Ход лучей в выпуклой линзе. Тонкие линзы

Темы кодификатора ЕГЭ: линзы, оптическая сила линзы

Взгляните ещё раз на рисунки линз из предыдущего листка: эти линзы обладают заметной толщиной и существенной кривизной своих сферических границ. Мы намеренно рисовали такие линзы - чтобы основные закономерности хода световых лучей проявились как можно более чётко.

Понятие тонкой линзы.

Теперь, когда эти закономерности достаточно ясны, мы рассмотрим очень полезную идеализацию, которая называется тонкой линзой .
В качестве примера на рис. 1 приведена двояковыпуклая линза; точки и являются центрами её сферических поверхностей, и - радиусы кривизны этих поверхностей. - главная оптическая ось линзы.

Так вот, линза считается тонкой, если её толщина очень мала. Нужно, правда, уточнить: мала по сравнению с чем?

Во-первых, предполагается, что и . Тогда поверхности линзы хоть и будут выпуклыми, но могут восприниматься как "почти плоские". Этот факт нам очень скоро пригодится.
Во-вторых, , где - характерное расстояние от линзы до интересующего нас предмета. Собственно, лишь в таком случае мы и
сможем корректно говорить о "расстоянии от предмета до линзы", не уточняя, до какой именно точки линзы берётся это самое расстояние.

Мы дали определение тонкой линзы, имея в виду двояковыпуклую линзу на рис. 1 . Это определение без каких-либо изменений переносится на все остальные виды линз. Итак: линза является тонкой , если толщина линзы много меньше радиусов кривизны её сферических границ и расстояния от линзы до предмета.

Условное обозначение тонкой собирающей линзы показано на рис. 2 .

Условное обозначение тонкой рассеивающей линзы показано на рис. 3 .

В каждом случае прямая - это главная оптическая ось линзы, а сами точки - её
фокусы. Оба фокуса тонкой линзы расположены симметрично относительно линзы.

Оптический центр и фокальная плоскость.

Точки и , обозначенные на рис. 1 , у тонкой линзы фактически сливаются в одну точку. Это точка на рис. 2 и 3 , называемая оптическим центром линзы. Оптический центр находится на Пересечении линзы с её главной оптической осью.

Расстояние от оптического центра до фокуса называется фокусным расстоянием линзы. Мы будем обозначать фокусное расстояние буквой . Величина , обратная фокусному расстоянию, есть оптическая сила - линзы:

Оптическая сила измеряется в диоптриях (дптр). Так, если фокусное расстояние линзы равно 25 см, то её оптическая сила:

Продолжаем вводить новые понятия. Всякая прямая, проходящая через оптический центр линзы и отличная от главной оптической оси, называется побочной оптической осью . На рис. 4 изображена побочная оптическая ось - прямая .

Плоскость , проходящая через фокус перпендикулярно главной оптической оси, называется фокальной плоскостью . Фокальная плоскость, таким образом, параллельна плоскости линзы. Имея два фокуса, линза соответственно имеет и две фокальных плоскости, расположенных симметрично относительно линзы.

Точка , в которой побочная оптическая ось пересекает фокальную плоскость, называется побочным фокусом. Собственно, каждая точка фокальной плоскости (кроме ) есть побочный фокус - мы ведь всегда сможем провести побочную оптическую ось, соединив данную точку с оптическим центром линзы. А сама точка - фокус линзы - в связи с этим называется ещё главным фокусом.

То, что на рис. 4 изображена собирающая линза, никакой роли не играет. Понятия побочной оптической оси, фокальной плоскости и побочного фокуса совершенно аналогично определяются и для рассеивающей линзы - с заменой на рис. 4 собирающей линзы на рассеивающую.

Теперь мы переходим к рассмотрению хода лучей в тонких линзах. Мы будем предполагать, что лучи являются параксиальными , то есть образуют достаточно малые углы с главной оптической осью. Если параксиальные лучи исходят из одной точки, то после прохождения линзы преломлённые лучи или их продолжения также пересекаются в одной точке. Поэтому изображения предметов, даваемые линзой, в параксиальных лучах получаются весьма чёткими.

Ход луча через оптический центр.

Как мы знаем из предыдущего раздела, луч, идущий вдоль главной оптической оси, не преломляется. В случае тонкой линзы оказывается, что луч, идущий вдоль побочной оптической оси, также не преломляется!

Объяснить это можно следующим образом. Вблизи оптического центра обе поверхности линзы неотличимы от параллельных плоскостей, и луч в данном случае идёт как будто через плоскопараллельную стеклянную пластинку (рис. 5 ).

Угол преломления луча равен углу падения преломлённого луча на вторую поверхность. Поэтому второй преломлённый луч выходит из плоскопараллельной пластинки параллельно падающему лучу . Плоскопараллельная пластинка лишь смещает луч, не изменяя его направления, и это смещение тем меньше, чем меньше толщина пластинки.

Но для тонкой линзы мы можем считать, что эта толщина равна нулю. Тогда точки фактически сольются в одну точку, и луч окажется просто продолжением луча . Вот поэтому и получается, что луч, идущий вдоль побочной оптической оси, не преломляется тонкой линзой (рис. 6 ).

Это единственное общее свойство собирающих и рассеивающих линз. В остальном ход лучей в них оказывается различным, и дальше нам придётся рассматривать собирающую и рассеивающую линзу по отдельности.

Ход лучей в собирающей линзе.

Как мы помним, собирающая линза называется так потому, что световой пучок, параллельный главной оптической оси, после прохождения линзы собирается в её главном фокусе (рис. 7 ).

Пользуясь обратимостью световых лучей, приходим к следующему выводу: если в главном фокусе собирающей линзы находится точечный источник света, то на выходе из линзы получится световой пучок, параллельный главной оптической оси (рис. 8 ).

Оказывается, что пучок параллельных лучей, падающих на собирающую линзу наклонно , тоже соберётся в фокусе - но в побочном. Этот побочный фокус отвечает тому лучу, который проходит через оптический центр линзы и не преломляется (рис. 9 ).

Теперь мы можем сформулировать правила хода лучей в собирающей линзе . Эти правила вытекают из рисунков 6-9 ,


2. Луч, идущий параллельно главной оптической оси линзы, после преломления пойдёт через главный фокус (рис. 10 ).

3. Если луч падает на линзу наклонно, то для построения его дальнейшего хода мы проводим побочную оптическую ось, параллельную этому лучу, и находим соответствующий побочный фокус. Вот через этот побочный фокус и пойдёт преломлённый луч (рис. 11 ).

В частности, если падающий луч проходит через фокус линзы, то после преломления он пойдёт параллельно главной оптической оси.

Ход лучей в рассеивающей линзе.

Переходим к рассеивающей линзе. Она преобразует пучок света, параллельный главной оптической оси, в расходящийся пучок, как бы выходящий из главного фокуса (рис. 12 )

Наблюдая этот расходящийся пучок, мы увидим светящуюся точку, расположенную в фокусе позади линзы.

Если параллельный пучок падает на линзу наклонно, то после преломления он также станет расходящимся. Продолжения лучей расходящегося пучка соберутся в побочном фокусе , отвечающем тому лучу, который проходит через через оптический центр линзы и не преломляется (рис. 13 ).

Этот расходящийся пучок создаст у нас иллюзию светящейся точки, расположенной в побочном фокусе за линзой.

Теперь мы готовы сформулировать правила хода лучей в рассеивающей линзе . Эти правила следуют из рисунков 6, 12 и 13 .

1. Луч, идущий через оптический центр линзы, не преломляется.
2. Луч, идущий параллельно главной оптической оси линзы, после преломления начнёт удаляться от главной оптической оси; при этом продолжение преломлённого луча пройдёт через главный фокус (рис. 14 ).

3. Если луч падает на линзу наклонно, то мы проводим побочную оптическую ось, параллельную этому лучу, и находим соответствующий побочный фокус. Преломлённый луч пойдёт так, словно он исходит из этого побочного фокуса (рис. 15 ).

Пользуясь правилами хода лучей 1–3 для собирающей и рассеивающей линзы, мы теперь научимся самому главному - строить изображения предметов, даваемые линзами.

Фокусы линзы. В гл. IX был сформулирован закон преломления света, устанавливающий, как меняется направление светового луча при переходе света из одной среды в другую. Был рассмотрен простейший случай преломления света на плоской границе раздела двух сред.

В практических применениях очень большое значение имеет преломление света на сферической границе раздела. Основная деталь оптических приборов - линза - представляет собой обычно стеклянное тело, ограниченное с двух сторон сферическими поверхностями; в частном случае одна из поверхностей линзы может быть плоскостью, которую можно рассматривать как сферическую поверхность бесконечно большого радиуса.

Линзы могут быть изготовлены не только из стекла, но, вообще говоря, из любого прозрачного вещества. В некоторых приборах, например, применяются линзы из кварца, каменной соли и др. Заметим, что и поверхности линз могут быть также более сложной формы, например цилиндрические, параболические и т. д. Однако такие линзы применяются сравнительно редко. В дальнейшем мы ограничимся рассмотрением линз со сферическими поверхностями.

Рис. 193. Тонкая линза: - оптический центр, и - центры ограничивающих линзу сферических поверхностей

Итак, рассмотрим линзу, ограниченную двумя сферическими преломляющими поверхностями и (рис. 193). Центр первой преломляющей поверхности лежит в точке центр второй поверхности - в точке . На рис. 193 для ясности изображена линза, имеющая заметную толщину . В действительности мы будем обычно предполагать, что рассматриваемые линзы очень тонки, т. е. расстояние очень мало по сравнению с или . В таком случае точки и можно считать практически сливающимися в одной точке . Эта точка называется оптическим центром линзы.

Всякая прямая, проходящая через оптический центр, называется оптической осью линзы. Та из осей, которая проходит через центры обеих преломляющих поверхностей линзы, называется главной оптической осью, остальные - побочными осями.

Луч, идущий по какой-либо из оптических осей, проходя через линзу, практически не меняет своего направления. Действительно, для лучей, идущих вдоль оптической оси, участки обеих поверхностей линзы можно считать параллельными, а толщину линзы мы считаем весьма малой. При прохождении же через плоскопараллельную пластинку, как мы знаем, световой луч претерпевает параллельное смещение, но смещением луча в очень тонкой пластинке можно пренебречь (см. упражнение 26 после гл. IX).

Если на линзу падает световой луч не вдоль одной из ее оптических осей, а по какому-либо другому направлению, то он, испытав преломление сначала на первой ограничивающей линзу поверхности, потом на второй, отклонится от первоначального направления.

Прикроем линзу черной бумагой 1 с вырезом, оставляющим открытым небольшой участок около главной оптической оси (рис. 194). Размеры выреза мы предполагаем малыми по сравнению с и . Пустим на линзу 2 вдоль главной оптической оси ее слева направо параллельный пучок света. Лучи, идущие сквозь открытую часть линзы, преломится и пройдут через некоторую точку , лежащую на главной оптической оси, справа от линзы на расстоянии от оптического центра . Если в точке расположить белый экран 3, то место пересечения лучей изобразится в виде яркого пятнышка. Эта точка на главной оптической оси, где пересекаются после преломления в линзе лучи, параллельные главной оптической оси, называется главным фокусом, а расстояние - фокусным расстоянием линзы.

Рис. 194. Главный фокус линзы

Нетрудно показать, пользуясь законами преломления, что все лучи, параллельные главной оптической осп и проходящие через небольшую центральную часть линзы, после преломления действительно пересекутся в одной точке, названной выше главным фокусом.

Рассмотрим луч , падающий на линзу параллельно ее главной оптической оси. Пусть этот луч встречает первую преломляющую поверхность линзы в точке на высоте над осью, причем гораздо меньше, чем и (рис. 195). Преломленный луч пойдет по направлению и, преломившись снова на второй ограничивающей линзу поверхности, выйдет из линзы по направлению , составляющему с осью угол . Точку пересечения этого луча с осью обозначим через , а расстояние от этой точки до оптического центра линзы - через .

Проведем через точки и плоскости, касательные к преломляющим поверхностям линзы. Эти касательные плоскости (перпендикулярные к плоскости чертежа) пересекутся под некоторым углом , причем угол весьма мал, так как рассматриваемая нами линза - тонкая. Вместо преломления луча в линзе мы, очевидно, можем рассматривать преломление того же луча в тонкой призме , образованной проведенными нами в точках и касательными плоскостями.

Рис. 195. Преломление в линзе луча , параллельного главной оптической оси. (Толщина линзы и высота к изображены преувеличенными по сравнению с расстояниями , и в соответствии с этим в углы и на рисунке чрезмерно велики.)

Мы видели в § 86, что при преломлении в тонкой призме с преломляющим углом луч отклоняется от первоначального направления на угол, равный

где есть показатель преломления вещества, из которого сделана призма. Очевидно, угол равен углу (рис. 195), т. е.

. (88.2)

Пусть и - центры сферических преломляющих поверхностей линзы, а и - соответственно радиусы этих поверхностей. Радиус перпендикулярен к касательной плоскости, а радиус - к касательной плоскости . По известной теореме геометрии угол между этими перпендикулярами, который мы обозначим , равен углу между плоскостями:

С другой стороны, угол , как внешний угол в треугольнике , равен сумме углов и образуемых радиусами и с осью:

Таким образом, с помощью формул (88.2) - (88.4) находим

(88.5)

Мы предположили, что мала по сравнению с радиусами сферических поверхностей и и с расстоянием точки от оптического центра линзы. Поэтому углы г и также малы, и мы можем заменить синусы этих углов самими углами. Далее, благодаря тому, что линза тонкая, мы можем пренебречь ее толщиной, считая ; , а также пренебречь разницей в высоте точек и , считая, что они расположены на одной и той же высоте к над осью. Таким образом, мы можем приближенно считать, что

Подставляя эти равенства в формулу (88.5), найдем

, (88.7) от оптического центра линзы.

Таким образом, доказано, что линза имеет главный фокус, и формула (88.9) показывает, как фокусное расстояние зависит от показателя преломления вещества, из которого сделана линза, и от радиусов кривизны ее преломляющих поверхностей.

Мы предполагали, что параллельный пучок лучей падает на линзу слева направо. Существо дела не изменится, конечно, если на линзу направить такой же пучок лучей, идущих в обратном направлении, т. е. справа налево. Этот пучок лучей, параллельных главной оси, соберется снова в одной точке - втором фокусе линзы (рис. 196) на расстоянии от ее оптического центра. На основании формулы (88.9) заключаем, что , т. е. оба фокуса лежат симметрично по обе стороны линзы.

Фокус называется обычно передним фокусом, фокус - задним фокусом; соответственно этому расстояние называется передним фокусным расстоянием, расстояние - задним фокусным расстоянием.

Рис. 196. Фокусы линзы

Если в фокусе линзы поместить точечный источник света, то каждый из лучей, выйдя из этой точки и преломившись в линзе, пойдет далее параллельно главной оптической оси линзы, в согласии с законом обратимости световых лучей (см. § 82). Таким образом, из линзы выйдет в этом случае пучок лучей, параллельных главной оси.

При практическом применении полученных нами соотношений необходимо всегда помнить о сделанных при выводе их упрощающих предположениях. Мы считали, что параллельные лучи падают на линзу на очень малом расстоянии от оси. Это условие не выполняется вполне строго. Поэтому после преломления в линзе точки пересечения лучей не будут строго совпадать между собой, а займут некоторый конечный объем. Если мы поставим в этом месте экран, то получим на нем не геометрическую точку, а всегда более или менее расплывчатое светлое пятнышко.

Другое обстоятельство, которое нужно помнить, состоит в том, что мы не можем осуществить строго точечный источник света. Поэтому, поместив в фокусе линзы источник хотя бы очень малых, но всегда конечных размеров, мы не получим с помощью линзы строго параллельный пучок лучей.

В § 70 были указано, что строго параллельный пучок лучей не имеет физического смысла. Сделанные замечание показывает, что рассмотренные свойства линзы находятся в согласии с этим общим физическим положением.

В каждом отдельном случае применения линзы к определенному источнику света для получения параллельного пучка лучей или, наоборот, при применении линзы для фокусировки параллельного пучка надо специально проверять степень отступления от тех упрощающих условий, при которых выведены формулы. Но существенные черты явления преломления световых лучей в линзе эти формулы передают правильно, а об отступлениях от них речь будет идти позже.

Существует два условно разных типа задач:

  • задачи на построение в собирающей и рассеивающей линзах
  • задачи на формулу для тонкой линзы

Первый тип задач основан на фактическом построении хода лучей от источника и поиска пересечения преломлённых в линзах лучей. Рассмотрим ряд изображений, полученных от точечного источника, который будем помещать на различных расстояниях от линз. Для собирающей и рассеивающей линзу существуют рассмотренные (не нами) траектории распространения луча (рис. 1) от источника .


Рис.1. Собирающая и рассеивающая линзы (ход лучей)

Для собирающей линзы (рис. 1.1) лучи:

  1. синий. Луч, идущий вдоль главной оптической оси, после преломления проходит через передний фокус.
  2. красный. Луч, идущий через передний фокус, после преломления распространяется параллельно главной оптической оси.

Пересечение любых из этих двух лучей (чаще всего выбирают лучи 1 и 2) дают ().

Для рассеивающей линзы (рис. 1.2) лучи:

  1. синий. Луч, идущий параллельно главной оптической оси, преломляется так, что продолжения луча проходит через задний фокус.
  2. зелёный. Луч, проходящий через оптический центр линзы, не испытывает преломления (не отклоняется от первоначального направления).

Пересечение продолжений рассмотренных лучей даёт ().

Аналогично , получим набор изображений от предмета, расположенного на различных расстояниях от зеркала. Введём те же обозначения: пусть — расстояние от предмета до линзы, — расстояние от изображения до линзы, — фокусное расстояние (расстояние от фокуса до линзы).

Для собирающей линзы :


Рис. 2. Собирающая линза (источник в бесконечности)

Т.к. все лучи, идущие параллельно главной оптической оси линзы, после преломления в линзе проходят через фокус, то точка фокуса и является точкой пересечения преломлённых лучей, тогда она же и есть изображение источника (точечное, действительное ).


Рис. 3. Собирающая линза (источник за двойным фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Для визуализации изображения введём описание предмета через стрелку. Точка пересечения преломившихся лучей — изображение (уменьшенное, действительное, перевёрнутое ). Положение — между фокусом и двойным фокусом.


Рис. 4. Собирающая линза (источник в двойном фокусе)

того же размера, действительное, перевёрнутое ). Положение — ровно в двойном фокусе.


Рис. 5. Собирающая линза (источник между двойным фокусом и фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Точка пересечения преломившихся лучей — изображение (увеличенное, действительное, перевёрнутое ). Положение — за двойным фокусом.


Рис. 6. Собирающая линза (источник в фокусе)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). В этом случае, оба преломлённых луча оказались параллельными друг другу, т.е. точка пересечения отражённых лучей отсутствует. Это говорит о том, что изображения нет .


Рис. 7. Собирающая линза (источник перед фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Однако преломлённые лучи расходятся, т.е. сами преломлённые лучи не пересекутся, зато могут пересечься продолжения этих лучей. Точка пересечения продолжений преломлённых лучей — изображение (увеличенное, мнимое, прямое ). Положение — по ту же сторону, что и предмет.

Для рассеивающей линзы построение изображений предметов практически не зависит от положения предмета, так что ограничимся произвольным положением самого предмета и характеристикой изображения.


Рис. 8. Рассеивающая линза (источник в бесконечности)

Т.к. все лучи, идущие параллельно главной оптической оси линзы, после преломления в линзе должны проходить через фокус (свойство фокуса), однако после преломления в рассеивающей линзе лучи должны расходится. Тогда в фокусе сходятся продолжения преломившихся лучей. Тогда точка фокуса и является точкой пересечения продолжений преломлённых лучей, т.е. она же и есть изображение источника (точечное, мнимое ).

  • любое другое положение источника (рис. 9).


Тема. Решение задач по теме "Линзы. Построение изображений в тонкой линзе. Формула линзы".


Цель:

  • - рассмотреть примеры решения задач на применение формулы тонкой линзы, свойства основных лучей и правила построения изображений в тонкой линзе, в системе двух линз.

Ход занятия

Прежде чем приступить к выполнению задания, необходимо повторить определения главной и побочной оптических осей линзы, фокуса, фокальной плоскости, свойства основных лучей при построении изображений в тонких линзах, формулу тонкой линзы (собирающей и рассеивающей), определение оптической силы линзы, увеличения линзы.

Для проведения занятия учащимся предлагается несколько расчетных задач с объяснением их решения и задачи для самостоятельной работы.

Качественные задачи

  1. С помощью собирающей линзы на экране получено действительное изображение предмета с увеличением Г 1 . Не изменяя положение линзы, поменяли местами предмет и экран. Каким окажется увеличение Г 2 в этом случае?
  2. Как надо расположить две собирающие линзы с фокусными расстояниями F 1 и F 2 , чтобы параллельный пучок света, пройдя через них, остался параллельным?
  3. Объясните, почему для того, чтобы получить четкое изображение предмета, близорукий обычно щурит глаза?
  4. Как изменится фокусное расстояние линзы, если ее температура повысится?
  5. На рецепте врача написано: +1,5 Д. Расшифруйте, какие это очки и для каких глаз?

Примеры решения расчетных задач


Задача 1. Заданы главная оптическая ось линзы NN , положение источника S и его изображения S ´. Найдите построением положение оптического центра линзы С и ее фокусов для трех случаев (рис. 1).

Решение:

Для нахождения положения оптического центра С линзы и ее фокусов F используем основные свойства линзы и лучей, проходящих через оптический центр, фокусы линзы или параллельно главной оптической оси линзы.

Случай 1. Предмет S и его изображение расположены по одну сторону от главной оптической оси NN (рис. 2).


Проведем через S и S ´ прямую (побочную ось) до пересечения с главной оптической осью NN в точке С . Точка С определяет положение оптического центра линзы, расположенной перпендикулярно оси NN . Лучи, идущие через оптический центр С , не преломляются. Луч SA , параллельный NN , преломляется и идет через фокус F и изображение S ´, причем через S ´ идет продолжение луча SA . Это значит, что изображение S ´ в линзе является мнимым. Предмет S расположен между оптическим центром и фокусом линзы. Линза является собирающей.

Случай 2. Проведем через S и S ´ побочную ось до пересечения с главной оптической осью NN в точке С - оптическом центре линзы (рис. 3).


Луч SA , параллельный NN , преломляясь, идет через фокус F и изображение S ´, причем через S ´ идет продолжение луча SA . Это значит, что изображение мнимое, а линза, как видно из построения, рассеивающая.

Случай 3. Предмет S и его изображение лежат по разные стороны от главной оптической оси NN (рис. 4).


Соединив S и S ´, находим положение оптического центра линзы и положение линзы. Луч SA , параллельный NN , преломляется и через фокус F идет в точку S ´. Луч через оптический центр идет без преломления.

Задача 2. На рис. 5 изображен луч АВ , прошедший сквозь рассеивающую линзу. Постройте ход луча падающего, если положение фокусов линзы известно.


Решение:

Продолжим луч АВ до пересечения с фокальной плоскостью РР в точке F ´ и проведем побочную ось ОО через F ´ и С (рис. 6).


Луч, идущий вдоль побочной оси ОО , пройдет, не меняя своего направления, луч DA , параллельный ОО , преломляется по направлению АВ так, что его продолжение идет через точку F ´.

Задача 3. На собирающую линзу с фокусным расстоянием F 1 = 40 см падает параллельный пучок лучей. Где следует поместить рассеивающую линзу с фокусным расстоянием F 2 = 15 см, чтобы пучок лучей после прохождения двух линз остался параллельным?

Решение: По условию пучок падающих лучей ЕА параллелен главной оптической оси NN , после преломления в линзах он должен таковым и остаться. Это возможно, если рассеивающая линза расположена так, чтобы задние фокусы линз F 1 и F 2 совпали. Тогда продолжение луча АВ (рис. 7), падающего на рассеивающую линзу, проходит через ее фокус F 2 , и по правилу построения в рассеивающей линзе преломленный луч BD будет параллелен главной оптической оси NN , следовательно, параллелен лучу ЕА . Из рис. 7 видно, что рассеивающую линзу следует поместить на расстоянии d=F 1 -F 2 =(40-15)(см)=25 см от собирающей линзы.


Ответ: на расстоянии 25 см от собирающей линзы.

Задача 4. Высота пламени свечи 5 см. Линза дает на экране изображение этого пламени высотой 15 см. Не трогая линзы, свечу отодвинули на l = 1,5 см дальше от линзы и, придвинув экран, вновь получили резкое изображение пламени высотой 10 см. Определите главное фокусное расстояние F линзы и оптическую силу линзы в диоптриях.

Решение: Применим формулу тонкой линзы , где d - расстояние от предмета до линзы, f - расстояние от линзы до изображения, для двух положений предмета:

. (2)


Из подобных треугольников АОВ и A 1 OB 1 (рис. 8) поперечное увеличение линзы будет равно = , откуда f 1 = Γ 1 d 1 .

Аналогично для второго положения предмета после передвижения его на l : , откуда f 2 = (d 1 + l )Γ 2 .
Подставляя f 1 и f 2 в (1) и (2), получим:

. (3)
Из системы уравнений (3), исключив d 1 , находим

.
Оптическая сила линзы

Ответ: , дптр.

Задача 5. Двояковыпуклая линза, сделанная из стекла с показателем преломления n = 1,6, имеет фокусное расстояние F 0 = 10 см в воздухе (n 0 = 1). Чему будет равно фокусное расстояние F 1 этой линзы, если ее поместить в прозрачную среду с показателем преломления n 1 = 1,5? Определите фокусное расстояние F 2 этой линзы в среде с показателем преломления n 2 = 1,7.

Решение:

Оптическая сила тонкой линзы определяется формулой

,
где n л - показатель преломления линзы, n ср - показатель преломления среды, F - фокусное расстояние линзы, R 1 и R 2 - радиусы кривизны ее поверхностей.

Если линза находится в воздухе, то

; (4)
n 1:

; (5)
в среде с показателем преломления n :

. (6)
Для определения F 1 и F 2 выразим из (4):

.
Подставим полученное значение в (5) и (6). Тогда получим

см,

см.
Знак "-" означает, что в среде с показателем преломления большим, чем у линзы (в оптически более плотной среде) собирающая линза становится рассеивающей.

Ответ: см, см.

Задача 6. Система состоит из двух линз с одинаковыми по модулю фокусными расстояниями. Одна из линз собирающая, другая рассеивающая. Линзы расположены на одной оси на некотором расстоянии друг от друга. Известно, что если поменять линзы местами, то действительное изображение Луны, даваемое этой системой, сместится на l = 20 см. Найдите фокусное расстояние каждой из линз.

Решение:

Рассмотрим случай, когда параллельные лучи 1 и 2 падают на рассеивающую линзу (рис. 9).


После преломления их продолжения пересекаются в точке S , являющейся фокусом рассеивающей линзы. Точка S является "предметом" для собирающей линзы. Ее изображение в собирающей линзе получим по правилам построения: лучи 1 и 2, падающие на собирающую линзу, после преломления проходят через точки пересечения соответствующих побочных оптических осей ОО и O´O´ с фокальной плоскостью РР собирающей линзы и пересекаются в точке S ´ на главной оптической оси NN , на расстоянии f 1 от собирающей линзы. Применим для собирающей линзы формулу

, (7)
где d 1 = F + a .


Пусть теперь лучи падают на собирающую линзу (рис. 10). Параллельные лучи 1 и 2 после преломления соберутся в точке S (фокусе собирающей линзы). Падая на рассеивающую линзу, лучи преломляются в рассеивающей линзе так, что продолжения этих лучей проходят через точки пересечения К 1 и К 2 соответствующих побочных осей О 1 О 1 и О 2 О 2 с фокальной плоскостью РР рассеивающей линзы. Изображение S ´ находится в точке пересечения продолжений вышедших лучей 1 и 2 с главной оптической осью NN на расстоянии f 2 от рассеивающей линзы.
Для рассеивающей линзы

, (8)
где d 2 = a - F .
Из (7) и (8) выразим f 1 и -f 2:NN и луча SA после преломления идущего в направлении A S ´ по правилам построения (через точку К 1 пересечения побочной оптической оси ОО , параллельной падающему лучу SA , с фокальной плоскостью Р 1 Р 1 собирающей линзы). Если поставить рассеивающую линзу Л 2 , то луч A S ´ изменяет направление в точке К , преломляясь (по правилу построения в рассеивающей линзе) в направлении K S ´´. Продолжение K S ´´ проходит через точку К 2 пересечения побочной оптической оси 0 ´0 ´ с фокальной плоскостью Р 2 Р 2 рассеивающей линзы Л 2 .

По формуле для рассеивающей линзы

,
где d - расстояние от линзы Л 2 до предмета S ´, f - расстояние от линзы Л 2 до изображения S ´´.

Отсюда см.
Знак "-" указывает, что линза рассеивающая.

Оптическая сила линзы дптр.

Ответ: см, дптр.

Задачи для самостоятельной работы


  1. Касьянов В.А. Физика. 11 кл.: Учебн. для общеобразоват. учреждений. - 2-е изд., дополн. - М.: Дрофа, 2004. - С. 281-306.
  2. Элементарный учебник физики /Под ред акад. Г.С. Ландсберга. - Т. 3. - М.: Физматлит, 2000 и предшествующие издания.
  3. Бутиков Е.И., Кондратьев А.С. Физика. Т. 2. Электродинамика. Оптика. - М.: Физматлит: Лаборатория базовых знаний; СПб.: Невский диалект, 2001. - С. 308-334.
  4. Белолипецкий С.Н., Еркович О.С., Казаковцева В.А. и др. Задачник по физике. - М.: Физматлит, 2005. - С. 215-237.
  5. Буховцев Б.Б., Кривченков В.Д., Мякишев Г.Я., Сараева И.М. Задачи по элементарной физике. - М.: Физматлит, 2000 и предшествующие издания.

Преломление света - изменение направления распространения оптического излучения (света) при его прохождении через границу раздела двух сред.

Законы преломления света:

1) Луч падающий, луч преломленный и перпендикуляр, восставленный в точку падения к границе раздела двух сред, лежат в одной плоскости.

2) Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данной пары сред. Эта постоянная называется показателем преломления n 21 второй среды относительно первой:

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления n 21 =n 2 /n 1

Абсолютным показателем преломления среды называется величина n, равная отношению скорости с электромагнитных волн в вакууме к их фазовой скорости v в среде n=c/v

3) Луч света, падающий на поверхность раздела двух сред перпендикулярно поверхности, проходит в другую среду, не преломляясь.

4) Падающий и преломленный лучи обратимы: если падающий луч направить по пути преломленного луча, то преломленный луч пойдет по пути падающего луча.

Полное внутреннее отражение - отражение света на поверхности раздела двух прозрачных веществ, не сопровождаемое преломлением. Полное внутреннее отражение происходит при падении пучка света на поверхность, отделяющую данную среду от другой, оптически менее плотной среды, когда угол падения больше предельного угла преломления.

Ход лучей в линзе .

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Если толщина самой

линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой .

Линзы бывают собирающими и рассеивающими. Собирающие (положительные) линзы - это линзы, преобразующие пучок параллельных лучей в сходящийся. Рассеивающие (отрицательные) линзы - это линзы, преобразующие пучок параллельных лучей в расходящийся. Линзы, у которых середины толще чем края - собирающие, а у которых толще края - рассеивающие.

Прямая, проходящая через центры кривизны O1 и O2 сферических поверхностей, называется главной оптической осью линзы . В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы O . Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления. Все прямые, проходящие через оптический центр, называются побочными оптическими осями.

Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F, которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, расположенных симметрично на главной оптической оси относительно линзы. У собирающих линз фокусы действительные, у рассеивающих – мнимые. Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F", которая расположена при пересечении побочной оси с фокальной плоскостью Ф, то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус. Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием. Оно обозначаетcя той же буквой F. У собирающей линзы считают F > 0, у рассеивающей F < 0.

Величину D, обратную фокусному расстоянию, называют оптической силой линзы. Единицей измерения оптической силы в СИ является диоптрия (дптр).

Ход лучей в линзах

Основное свойство линз – способность давать изображения предметов. Изображения бывают прямыми или перевернутыми, действительными или мнимыми, увеличенными или уменьшенными.

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей (замечательных лучей), ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Построение изображения в тонкой линзе:

1. Луч, параллельный главной оптической оси, проходит через точку главного фокуса.

2. Луч, параллельный побочной оптической оси, проходит через побочный фокус (точку на побочной оптической оси).

3. Луч, проходящий через оптический центр линзы, не преломляется.

4. Действительное изображение - пересечение лучей. Мнимое изображение - пересечение продолжений лучей

Собирающая линза

1. Если предмет располагается за двойным фокусом.

Чтобы построить изображение предмета, нужно пустить два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы, он пройдет, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета. Точно так же строится изображение нижней точки предмета. В результате построения получается уменьшенное, перевернутое, действительное изображение.

2.Если предмет располагается в точке двойного фокуса.

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы, он пройдет через линзу, не преломившись. На пересечении двух лучей ставим точку А1. Это и будет изображение верхней точки предмета. Точно так же строится изображение нижней точки предмета. В результате построения получается изображение, высота которого совпадает с высотой предмета. Изображение является перевернутым и действительным

3. Если предмет располагается в пространстве между фокусом и двойным фокусом

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы. Через линзу он проходит, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета. Точно так же строится изображение нижней точки предмета. В результате построения получается увеличенное, перевернутое, действительное изображение

Рассеивающая линза

Предмет располагается перед рассеивающей линзой.

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется таким образом, что продолжение этого луча пойдет в фокус. А второй луч, который проходит через оптический центр, пересекает продолжение первого луча в точке А’, – это и будет изображение верхней точки предмета.Таким же образом строится изображение нижней точки предмета. В результате получается прямое, уменьшенное, мнимое изображение. При перемещении предмета относительно рассеивающей линзы всегда получается прямое, уменьшенное, мнимое изображение. При перемещении предмета относительно рассеивающей линзы всегда получается прямое, уменьшенное, мнимое изображение.

Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью

формулы тонкой линзы. Если расстояние от предмета до линзы обозначить через d, а расстояние от линзы до изображения через f, то формулу тонкой линзы можно записать в виде:

Величины d и f также подчиняются определенному правилу знаков: d > 0 и f > 0 – для действительных предметов

(то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений; d < 0 и f < 0 – для мнимых источников и изображений.



Похожие публикации