ борьбы с жёсткой водой основан на обмене. Обменом заведует ионо-обменная смола. Ионо-обменная смола — это длинные молекулы, собранные в полупрозрачные желтоватые шарики.

Из этих молекул торчат многочисленные отростки (очень-очень маленькие), к которым присоединяются частицы соли. Простой поваренной соли (ионы натрия).Один ион натрия на один отросток.

В процессе умягчения вода проходит через смолу, пропитывает её насквозь. Соли жёсткости заменяют натрий, связанный со смолой. То есть, происходит обмен — натрий высвобождается и течёт далее, а соли жёсткости остаются связанными со смолой. Причём важно знать, что вымывается из смолы в два раза больше солей, чем оседает, что связано с разницей в зарядах ионов.

Соответственно, рано или поздно (зависит от ёмкости смолы, количества очищенной воды и количества солей жёсткости) все соли натрия в смоле заменяются на соли жёсткости. И после этого смола перестаёт работать — так как больше нечего обменивать.

Для каждой смолы есть свой предел, который она может достигнуть, после чего перестаёт работать. После чего возможны два варианта обращения со смолой, которые зависят от того, в каком виде вы использовали эту смолу. Так, существует два варианта, в каких ионообменная смола работает.

Первый вариант — простой картридж, который располагается в стандартном корпусе, как для или для . Пример картриджа с ионообменной смолой:

Другой вариант — смола, которая насыпается в большой баллон (или не очень большой, зависит от фантазии инженеров). Поскольку баллон чаще всего похож на колонну (пропорциями), то он называется "ионообменная колонна". Она же называется "умягчитель", "ионообменник". Пример ионообменной колонны:

Отличия этих двух вариантов заключаются в количестве ионообменной смолы:

  1. Картридж с ионообменной смолой годится только для того, чтобы пить воду и иногда на ней готовить.
  2. Ионообменная колонна предназначена для очистки воды на всю квартиру, дом, производство.

Второй вариант, помимо большей стоимости при покупке, имеет нюанс: он требует постоянных затрат на покупку соли, которой восстанавливается фильтрующая способность смолы. Здесь мы возвращаемся к тем возможностям, что можно сделать с ионообменной смолой, когда она перестаёт работать. Так, вариант с картриджем таков — выкинуть. Хотя иногда встречаются люди, которые применяют к нему второй вариант, как к ионообменной колонне.

Ионообменная колонна всегда имеет спутника — бак с рассолом.

В этом баке специальная таблетированная соль растворяется и образует рассол.

Периодически (зависит от того, какой тип управления используется и от показателей воды) раствор соли протекает через смолу, вымывает соли жёсткости и меняет их на исходную соль. После промывок смола восстанавливает свои способности к ионному обмену.

Ионообменная смола так же может удалять и железо в небольших количествах. Трёхвалентное железо портит ионообменную смолу, смола необратимо забивается, и её нужно менять. Так что будьте внимательны и вовремя делайте анализ воды .

Какой фильтр лучше покупать? Какой больше нравится. И, естественно, тот, который в наибольшей степени позволяет вам достичь ваших целей (о чём говорилось в статье "Выбор фильтра для воды: сколько тратить? ").

Также следует учитывать особенности, связанные с размером эксплуатационных расходов на использование ионообменного фильтра. Так, для разных установок умягчения воды требуется разное количество соли на одинаковую производительность. И нужно следить, чтобы расходы на соль были минимальными . Так же показатель — количество сброса воды в канализацию при промывках. Чем больше тратится воды, тем дороже выходит обслуживание. Для ориентира — минимальный расход соли, который мне когда-либо встречался, при производительности 1,5 м3/час составлял 1,14 кг соли на регенерацию.

Ионный обмен — способ умягчения воды, который воздействует на причину жёсткости воды, чем делает её мягкой.

Другие способы умягчения воды мы рассмотрим в дальнейшем.

Ионообменные смолы - это нерастворимые на высокомолекулярном уровне соединения, которые могут показать реакцию при взаимодействии с ионами раствора. Они имеют трехмерную гелевую или макропористую структуры. Их еще называют ионитами.

Разновидности

Эти смолы бывают катионообменными (делятся на сильнокислотные и слабокислотные), анионообменными (сильноосновные, слабоосновные, с промежуточной и смешанной основою) и биполярными. Сильнокислотные соединения - это катиониты, которые могут обмениваться катионами вне зависимости от А вот слабокислотные могут функционировать при значении не ниже семи. Сильноосновные аниониты имеют свойство обмениваться анионами в растворах при любой при любых показателях рН. Этого, в свою очередь, лишены слабоосновные аниониты. В этой ситуации рН должен быть 1-6. Другими словами, смолы могут обменять ионы в воде, впитать одни, а взамен отдать те, которые ранее были запасены. А так как именно H 2 O - многокомпонентная структура, то нужно верно ее подготовить, выбрать химическую реакцию.

Свойства

Ионообменные смолы - полиэлектролиты. Они не растворяются. Многозарядный ион неподвижен, потому что имеет большую молекулярную массу. Он образует основу ионита, связан с небольшими подвижными элементами, которые имеют противоположный знак, и, в свою очередь, может обменивать их в растворе.

Производство

Если полимер, который не имеет свойства ионита, обработать химически, то произойдут изменения - регенерация ионообменной смолы. Это достаточно важный процесс. С помощью полимераналогичных превращений, а еще поликонденсации и полимеризации, получают иониты. Существует солевая и смешанно-солевая формы. Первая подразумевает натриевый и хлористый, а вторая - натрий-водородный, гидроксильно-хлоридный виды. В таких условиях выпускаются иониты. Мало того, в процессе они переводятся в рабочую форму, а именно водородную, гидроксильную и т. д. Такие материалы используют в разных сферах деятельности, например, в медицине и фармацевтике, в пищевой промышленности, на атомных электростанциях для очистки конденсата. Также может применяться ионообменная смола для фильтра смешанного действия.

Применение

Используется ионообменная смола для Кроме того, соединение может и обессолить жидкость. В связи с этим ионообменные смолы часто используют в теплоэнергетике. В гидрометаллургии ими пользуются для цветных и редких металлов, в химической промышленности ими очищают и разделяют разные элементы. Иониты также могут очистить сточные водоемы, а для органического синтеза они - целый катализатор. Таким образом, ионообменные смолы могут быть использованы в разных отраслях.

Промышленная очистка

На теплопередающих поверхностях может появляться накипь, а если она достигнет всего 1 мм, то расход топлива увеличится на 10%. Это все-таки большие потери. Мало того, оборудование быстрее изнашивается. Чтобы это предотвратить, нужно правильно организовывать водоподготовку. Для этого используется фильтр с ионообменной смолой. Именно очистив жидкость, можно избавиться от накипи. Способы бывают разные, но с повышением температуры их вариантов становится меньше.

Обработка H 2 O

Существует несколько способов для того, чтобы очистить воду. Можно воспользоваться магнитной и а можно отретушировать ее комплексонами, комплексонатами, ИОМС-1. Но более популярным вариантом считается фильтрация с помощью обмена ионов. Это заставит изменить состав элементов воды. Когда используют такой метод, H 2 O почти полностью обессоливается, загрязнения пропадают. Следует отметить, что такой очистки достаточно сложно добиться иными способами. Обработка воды с помощью ионообменных смол очень популярна не только в России, а и в других странах. Такая очистка имеет много достоинств и намного эффективнее прочих методов. Те элементы, которые удаляются, никогда не останутся осадком на дне, а дозировать реагенты не нужно постоянно. Сделать эту процедуру очень легко - конструкция фильтров однотипная. При желании можно воспользоваться автоматизацией. После очистки свойства будут сохраняться при любых колебаниях температуры.

Ионообменная смола Purolite A520E. Описание

Чтобы поглощать нитрат-ионы в воде, была создана макропористая смола. Она используется, чтобы очистить H 2 O в разных средах. Специально для этого появилась ионообменная смола Purolite A520E. Она способствует избавлению от нитратов даже при большом количестве сульфатов. Это значит, что, по сравнению с другими ионитами, эта смола наиболее эффективна и имеет лучшие характеристики.

Рабочая емкость

Purolite A520E имеет высокую селективность. Это помогает, вне зависимости от количества сульфатов, удалить нитраты качественно. Такими функциями не могут похвастаться остальные ионообменные смолы. Это обусловлено тем, что при содержании сульфатов в H 2 O снижается обмен элементами. Но благодаря селективности для Purolite A520E такое понижение не имеет особого значения. Хотя соединение имеет низкий, если сравнивать с другими, полный обмен, жидкость в больших количествах очищается достаточно качественно. При этом, если сульфатов будет мало, то справиться с обработкой воды и устранением нитратов смогут различные аниониты - как гелевые, так и макропористые.

Подготовительные операции

Чтобы смола Purolite A520E работала на 100%, она должна быть правильно подготовлена для выполнения функции очищения и подготовки H 2 O для пищевой индустрии. Следует отметить, что перед началом работы используемое соединение обрабатывают 6%-м раствором NaCl. При этом используют в два раза больший объем по сравнению с количеством самой смолы. После этого соединение обмывают пищевой водой (количество H 2 O должно быть в 4 раза больше). Только проведя такую обработку, можно приниматься за очистку.

Заключение

Благодаря свойствам, которыми обладают ионообменные смолы, ими можно пользоваться в пищевой индустрии не только для очистки воды, но и для обработки продуктов, различных напитков и прочего. На вид аниониты - это маленькие шарики. Именно к ним прилипают ионы кальция и магния, а они, в свою очередь, отдают ионы натрия в воду. В процессе промывки гранулы отпускают эти прилипшие элементы. Следует помнить о том, что в ионообменной смоле может упасть давление. Это скажется на ее полезных свойствах. На те или иные изменения влияют внешние факторы: температура, высота столбца и размер частиц, их скорость. Поэтому при обработке следует поддерживать оптимальное состояние среды. Часто пользуются анионитами в очистке воды для аквариума - они способствуют формированию хороших условий для жизни рыб и растений. Итак, ионообменные смолы нужны в разных индустриях, даже в домашних условиях, так как могут качественно очистить воду для дальнейшего ее использования.

Средний ресурс работы засыпки для умягчения воды составляет порядка 5 лет, после чего требуется произвести замену катионита утратившего свои рабочие характеристики.

Для наиболее длительного срока службы катионита требуется во время первого запуска правильно запрограммировать блок управления и обеспечить предварительную подготовку воды.

Требуемое качество воды поступающей в систему натрий-катионирования

Общая жесткость - до 20 мг.экв./л

Общее солесодержание - до 1000 мг/л

Общее железо - не более 0.3 мг/л

Температура воды - 5-35 оС

Цветность - не более 30 градусов

Нефтепродукты - отсутствие

Сульфиды и сероводород - отсутствие

Этапы замены катионита в системах натрий катионирования

Перед началом проведения работ необходимо организовать подачу воды в обход умягчителя по байпасной линии. Перекрыть вход и выход воды в умягчитель.

Для безопасной работы в ручном режиме перевести блок управления фильтра в режим регенерации для сброса давления. После чего перевести в рабочий режим. Затем обесточить систему умягчения воды и взяться за основную работу.

1. Отключенный от сети питания блок управления отсоединить от гидравлической обвязки и отсоединить солепровод реагентного бака.

2. Перед заменой катионита аккуратно выкрутите управляющий клапан.

3. Не повредив корпус фильтра освободить его от остатков воды и отработанного катионита.

4. Хорошо промыть и по возможности продезинфицировать внутреннюю полость корпуса.

5. Установить корпус на постоянное рабочее место.

6. Завинтить до упора управляющий клапан и выставить его на удобном месте для последующей эксплуатации.

7. После выбора оптимального положения аккуратно вывинтить клапан из баллона.

8. Во внутреннюю часть корпуса вставить центральную распределительную систему со щелевым колпачком. Вращательным движением установить щелевой колпачок в посадочное гнездо на дне баллона.

9. Верхнее отверстие центральной распределительной трубы обязательно закрыть пробкой или другим приспособлением, которое не даст во время засыпки попасть в распределительную систему ионообменной смоле. Единственное условие при засыпке пробка не должна провалиться в центральную трубку, это может вывести из строя систему управления.

10. Наполните баллон небольшим количеством воды ориентировочно на ¼ объема. Это количество будет буфером для засыпаемой ионообменной смолы .

11. Вставьте воронку в горловину баллона, которая обеспечит удобство при засыпке катионита.

12. Засыпьте через воронку требуемое количество гравия. После засыпки гравия нельзя вытаскивать центральный распределительный коллектор из баллона, так как при попытке поставить ее на место можно повредить нижний щелевой колпачок.

13. Загрузите в фильтр требуемое количество катионита.

14. Аккуратно уберите воронку, через которую производилась засыпка нового фильтрующего материала.

15. Уберите пробку или приспособление, которым закрывали отверстие в верхней части центральной распределительной трубки.

16. Удалите остатки пыли и фильтрующего материала с горловины корпус и резьбы.

17. Управляющий клапан с верхним щелевым колпачком насадите на центральную распределительную трубу.

18. Закрутите по часовой стрелке блок управления в корпус фильтра.

19. Подключите блок управления к центральной водопроводной сети и подайте электропитание на него.

20. Подключите реагентный солепровод к блоку управления.

21. После окончания все работ необходимо подать воду на установку и выпустить остатки воздуха из корпуса фильтра.

22. Проверить настройки автоматического управления и провести первичную регенерацию для отмывки катионита.

Обслуживание натрий-катионитовых фильтров

Общая часть

Умягчением воды называется более или менее полное удаление из неё катионов накипеобразователей Ca +2 и Mg +2 обычно с заменой их катионами или Н + , соли которых обладают высокой растворимостью в воде и не образуют, поэтому твёрдых отложений в паровых котлах.

Наиболее глубокое умягчение воды достигается при её натрий-катионировании. При катионировании обрабатываемая вода фильтруется через слой катионита, загруженного в фильтр.

При этом происходит обмен катионами между раствором и катионитом.

Ca(HCO 3) + 2NaK > CaK 2 + 2 NaHCO 3

CaCl 2 + 2NaK > CaK 2 +2NaCl

CaSO 4 + 2NaK > CaK 2 + Na 2 SO 4

Mg(HCO 3) + 2NaK > MgK 2 + 2NaHCO 3

где: К - сложный комплекс катионита.

Как видно из уравнения из уравнения в процессе умягчения изменяется не только солевой состав воды, но и катионит, который отдаёт переходящий в воду натрий и взамен удерживает Ca +2 и Mg +2 . Это умягчение происходит послойно. Сначала полностью насыщается кальцием и магнием верхний слой катионита, теряющий при этом свою поглотительную способность в отношении Ca +2 и Mg +2 .

Далее насыщаются ниже расположенные слои, зона умягчения постепенно опускается, в верхний слой уже истощённого катионита жёсткая вода проходит без изменения своего состава. Через некоторое время после работы фильтра в слое катионита образуются две зоны: истощённого и работающего катионита. Таким образом, процесс умягчения воды до 15 мкг-экв/кг происходит в переделах некоторого работающего слоя катионита, высота которого зависит от жёсткости умягчаемой воды и скорости фильтрации её т обычно равно 50-100 ммю

В начале работы фильтра остаточная жёсткость умягчённой воды будет весьма малой и постоянной.

Когда нижняя граница зоны умягчения совместится с нижней границей загрузки фильтра, у умягчённой воды появляется повышенная остаточная жёсткость (более 15 мкг-экв/кг) за счёт «проскока» катионов Ca ++ и Mg ++ . Тогда истощённый фильтр ставят на регенерацию.

Регенерация - восстановление обменной ёмкости истощенного катионита.

Истощенный катионит обрабатывается раствором поваренной соли, в процессе которого поглощённый ионы кальция и магния вытесняются ионами натрия и переходят в раствор.

Обогащённый обменными катионами натрия, катионит вновь получает способность умягчать воду. Реакции, происходящие при регенерации, можно условно изобразить следующими уравнениями реакций:

CaK 2 + NaCl > CaCl 2 + 2NaK

MgK 2 + NaCl > MgCl 2 + 2NaK

Избыток регенерируемого раствора и продукты реакции удаляются при отмывке фильтра.

Устройство катионитового фильтра

Катионитовый фильтр представляет собой цилиндрический сварной корпус со сферическими днищами, рассчитанный на давление 6 ати.

К нижнему днищу приварены опорные лапы для установки фильтров на фундаменте.

Внутри фильтра, в верхней части его, имеется устройство для подвода сырой воды и регенерационного раствора соли и выхода взрыхляющей воды. Это устройство служит для равномерного подвода и распределения регенерационного раствора соли и воды по всему сечению катионитового фильтра.

Фильтры имеют два люка для возможности осуществления монтажа и ремонта внутренних устройств.

В нижней части фильтра расположено дренажное устройство, представляющее собой коллектор с системой присоединённый к нему с обеих сторон трубчатых ответвлений со штуцерами и колпачками ВТИ-К. Оно служит для равномерного распределения по всей площади поперечного сечения взрыхляющей и отвода химочищенной воды.

Бетонировка нижнего днища до дренажных колпачков имеет цель уничтожения мёртвого пространства, удлиняющего операцию отмывки катионита после регенерации.

Взрыхление

Взрыхление производится перед каждой регенерацией, благодаря чему удаляются из катионита накопившееся в нём загрязнения, мелкие частицы его (образовавшиеся вследствие частичного измельчения в процессе работы) и создаётся возможность лучшей обработки катионита регенерационным раствором. Взрыхление катионита производится обратным током воды из трубопровода через нижнюю дренажную систему с отводом воды через верхнее распределительное устройство в дренажный лоток.

Для осуществления стадии взрыхления необходимо открыть верхний дренаж задвижки №5 (5") и задвижки подачи воды на взрыхление №4 (4"). Во время взрыхления воздушник должен быть открыт. Интенсивность взрыхления должна быть равно примерно 3-5 л/сек. м 2 , общая продолжительность взрыхления 30 мин. Интенсивность взрыхления наращивается путём постепенного увеличения подачи воды на взрыхление.

При проведении взрыхления через каждые 2-3 минуты производится отбор пробы сливной воды, в которой на глаз определяется содержание мелочи. При выносе крупных частиц интенсивность взрыхления следует уменьшить, прикрыв соответственно задвижку №5 (5"). Присутствие в отбираемой пробе мути, мелких и весьма медленно оседающих на дно сосуда зёрнышек катионита допустимо и даже желательно. По окончании взрыхления все выше указанные задвижки закрываются.

Регенерация

Регенерация катионита осуществляется раствором поваренной соли. Для проведения регенерации необходимо открыть задвижки №2 (2"). Отработанный регенерационный раствор сбрасывается через нижнюю дренажную систему открытием задвижек №6 (6").

Во время регенерации необходимо следить за тем, чтобы в фильтрах был подпор воды, который проверяется с помощью воздушника. Скорость пропуска регенерационного раствора через фильтр должна находиться в пределах 3-5 м/час.

После окончания регенерации, что контролируется по вкусу пробы, взятой из пробоотборной точки на выходе из фильтра (проба имеет солёный вкус), все солевые задвижки закрываются.

Отмывка катионита от продуктов регенерации и избытков соли производится пропуском промывочной воды сверху вниз со скоростью 6-8 м/час.

Для отмывки фильтров открываются задвижки №1 (1"). Отмывочная вода сбрасывается в дренаж открытием задвижек №6 (6").

При проведении отмывки необходимо следить за наличием подпора на фильтре, о чём свидетельствует вытекание воды из открытого воздушника.

Отмывку ведут до тех пор, пока вода, вышедшая из фильтров, не станет пресной, после чего она проверяется на жёсткость. Если фильтр после регенерации вводиться в работу, его надо отмыть для фильтров 1 ступени и до 15 мкг-экв/л. Если же фильтр ставится в резерв, то во избежание пептизации катионита (растворения) отмыть его следует частично, т.е. до 500 мкг-экв/л. Окончательная отмывка его делается перед включением в работы.

Умягчение

Во время умягчения необходимо следить, чтобы в фильтрах был подпор. Он проверяется методом открытия воздушника до появления из него воды. Создаётся подпор величиной открытия задвижки на выходе воды из фильтра.

При двухступенчатом катионировании, сырая вода проходит через два фильтра. На фильтре 1 ступени на вход подают сырую воду, выходящая частично умягчённая вода подаётся через подогреватель в деаэратор, часть на распыление в конденсаторный бак. Для фильтров 1 ступени, при умягчении, открывают задвижки №1 (1"); 3 (3"). Скорость умягчения должна соответствовать 5-20 м/час.

Химический контроль за работой фильтра производится согласно графика периодичности.

К концу работы фильтра химконтроль учащается.

Выключение фильтров из работы производится закрытием вышеуказанный задвижек. Во время умягчения воды нужно проверять воду на вынос сульфоугля, Появление сульфоугля на выходе из фильтра свидетельствует о срыве колпачков дренажной системы, фильтр аварийно останавливается, чульфоуголь из него выгружается и производится осмотр и ремонт дренажной системы.

Водный режим и его химический состав

1.1 Водный режим должен обеспечивать работу котла и питательного тракта без повреждения их элементов вследствие накипи и шлама, повышения относительной щёлочности котловой воды до опасных предметов или в результате коррозии металла, а также обеспечивать получение пара надлежащего качества.

1.2 Безнакипный режим должен обеспечиваться устройством до котловой обработки воды.

1.3 Котёл должен питаться водой, прошедшей механическую и химическую обработку в водоподготовительной установке, которая должна обеспечивать осветление и умягчение её.

1.4 Каждый случай питания сырой водой должен записываться в журнал по водоподготовке.

1.5 Нормы качества питательной и котловой воды должны быть не выше значений, указанных в таблице №2.

1.6 Химический контроль качества воды осуществляется посредством текущего оперативного контроля за всеми стадиями водоподготовки. Периодичность и объём химического контроля технологических вод приведён в таблице №1.

1.7 При длительной не прерывной работе котла должна быть организована непрерывная продувка, для поддержания требуемого водного режима.

1.8 Углублённый периодический контроль должен давать чёткое количественное представление о составе, исходной воды, динамике изменений этого состава в тракте котельной и системы водоподготовки во времени, качества конденсата, возвращаемого из каждого теплообменного аппарата в питательную систему котлов и качество пара, выдаваемого котлами.

1.9 Данные анализов, в том числе и среднесуточных проб, должны давать возможность правильных расчётов, таких показателей как размер продувки котлов, влажность пара, размер возврата конденсата в питательную систему котлов, эффективности работы обескислораживающей установки.

1.10 Данные анализа периодического контроля помогают установить основные показатели водоподготовительной установки; удельный расход реагентов, их дозу и качество, ёмкость поглощения катионов, грязеёмкость фильтрующий материалов, глубину освобождения воды от отдельных загрязнений и т.д.

Контроль состояния фильтра

1 Частота поверхности загрузки и уровень - высота загрузки катионита фильтрующего материала в фильтрах, 1500 мм, песка (антрацита)- определяется вскрытием верхних люков 100

1 раз в три месяца

2 Состояние щелевых колпачков и - исправность колпачков и дренажно-распределительного устройства отсутствие комков в с полной загрузкой фильтрующего фильтрующем материале материала 1 раз а 2 года

3 Соответствие положения вентилей - неработающие вентили трубопроводов режиму работы установки, должны быть плотно определяет полнота закрытия не - закрыты. работающей арматуры

Плотность соединений проверяется

Периодически. - отсутствие течи

4 Гидравлическое сопротивление слоя -0,4-0,6 кгс/см 2 загрузки катионитного фильтра проверяется манометрами до и после фильтра

5 Насос. Давление воды за насосом или - не выше 4,0 кг/см давление водопроводной воды проверяется манометром

6 Чистота воды механического фильтра должна быть прозрачной, без частиц, выпадающих на дно колбы

Операционная карта работы фильтров и солерастворителя

Нормы качества воды

Химочищенная вода

ГОСТ 20995-75

Питательная вода

1 Жёсткость - не более 15 мкг-экв/кг

3 Свободная углекислота - отсутствует

Котловая вода

1 процент продувки - до 10%

Конденсат

1 Жёсткость - не более 15 мкг-экв/кг

натрий катионитовый технологический реактив

Страница 12 из 39

На обессоливающих установках Н-катионитовые фильтры загружаются катионитом различных марок. Количество загружаемого в фильтр сухого катионита следует рассчитывать, исходя из необходимой высоты фильтрующего слоя катионита в набухшем состояния.
В Н-катионитовых фильтрах I ступени слой влажного катионита должен иметь высоту, допускающую возможность увеличения объема катионита при взрыхлении приблизительно на 50%. В Н-катионитовых фильтрах II и III ступеней слой влажного катионита по этим же условиям целесообразно иметь высотой 1,0-1,5 м.
Катионит после загрузки в фильтр держат з воде для набухания в течение 10-12 ч. После набухания катионит отмывается от загрязнений током воды снизу вверх. Сульфоуголь начинают взрыхлять при скорости подъема воды 7-8 м/ч и доводят его по мере осветления отмывных вод до 12-15 м/ч.
После окончания отмывки катионита фильтр вскрывают, снимают вручную верхний стой мелочи (толщина его зависит от качества катионита), досыпкой или отгрузкой катионита доводят высоту слоя до расчетной. После этого замеряют высоту слоя катионита в набухшем состояний.
Подготовка свежего катионита к работе производится его регенерацией избыточным количеством раствора кислоты. При отмывке определяют жесткость и кислотность отмывочных вод. В тех случаях. когда отмывка затягивается, а жесткость отмывочной воды долго не снижается, целесообразно произвести дополнительную регенерацию.
При первичных регенерациях пропускание регенерационного раствора 1,5-2.0%-ной серной кислоты производят медленно, в продолжении 1,5-2,0 ч, что увеличивает продолжительность контакта регенерационного раствора с катионитом и способствует его лучшей отработке. Ориентировочно расход 100%-ной серной кислоты составляет до 30 кг на 1 м 3 катионита; скорость фильтрования регенерационного раствора определяет время контакта его с катионитом; обычно она составляет 9-10 м/ч и окончательно устанавливается при наладке. Отмывочная вода фильтруется со скоростью - 10 м/ч.
Отмывка катионита в фильтрах 1 ступени производится осветленной водой.
Регенерационный раствор кислоты для регенерации Н-катионитовых фильтров I, II и III ступеней готовится только на Н-катионированной воде.
Отмывка катионита заканчивается при жесткости отмывочной воды ~ 50 мкг-экв/кг и кислотности, превышающей содержание суммы ионов SO«,-+Cl“ в исходной воде не более 500 мкг-экв/кг.
Первичная регенерация Н-катионитовых фильтров II ступени проводится с теми же расходами кислоты, концентраций регенерационного раствора и скоростью его пропускания, что и Н-катионитовые фильтры I ступени. Отмывка Н-катионитового фильтра II ступени осуществляется частично обессоленной и декарбонизованной водой. Н-катионитовые фильтры II ступени отмывают до кислотности фильтрата 0,15 мг-экв/кг.
Длительность предварительной подготовки фильтра к эксплуатации зависит от качества катионита и может колебаться от нескольких часов до суток.
В течение I-2 суток после ввода фильтра в эксплуатацию после регенерации вода может быть слегка опалесцирующей (мутной); примерно через 2 суток после включения фильтра в работу вся катионированная вода должна выходить совершенно прозрачной.



Похожие публикации