Составные части нейрона. Open Library - открытая библиотека учебной информации

Нейрон - это основная структурная и фун­кциональная единица нервной системы. Нейроном называют нерв­ную клетку с отростками (цвет. табл. III, А). В нем различают тело клетки, или сому, один длинный, мало ветвящийся отросток - аксон и много (от 1 до 1000) коротких, сильно ветвящихся отрост­ков- дендритов. Длина аксона достигает метра и более, его диа­метр колеблется от сотых долей микрона (мкм) до 10 мкм; длина дендрита может достигать 300 мкм, а его диаметр - 5 мкм.

Аксон, выходя из сомы клетки, постепенно суживается, от него отходят отдельные отростки - коллатерали. На протяжении первых 50-100 мкм от тела клетки аксон не покрыт миелиновой оболочкой. Прилегающий к нему участок тела клетки называют аксонным хол­миком. Участок аксона, не покрытый миелиновой оболочкой, вместе с аксонным холмиком называют начальным сегментом аксона. Эти участки отличаются рядом морфологических и функциональных особенностей.

По дендритам возбуждение приходит от рецепторов или дру­гих нейронов к телу клетки, а аксон передает возбуждение от одно­го нейрона к другому или рабочему органу. На дендритах имеются боковые отростки (шипики), которые увеличивают их поверхность и являются местами наибольших контактов с другими нейронами. Конец аксона сильно ветвится, один аксон может контактировать с 5 тыс. нервных клеток и создавать до 10 тыс. контактов (рис. 26, А).

Место контакта одного нейрона с другим получило название синапса (от греческого слова «синапто» - контактировать). По внешнему виду синапсы имеют форму пуговки, луковицы, петли и др.

Количество синаптических контактов неодинаково на телœе и отростках нейрона и очень вариабильно в различных отделах цент­ральной нервной системы. Тело нейрона на 38% покрыто синапса­ми, и их насчитывают до 1200-1800 на одном нейроне. Много синапсов на дендритах и шипиках, их количество невелико на аксонном холмике.

Все нейроны центральной нервной системы соединяются друг с другом в основном в одном направлении : разветвления аксона одного нейрона контактируют с телом клетки и дендритами другого нейрона.

Тело нервной клетки в различных отделах нервной системы име­ет разную величину (диаметр его колеблется от 4 до 130 мкм) и форму (округлую, уплощенную, многоугольную, овальную). Оно покрыто сложно устроенной мембраной и содержит органеллы, свойственные любой другой клетке: в цитоплазме находятся ядро с одним или несколькими ядрышками, митохондрии, рибосомы, аппа­рат Гольджи, эндоплазматическая сеть и др.

Характерной особенностью строения нервной клетки является наличие гранулярного ретикулума с большим количеством рибосом и нейрофибрилл. С рибосомами в нервных клетках связывают высо­кий уровень обмена веществ, синтез белка и РНК.

В ядре содержится генетический материал - дезоксирибонуклеи-новая кислота (ДНК), которая регулирует состав РНК сомы ней­рона. РНК в свою очередь определяет количество и тип белка, син­тезируемого в нейроне.

Нейрофибриллы представляют собой тончайшие волоконца, пересекающие тело клетки во всœех направлениях (рис. 26, Б) и про­должающиеся в отростки.

Нейроны различают по строению и функции. По строению (в за­висимости от количества отходящих от тела клетки отростков) различают униполярные (с одним отростком), биполярные (с двумя отростками) и мультиполярные (с множеством отростков) нейроны.

По функциональным свойствам выделяют афферентные (или центростремительные) нейроны, несущие возбуждение от рецепто­ров в центральную нервную систему, эфферентные, двигательные, мотонейроны (или центробежные), передающие возбуждение из центральной нервной системы к иннервируемому органу, и вставоч­ные, контактные или промежуточные нейроны, соединяющие между собой афферентные и эфферентные пути.

Афферентные нейроны относятся к униполярным, их тела лежат в спинномозговых ганглиях. Отходящий от тела клетки отросток Т-образно делится на две ветви, одна из которых идет в централь­ную нервную систему и выполняет функцию аксона, а другая под­ходит к рецепторам и представляет собой длинный дендрит.

Большинство эфферентных и вставочных нейронов относится к мультиполярным. Мультиполярные вставочные нейроны в большом количестве располагаются в задних рогах спинного мозга, находят­ся и во всœех других отделах центральной нервной системы. Οʜᴎ бывают и биполярными, как к примеру нейроны сетчатки, имею­щие короткий ветвящийся дендрит и длинный аксон. Мотонейроны располагаются в основном в передних рогах спинного мозга.

Функции нейрона

Свойства нейрона

Основные закономерности проведения возбуждения по нервным волокнам

Проводниковая функция нейрона.

Морфофункциональные свойства нейрона.

Строение и физиологические функции мембраны нейрона

Классификация нейронов

Строение нейрона и его функциональные части.

Свойства и функции нейрона

· высокая химическая и электрическая возбудимость

· способность к самовозбуждению

· высокая лабильность

· высокий уровень энергообмена. Нейрон не прибывает в состоянии покоя.

· низкая способность к регенерации (рост нейритов всего лишь 1 мм в сутки)

· способность к синтезу и секреции химических веществ

· высокая чувствительность к гипоксии, ядам, фармакологическим препаратам.

· воспринимающая

· передающая

· интегрирующая

· проводниковая

· мнестическая

Структурной и функциональной единицей нервной системы является нервная клетка – нейрон. Количество нейронов в нервной системе составляет примерно10 11 . На одном нейроне может быть до 10000 синапсов. Если только синапсы считать ячейками хранения информации, то можно заключить, что нервная система человека может хранить 10 19 ед. информации, т. е. способна вместить все знания, накопленные человечеством. Поэтому предположение о том, что мозг человека запоминает все происходящее в течение жизни в организме и при взаимодействии со средой биологически является вполне обоснованным.

Морфологически выделяют следующие составные части нейрона: тело (сома) и выросты цитоплазмы – многочисленные и, как правило, короткие ветвящиеся отростки, дендриты, и один наиболее длинный отросток – аксон. Выделяют также аксонный холмик – место выхода аксона из тела нейрона. Функционально принято выделять три части нейрона: воспринимающую – дендриты и мембрана сомы нейрона, интегративную – сома с аксонным холмиком и передающую – аксонный холмик и аксон.

Тело клетки содержит ядро и аппарат синтеза ферментов и других молекул, необходимых для жизнедеятельности клетки. Обычно тело нейрона имеет при­близительно сферическую или пирамидальную форму.

Дендриты – основное воспринимающее поле нейрона. Мембрана нейрона и синаптической части тела клетки способна реагировать на медиаторы, выделяемые в синапсах, изменением электрического потенциала. Нейрон как информационная структура должен иметь большое количество входов. Обычно нейрон имеет несколько ветвящихся дендритов. Информация от других нейронов поступает к нему через специализированные контакты на мембране – шипики. Чем сложнее функция данной нервной структуры, чем больше сенсорных систем посылают к ней информацию, тем больше шипиков на дендритах нейронов. Максимальное их количество содержится на пирамидных нейронах двигательной зоны коры большого мозга и достигает нескольких тысяч. Шипики занимают до 43% поверхности мембраны сомы и дендритов. За счет шипиков воспринимающая поверхность нейрона значительно возрастает и может достигать, например, у клеток Пуркинье, 250 000 мкм 2 (сравним с размером нейрона – от 6 до 120 мкм). Важно подчеркнуть, что шипики являются не только структурным, но и функциональным образованием: их количество определяется информацией, поступающей к нейрону; если данный шипик или группа шипиков длительное время не получают информации, они исчезают.



Аксон представляет собой вырост цитоплазмы, приспособленный для проведения информации, собранной дендритами, переработанной в нейроне и переданной через аксонный холмик. На конце аксона находится аксонный холмик - генератор нервных импульсов. Аксон данной клетки имеет постоянный диаметр, в большинстве случаев одет в миелиовую оболочку, образованную из глии. На конце аксон имеет разветвления, в которых находятся митохондрии и секреторные образования – везикулы.

Тело и дендриты нейронов являются структурами, которые осуществляют интеграцию поступающих к нейрону многочисленных сигналов. За счет огромного количества синапсов на нервных клетках происходит взаимодействие многих ВПСП (возбуждающих постсинаптических потенциалов) и ТПСП (тормозных постсинаптических потенциалов), (об этом будет более подробно сказано во второй части); результатом такого взаимодействия является появление на мембране аксонного холмика потенциалов действия. Длительность ритмического разряда, число импульсов в одном ритмическом разряде и продолжительность интервала между разрядами являются основным способом кодирования информации, которую передает нейрон. Наиболее высокая частота импульсов в одном разряде наблюдается у вставочных нейронов, поскольку у них следовая гиперполяризация значительно короче, чем у двигательных нейронов. Восприятие поступающих к нейрону сигналов, взаимодействие возникающих под их влиянием ВПСП и ТПСП, оценка их приоритета, изменение метаболизма нервных клеток и формирование в итоге различной временной последовательности потенциалов действия составляет уникальную характеристику нервных клеток – интегративную деятельность нейронов.

Рис. Мотонейрон спинного мозга позвоночных. Указаны функции разных его частей.Области возникновения градуальных и импульсных электрических сигналов в нейронной цепи: Градуальные потенциалы, возникающие в чувствительных окончаниях афферентных (чувствительных, сенсорных) нервных клеток в ответ на раздражитель, приблизительно соответствуют его величине и длительности, хотя они и не бывают строго пропорциональным амплитуде раздражителя и не повторяют его конфигурацию. Эти потенциалы распространяются по телу чувствительного нейрона и вызывают в его аксоне импульсные распространяющиеся потенциалы действия. Когда потенциал действия достигает окончания нейрона, происходит выброс медиатора, приводящий к появлению градуального потенциала в следующем нейроне. Если в свою очередь этот потенциал достигает порогового уровня, в этом постсинаптическом нейроне появляется потенциал действия или серия таких потенциалов. Таким образом в нервной цепи наблюдается чередование градуальных и импульсных потенциалов.

Классификация нейронов

Существует несколько типов классификации нейронов.

По строению нейроны делят на три типа: униполярные, биполярные и мультиполярные.

Истинно униполярные нейроны находятся только в ядре тройничного нерва. Эти нейроны обеспечивают проприоцептивную чувствительность жевательных мышц. Остальные униполярные нейроны называют псевдоуниполярными, поскольку на самом деле они имеют два отростка, один идет с периферии нервной системы, а другой – в структуры центральной нервной системы. Оба отростка сливаются вблизи тела нервной клетки в один отросток. Такие псевдоуниполярные нейроны располагаются в сенсорных узлах: спинальных, тройничном и др. Они обеспечивают восприятие тактильной, болевой, температурной, проприоцептивной, барорецептивной, вибрационной чувствительности. Биполярные нейроны имеют один аксон и один дендрит. Нейроны этого типа встречаются в основном в периферических частях зрительной, слуховой и обонятельной систем. Дендрит биполярного нейрона связан с рецептором, а аксон – с нейроном следующего уровня соответствующей сенсорной системы. Мультиполярные нейроны имеют несколько дендритов и один аксон; все они являются разновидностями веретенообразных, звездчатых, корзинчатых и пирамидных клеток. Перечисленные типы нейронов можно видеть на слайдах.

В зависимости от природы синтезируемого медиатора нейроны делятся на холинергические, норадреналинергические, ГАМК-ергические, пептидергические, дофамиергические, серотонинергические и др. Наибольшее число нейронов имеет, по-видимому, ГАМК-ергическую природу – до 30%, холинергические системы объединяют до 10 – 15%.

По чувствительности к действию раздражителей нейроны делят на моно- , би- и полисенсорные . Моносенсорные нейроны располагаются чаще в проекционных зонах коры и реагируют только на сигналы своей сенсорности. Например, большая часть нейронов первичной зоны зрительной области коры реагируют только на световое раздражение сетчатки глаза. Моносенсорные нейроны функционально подразделяются по их чувствительности к разным качествам своего раздражителя. Так, отдельные нейроны слуховой зоны коры большего мозга могут реагировать на предъявления тона частотой 1000 Гц и не реагировать на тоны другой частоты, такие нейроны называются мономодальными. Нейроны, реагирующие на два разных тона, называются бимодальными, на три и более – полимодальными. Бисенсорные нейроны обычно располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Наример, нейроны вторичной зоны зрительной области коры реагируют на зрительные и слуховые стимулы. Полисенсорные нейроны чаще всего располагаются в ассоциативных зонах мозга; они способны реагировать на раздражение слуховой, кожной, зрительной и других сенсорных систем.

По типу импульсации нейроны делятся на фоновоактивные , то есть возбуждающиеся без действия раздражителя и молчащие , которые проявляют импульсную активность только в ответ на раздражение. Фоновоактивные нейроны имеют большое значение в поддержании уровня возбуждения коры и других структур мозга; их число увеличивается в состоянии бодрствования. Имеется несколько типов импульсации фоновоактивных нейронов. Непрерывно–аритмичный – если нейрон генерирует импульсы непрерывно с некоторым замедлением или увеличением частоты разрядов. Такие нейроны обеспечивают тонус нервных центров. Пачечный тип импульсации – нейроны такого типа генерируют группу импульсов с коротким межимпульсным интервалом, после этого наступает период молчания и вновь возникает группа, или пачка импульсов. Межимпульсные интервалы в пачке равны от 1 до 3 мс, а период молчания составляет от 15 до 120 мс. Групповой тип активности характеризуется нерегулярным появлением группы импульсов с межимпульсным интервалом от 3 до 30 мс, после чего наступает период молчания.

Фоновоактивные нейроны делятся на возбуждающиеся и тормозящиеся, которые, соответственно, увеличивают или уменьшают частоту разряда в ответ на раздражение.

По функциональному назначению нейроны подразделяются на афферентные, интернейроны, или вставочные и эфферентные.

Афферентные нейроны выполняют функцию получения и передачи информации в вышележащие структуры ЦНС. Афферентные нейроны имеют большую разветвленную сеть.

Вставочные нейроны обрабатывают информацию, полученную от афферентных нейронов, и передают ее на другие вставочные или на эфферентные нейроны. Вставочные нейроны могут быть возбуждающими или тормозными.

Эфферентные нейроны – это нейроны, передающие информацию от нервного центра к другим центрам нервной системы или к исполнительным органам. Например, эфферентные нейроны двигательной зоны коры большого мозга – пирамидные клетки посылают импульсы к мотонейронам передних рогов спинного мозга, то есть они являются эфферентными для коры, но афферентными для спинного мозга. В свою очередь мотонейроны спинного мозга являются эфферентными для передних рогов и посылают импульсы к мышцам. Основной особенностью эфферентных нейронов является наличие длинного аксона, обеспечивающего большую скорость проведения возбуждения. Все нисходящие пути спинного мозга (пирамидный, ретикулоспинальный, руброспинальный и др.) образованы аксонами эфферентных нейронов соответствующих отделов центральной нервной системы. Нейроны автономной нервной системы, например, ядер блуждающего нерва, боковых рогов спинного мозга также относятся к эфферентным.

Нейроны, или нейроциты - специализированные клетки нервной системы, ответственные за рецепцию, обработку (процессинг) стимулов, проведение импульса и влияние на другие нейроны, мышечные или секреторные клетки. Нейроны выделяют нейромедиаторы и другие вещества, передающие информацию. Нейрон является морфологически и функционально самостоятельной единицей, но с помощью своих отростков осуществляет синаптический контакт с другими нейронами, образуя рефлекторные дуги - звенья цепи, из которой построена нервная система.

Нейроны отличаются большим разнообразием форм и размеров. Диаметр тел клеток-зерен коры мозжечка 4-6 мкм, а гигантских пирамидных нейронов двигательной зоны коры большого мозга - 130-150 мкм.

Обычно нейроны состоят из тела (перикариона) и отростков : аксона и различного числа ветвящихся дендритов.

Отростки нейронов

    Аксон (нейрит) - отросток, по которому импульс идёт от тел нейронов . Аксон всегда один. Он образуется раньше других отростков.

    Дендриты - отростки, по которым импульс идёт к телу нейрона . Клетка может иметь несколько или даже много дендритов. Обычно дендриты ветвятся, с чем связано их название (греч. dendron - дерево).

Виды нейронов

По количеству отростков различают:

    Иногда среди биполярных нейронов встречается псевдоуниполярный , от тела которого отходит один общий вырост - отросток, разделяющийся затем на дендрит и аксон. Псевдоуниполярные нейроны присутствуют в спинальных ганглиях .

    Различные типы нейронов:

    а - униполярный,

    б - биполярный,

    в - псевдоуниполярный,

    г - мультиполярный

    мультиполярные , имеющие аксон и много дендритов. Большинство нейронов мультиполярные.

По функции нейроциты делятся:

    афферентные (рецепторные, чувствительные, центростремительные) – воспринимают и передают импульсы в ЦНС под воздействием внутренней или внешней среды;

    ассоциативные (вставочные) - соединяют нейроны разных типов;

    эффекторные (эфферентныеные) - двигательные (моторные) или секреторные - передают импульсы от ЦНС на ткани рабочих органов, побуждая их к действию.

Ядро нейроцита - обычно крупное, круглое, содержит сильно деконденсированный хроматин. Исключение составляют нейроны некоторых ганглиев вегетативной нервной системы; например, в предстательной железе и шейке матки иногда встречаются нейроны, содержащие до 15 ядер. В ядре имеется 1, а иногда 2-3 крупных ядрышка. Усиление функциональной активности нейронов обычно сопровождается увеличением объема (и количества) ядрышек.

В цитоплазме имеется хорошо выраженная гранулярная ЭПС, рибосомы, пластинчатый комплекс и митохондрии.

Специальные органеллы:

    Базофильное вещество (хроматофильная субстанция или тигроидное вещество, или вещество/субстанция/глыбки Ниссля). Располагается в перикарионе (теле) и дендритах (в аксоне (нейрите) - отсутствует). При окрашивании нервной ткани анилиновыми красителями выявляется в виде базофильных глыбок и зерен различных размеров и форм. Электронная микроскопия показала, что каждая глыбка хроматофильной субстанции состоит из цистерн гранулярной эндоплазматической сети, свободных рибосом и полисом. Это вещество активно синтезирует белок. Оно активно, находится в динамическом состоянии, его количество зависит от состояния НС. При активной деятельности нейрона базофилия глыбок возрастает. При перенапряжении или травме глыбки распадаются и исчезают, процесс назыается хромолиз (тигролиз).

    Нейрофибриллы , состоящие из нейрофиламентов и нейротубул. Нейрофибриллы - это фибриллярные структуры из спиралевидно закрученных белков; выявляются при импрегнации серебром в виде волокон, расположенных в теле нейроцита беспорядочно, а в отростках - параллельными пучками; функция: опорно-механическая (цитоскелет) и участвуют в транспорте веществ по нервному отростку.

Включения: гликоген, ферменты, пигменты.

НЕЙРОН. ЕГО СТРОЕНИЕ И ФУНКЦИИ

Глава 1 МОЗГ

ОБЩИЕ СВЕДЕНИЯ

Традиционно со времён французского физиолога Биша (начало XIX в.) нервную систему разделяют на соматическую и вегетативную, в каждую из которых входят структуры головного и спинного мозга, называемые центральной нервной системой (ЦНС), а также лежащие вне спинного и головного мозга и поэтому относящиеся к периферической нервной системе нервные клетки и нервные волокна, иннервирующие органы и ткани организма.

Соматическая нервная система представлена эфферентными (двигательными) нервными волокнами, иннервирующими скелетную мускулатуру, и афферентными (чувствительными) нервными волокнами, идущими в ЦНС от рецепторов. Вегетативная нервная система включает в себя эфферентные нервные волокна, идущие к внутренним органам и рецепторам, и афферентные волокна от рецепторов внутренних органов. По морфологическим и функциональным особенностям вегетативная нервная система разделяется на симпатическую и парасимпатическую.

По своему развитию, а также структурной и функциональной организации нервная система человека имеет сходство с нервной системой разных видов животных, что существенно расширяет возможности её исследования не только морфологами и нейрофизиологами, но и психофизиологами.

У всех видов позвоночных нервная система развивается из пласта клеток на наружной поверхности эмбриона – эктодермы. Часть эктодермы, называемая нервной пластинкой, сворачивается в полую трубку, из которой формируются головной и спинной мозг. В основе этого формирования лежит интенсивное деление эктодермальных клеток и формирование нервных клеток. Каждую минуту формируется примерно 250 000 клеток [Коуэн, 1982].

Молодые несформированные нервные клетки постепенно мигрируют из областей, где они возникли, к местам своей постоянной локализации и объединяются в группы. В результате стенка трубки утолщается, сама трубка начинает трансформироваться, и на ней появляются идентифицируемые участки мозга, а именно: в её передней части, которая будет в дальнейшем заключена в череп, образуются три первичных мозговых пузыря – это rhombencephalon, или задний мозг; mesencephalon, или средний мозг, и prosencephalon, или передний мозг (рис. 1.1 А, Б). Из задней части трубки формируется спинной мозг. Мигрировав на место постоянной локализации, нейроны начинают дифференцироваться, у них появляются отростки (аксоны и дендриты) и их тела приобретают определённую форму (см. параграф 2).

Одновременно происходит дальнейшая дифференциация мозга. Задний мозг дифференцируется на продолговатый мозг, мост и мозжечок; в среднем мозге нервные клетки группируются в виде двух пар крупных ядер, называемых верхними и нижними бугорками четверохолмия. Центральное скопление нервных клеток (серое вещество) на этом уровне носит название покрышек среднего мозга.

В переднем мозге происходят наиболее существенные изменения. Из него дифференцируются правая и левая камеры. Из выпячиваний этих камер в дальнейшем формируются сетчатки глаз. Остальная, большая часть, правой и левой камер превращается в полушария; эта часть мозга называется конечным мозгом (telencephalon), и наиболее интенсивное развитие она получает у человека.

Образовавшийся после дифференциации полушарий центральный отдел переднего мозга получил название промежуточного мозга (diencephalon); он включает в себя таламус и гипоталамус с железистым придатком, или гипофизарным комплексом. Части мозга, расположенные ниже конечного мозга, т.е. от промежуточного до продолговатого мозга включительно, называют стволом мозга.

Под влиянием сопротивления черепа интенсивно увеличивающиеся стенки конечного мозга отодвигаются назад и прижимаются к стволу мозга (рис. 1.1 В). Наружный слой стенок конечного мозга становится корой больших полушарий, а их складки между корой и верхней частью ствола, т.е. таламусом, образуют базальные ядра – полосатое тело и бледный шар. Кора больших полушарий мозга – это наиболее позднее в эволюции образование. По некоторым данным у человека и у других приматов не менее 70% всех нервных клеток ЦНС локализовано в коре больших полушарий [Наута, Фейртаг, 1982]; её площадь увеличена за счёт многочисленных извилин. В нижней части полушарий кора подворачивается вовнутрь и образует сложные складки, которые на поперечном срезе напоминают морского конька – гиппокамп.

Рис.1.1. Развитие мозга млекопитающих [Милнер, 1973]

А. Расширение переднего конца нервной трубки и образование трёх отделов головного мозга

Б Дальнейшее расширение и разрастание переднего мозга

В . Разделение переднего мозга на промежуточный мозг (таломус и гипоталамус), базальные ядра и кору больших полушарий. Показано относительное расположение этих структур:

1 – передний мозг (prosencephalon); 2 – средний мозг (mesencepholon); 3 – задний мозг (rhombencephalon); 4 – спинной мозг (medulla spinalis); 5– боковой желудочек (ventriculus lateralis); 6 – третий желудочек (ventriculus tertius); 7 – сильвиев водопровод (aqueductus cerebri); 8 – четвёртый желудочек (ventriculus quartus); 9 – полушария мозга (hemispherium cerebri); 10 – таламус (thalamus) и гиполамус (hypothalamus); 11– базальные ядра (nuclei basalis); 12 – мост (pons) (вентрально) и мозжечок (cerebellum)(дорсально); 13 – продолговатый мозг (medulla oblongata).

В толще стенок дифференцирующихся структур мозга в результате агрегации нервных клеток формируются глубинные мозговые образования в виде ядер, формаций и субстанций, причём в большинстве областей мозга клетки не только агрегируют друг с другом, но и приобретают некоторую предпочтительную ориентацию. Например, в коре головного мозга большинство крупных пирамидных нейронов выстраиваются в ряд таким образом, что их верхние полюса с дендритами направлены к поверхности коры, а нижние полюса с аксонами – в направлении белого вещества. С помощью отростков нейроны формируют связи с другими нейронами; при этом аксоны многих нейронов, прорастая в отдалённые участки, образуют специфические анатомически и гистологически выявляемые проводящие пути. Следует отметить, что процесс формирования структур мозга и проводящих путей между ними происходит не только за счёт дифференциации нервных клеток и прорастания их отростков, но и за счёт обратного процесса, заключающегося в гибели некоторых клеток и ликвидации ранее сформированных связей.

В результате описанных ранее трансформаций образуется мозг – предельно сложное морфологическое образование. Схематическое изображение мозга человека представлено на рис. 1.2.

Рис. 1.2. Головной мозг (правое полушарие; частично удалены теменная, височная и затылочная области):

1 – медиальная поверхность лобной области правого полушария; 2 – мозолистое тело (corpus callosum); 3 – прозрачная перегородка (septum pellucidum); 4 – ядра гипоталамуса (nuclei hypothalami); 5 – гипофиз (hypophisis); 6 – мамилярное тело (corpus mamillare); 7– субталамическое ядро (nucleus subthalamicus); 8 – красное ядро (nucleus ruber) (проекция); 9 – чёрная субстанция (substantia nigra)(проекция); 10– шишковидная железа (corpus pineale); 11 – верхние бугорки четверохолмия (colliculi superior tecti mesencepholi); 12 – нижние бугорки четверохолмия (colliculi inferior tecti mesencephali); 13 – медиальное коленчатое тело (МКТ) (corpus geniculatum mediale); 14 – латеральное коленчатое тело (ЛКТ) (corpus geniculatum laterale); 15 – нервные волокна, идущие от ЛКТ в первичную зрительную кору; 16 – шпорная извилина (sulcus calcarinus); 17– гиппокампальная извилина (girus hippocampalis); 18 – таламус (thalamus); 19 – внутренняя часть бледного шара (globus pallidus); 20 – наружная часть бледного шара; 21 – хвостатое ядро (nucleus caudatus); 22 – скорлупа (putamen); 23 – островок (insula); 24 – мост (pons); 25 – мозжечок (кора)(cerebellum); 26– зубчатое ядро мозжечка (nucleus dentatus); 27– продолговатый мозг (medulla oblongata); 28– четвёртый желудочек (ventriculus quartus); 29 – зрительный нерв (nervus opticus); 30 – глазодвигательный нерв (nervus oculomotoris); 31 – тригеминальный нерв (nervus trigeminus); 32 – вестибулярный нерв (nervus vestibularis). Стрелкой обозначен свод

НЕЙРОН. ЕГО СТРОЕНИЕ И ФУНКЦИИ

Мозг человека состоит из 10 12 нервных клеток. Обычная нервная клетка получает информацию от сотен и тысяч других клеток и передаёт сотням и тысячам, а количество соединений в головном мозге превышает 10 14 - 10 15 . Открытые более 150 лет тому назад в морфологических исследованиях Р. Дютроше, К. Эренберга и И. Пуркинье, нервные клетки не перестают привлекать к себе внимание исследователей. Как независимые элементы нервной системы они были открыты сравнительно недавно – в XIX в. Гольджи и Рамон-и-Кахал применили достаточно совершенные методы окраски нервной ткани и нашли, что в структурах мозга можно выделить клетки двух типов: нейроны и глию. Нейробиолог и нейроанатом Рамон-и-Кахал использовал метод окраски по Гольджи для картирования участков головного и спинного мозга. В результате была показана не только чрезвычайная сложность, но и высокая степень упорядоченности нервной системы. С тех пор появились новые методы исследования нервной ткани, позволяющие выполнить тонкий анализ её строения, – например, использование гисторадиохимии выявляет сложнейшие связи между нервными клетками, что позволяет выдвигать принципиально новые предположения о построении нейронных систем.

Имеющая исключительно сложное строение, нервная клетка – это субстрат самых высокоорганизованных физиологических реакций, лежащих в основе способности живых организмов к дифференцированному реагированию на изменения внешней среды. К функциям нервной клетки относят передачу информации об этих изменениях внутри организма и её запоминание на длительные сроки, создание образа внешнего мира и организацию поведения наиболее целесообразным способом, обеспечивающим живому существу максимальный успех в борьбе за своё существование.

Исследования основных и вспомогательных функций нервной клетки в настоящее время развились в большие самостоятельные области нейробиологии. Природа рецепторных свойств чувствительных нервных окончаний, механизмы межнейронной синаптической передачи нервных влияний, механизмы появления и распространения нервного импульса по нервной клетке и её отросткам, природа сопряжения возбудительного и сократительного или секреторного процессов, механизмы сохранения следов в нервных клетках – всё это кардинальные проблемы, в решении которых за последние десятилетия достигнуты большие успехи благодаря широкому внедрению новейших методов структурного, электрофизиологического и биохимического анализов.

Размер и форма

Размеры нейронов могут быть от 1 (размер фоторецептора) до 1000 мкм (размер гигантского нейрона у морского моллюска Aplysia) (см. [Сахаров, 1992]). Форма нейронов также исключительно разнообразна. Наиболее ясно форма нейронов видна при приготовлении препарата полностью изолированных нервных клеток. Нейроны чаще всего имеют неправильную форму. Существуют нейроны, напоминающие «листик» или «цветок». Иногда поверхность клеток напоминает мозг – она имеет «борозды» и «извилины». Исчерченность мембраны нейронов увеличивает её поверхность более чем в 7 раз.

В нервных клетках различимы тело и отростки. В зависимости от функционального назначения отростков и их количества различают клетки монополярные и мультиполярные. Монополярные клетки имеют только один отросток – это аксон. Согласно классическим представлениям, у нейронов один аксон, по которому возбуждение распространяется от клетки. Согласно же наиболее новым результатам, полученным в электрофизиологических исследованиях с использованием красителей, которые могут распространяться от тела клетки и прокрашивать отростки, нейроны имеют более чем один аксон. Мультиполярные (биполярные) клетки имеют не только аксоны, но и дендриты. По дендритам сигналы от других клеток поступают в нейрон. Дендриты в зависимости от их локализации могут быть базальными и апикальными. Дендритное дерево некоторых нейронов чрезвычайно разветвлено, а на дендритах находятся синапсы – структурно и функционально оформленные места контактов одной клетки с другой.

Какие клетки более совершенны – униполярные или биполярные? Униполярные нейроны могут быть определённым этапом в развитии биполярных клеток. В то же время у моллюсков, которые на эволюционной лестнице занимают далеко не верхний этаж, нейроны униполярные. Новыми гистологическими исследованиями показано, что даже у человека при развитии нервной системы клетки некоторых структур мозга из униполярных «превращаются» в биполярные. Подробное исследование онтогенеза и филогенеза нервных клеток убедительно показало, что униполярное строение клетки является вторичным явлением и что во время эмбрионального развития можно шаг за шагом проследить постепенное превращение биполярных форм нервных клеток в униполярные. Рассматривать биполярный или униполярный тип строения нервной клетки как признак сложности строения нервной системы вряд ли верно.

Отростки-проводники придают нервным клеткам способность объединяться в нервные сети различной сложности, что является основой для создания из элементарных нервных клеток всех систем мозга. Для приведения в действие этого основного механизма и его использования нервные клетки должны обладать вспомогательными механизмами. Назначением одного из них является превращение энергии различных внешних воздействий в тот вид энергии, который может включить процесс электрического возбуждения. У рецепторных нервных клеток таким вспомогательным механизмом являются особые сенсорные структуры мембраны, позволяющие изменять её ионную проводимость при действии тех или иных внешних факторов (механических, химических, световых). У большинства других нервных клеток – это хемочувствительные структуры тех участков поверхностной мембраны, к которым прилежат окончания отростков других нервных клеток (постсинаптические участки) и которые могут изменять ионную проводимость мембраны при взаимодействии с химическими веществами, выделяемыми нервными окончаниями. Возникающий при таком изменении локальный электрический ток является непосредственным раздражителем, включающим основной механизм электрической возбудимости. Назначение второго вспомогательного механизма – преобразование нервного импульса в процесс, который позволяет использовать принесённую этим сигналом информацию для запуска определённых форм клеточной активности.

Цвет нейронов

Следующая внешняя характеристика нервных клеток – это их цвет. Он также разнообразен и может указывать на функцию клетки – например, нейроэндокринные клетки имеют белый цвет. Жёлтый, оранжевый, а иногда и коричневый цвет нейронов объясняется пигментами, которые содержатся в этих клетках. Размещение пигментов в клетке неравномерно, поэтому её окраска различна по поверхности – наиболее окрашенные участки часто сосредоточены вблизи аксонного холмика. По-видимому, существует определённая взаимосвязь между функцией клетки, её цветом и её формой. Наиболее интересные данные об этом получены в исследованиях на нервных клетках моллюсков.

Синапсы

Биофизический и клеточно-биологический подход к анализу нейронных функций, возможность идентификации и клонирования генов, существенных для сигнализации, вскрыли тесную связь между принципами, которые лежат в основе синаптической передачи и взаимодействия клеток. В результате было обеспечено концептуальное единство нейробиологии с клеточной биологией.

Когда выяснилось, что ткани мозга состоят из отдельных клеток, соединённых между собой отростками, возник вопрос: каким образом совместная работа этих клеток обеспечивает функционирование мозга в целом? На протяжении десятилетий споры вызывал вопрос о способе передачи возбуждения между нейронами, т.е. каким путём она осуществляется: электрическим или химическим. К середине 20-х гг. большинство учёных приняли ту точку зрения, что возбуждение мышц, регуляция сердечного ритма и других периферийных органов – результат воздействия химических сигналов, возникающих в нервах. Эксперименты английского фармаколога Г. Дейла и австрийского биолога О. Леви были признаны решающими подтверждениями гипотезы о химической передаче.

Усложнение нервной системы развивается по пути установления связей между клетками и усложнения самих соединений. Каждый нейрон имеет множество связей с клетками-мишенями. Эти мишени могут быть нейронами разных типов, нейросекреторными клетками или мышечными клетками. Взаимодействие нервных клеток в значительной мере ограничено специфическими местами, в которые могут приходить соединения – это синапсы. Данный термин произошёл от греческого слова «застёгивать» и был введён Ч. Шеррингтоном в 1897 г. А на полвека раньше К. Бернар уже отмечал, что контакты, которые формируют нейроны с клетками-мишенями, специализированы, и, как следствие, природа сигналов, распространяющихся между нейронами и клетками-мишенями, каким-то образом изменяется в месте этого контакта. Критичные морфологические данные о существовании синапсов появились позже. Их получил С. Рамон-и-Кахал (1911), который показал, что все синапсы состоят из двух элементов – пресинаптической и постсинаптической мембраны. Рамон-и-Кахал предсказал также существование третьего элемента синапса – синаптической щели (пространства между пресинаптическим и постсинаптическим элементами синапса). Совместная работа этих трёх элементов и лежит в основе коммуникации между нейронами и процессами передачи синаптической информации. Сложные формы синаптических связей, формирующихся по мере развития мозга, составляют основу всех функций нервных клеток – от сенсорной перцепции до обучения и памяти. Дефекты синаптической передачи лежат в основе многих заболеваний нервной системы.

Синаптическая передача через большую часть синапсов мозга опосредуется при взаимодействии химических сигналов, поступающих из пресинаптической терминали, с постсинаптическими рецепторами. В течение более чем 100 лет изучения синапса все данные рассматривались с точки зрения концепции динамической поляризации, выдвинутой С. Рамон-и-Кахалом. В соответствии с общепринятой точкой зрения синапс передаёт информацию только в одном направлении: информация течёт от пресинаптической к постсинаптической клетке, антероградно направленная передача информации обеспечивает финальный шаг в сформированных нейронных коммуникациях.

Анализ новых результатов заставляет предполагать, что существенная часть информации передаётся и ретроградно – от постсинаптического нейрона к пресинаптическим терминалям нерва . В некоторых случаях были идентифицированы молекулы, которые опосредуют ретроградную передачу информации. Это целый ряд веществ от подвижных маленьких молекул окиси азота до больших полипептидов, таких, как фактор роста нерва. Даже если сигналы, которые передают информацию ретроградно, различны по своей молекулярной природе, принципы, на основе которых эти молекулы действуют, могут быть сходными. Бидирекциональность передачи обеспечивается и в электрическом синапсе, в котором щель в соединительном канале формирует физическую связь между двумя нейронами, без использования нейромедиатора для передачи сигналов от одного нейрона на другой. Это позволяет осуществлять бидирекциональную передачу ионов и других маленьких молекул. Но реципрокная передача существует также в дендродендритных химических синапсах, где оба элемента имеют приспособления для высвобождения передатчика и ответа. Так как эти формы передачи часто трудно дифференцировать в сложных сетях мозга, случаев бидирекциональной синаптической коммуникации может оказаться значительно больше, чем это кажется сейчас.

Бидирекциональная передача сигналов в синапсе играет важную роль в любом из трёх основных аспектов работы нервной сети: синаптической передаче, пластичности синапсов и созревании синапсов во время развития. Пластичность синапсов – это основа для формирования связей, которые создаются при развитии мозга и при научении. В обоих случаях требуется ретроградная передача сигналов от постк пресинаптической клетке, сетевой эффект которой заключается в том, чтобы сохранить или потенциировать активные синапсы. Ансамбль синапсов вовлекает координированное действие протеинов, высвобождаемых из преи постсинаптической клетки. Первичная функция белков состоит в том, чтобы индуцировать биохимические компоненты, требуемые для высвобождения передатчика из пресинаптической терминали, а также для того, чтобы организовать устройство для передачи внешнего сигнала постсинаптической клетке.

Нейроны отличаются большой сложностью строения. Размеры клеток чрезвычайно разнообразны (от 4-6 мкм до 130 мкм). Форма нейрона также очень вариабильна, но всем нервным клеткам свойственны отростки (один или несколько), отходящие от тела. У человека содержится более триллиона (10) нервных клеток.

На строго определенных этапах онтогенеза запрограммирована массовая гибель нейронов центральной и периферической нервной системы. За 1 год жизни погибает около 10 млн. нейронов, а в течение жизни мозг теряет около 0,1 % всех нейронов. Гибель определяет ряд факторов:

    выживают наиболее активно участвующие в межклеточных взаимодействиях нейрона (быстрее растут, имеют больше отростков, больше контактов с клетками – мишенями).

    имеются гены, ответственные за выход между жизнью или смертью.

    сбои в кровоснабжении.

По количеству отростков нейроны делятся на:

      униполярные – одноотростчатые,

      биполярные – двуотростчатые,

      мультиполярные – многоотростчатые.

Среди униполярных нейронов различают истинные униполяры,

лежащие в сетчатке глаза, и ложные униполяры, расположенные в спинномозговых узлах. Ложные униполяры в процессе развития были биполярными клетками, но затем произошло вытягивание части клетки в длинный отросток, который часто делает несколько оборотов вокруг тела и затем Т- образно ветвится.

Отростки нервных клеток отличаются по строению, у каждой нервной клетки есть аксон или нейрит, который идет от тела клетки в виде тяжа, имеющего одинаковую по всей длине толщину. Часто аксоны идут на большие расстояния. По ходу нейрита отходят тонкие веточки – коллатерали. Аксон, передающий отросток и импульс в нем, идет от клетки на периферию. Заканчивается аксон эффектором или двигательным окончанием в мышечной или железистой ткани. Длина аксона может быть более 100 см. В аксоне нет эндоплазматической сети и свободных рибосом, поэтому все белки секретируются в теле, а затем транспортируются по аксону.

Другие отростки начинаются от тела клетки широким основанием и сильно ветвятся. Они называются древовидными отростками или дендритами и являются воспринимающими отростками, в которых импульс распространяется к телу клетки. Дендриты заканчиваются чувствительными нервными окончаниями или рецепторами, специфически воспринимающими раздражения.

Истинные униполярные нейроны имеют только один аксон, а восприятие импульсов осуществляется всей поверхностью клетки. Единственным примером унипотентных клеток у человека являются амокриновые клетки сетчатки.

Биполярные нейроны лежат в сетчатке глаза и имеют аксон и один ветвящийся отросток – дендрит

Многоотросчатые мультиполярные нейроны широко распространены и лежат в спинном и головном мозге, вегетативных нервных узлах и т.д. Эти клетки имеют один аксон и многочисленные ветвящиеся дендриты.

В зависимости от расположения нейроны делятся на центральные, лежащие в головном и спинном мозге, и периферические – это невроны вегетативных ганглий, органных нервных сплетений и спинномозговых узлов.

Нервные клетки тесно взаимодействуют с сосудами. Различают 3 варианта взаимодействия:

Нервные клетки в организме лежат в виде цепей, т.е. одна клетка контактирует с другой и передает на нее свой импульс. Такие цепи клеток называются рефлекторными дугами. В зависимости от положения нейронов в рефлекторной дуге они имеют различную функцию. По функции невроны могут быть чувствительными, двигательными, ассоциативными и вставочными. Между собой или с органом – мишенью нервные клетки взаимодействуют с помощью химических веществ – нейромидиаторов.

Активность нейрона может быть индуцирована импульсом от другого нейрона или быть спонтанной. В этом случае нейрон играет роль пейсмекера (водителя ритма). Такие нейроны имеются в ряде центров, в том числе дыхательном.

Первым воспринимающим нейроном в рефлекторной дуге является чувствительная клетка. Раздражение воспринимается рецептором – чувствительным окончанием, по дендриту импульс достигает тела клетки, а затем передается по аксону на другой нейрон. Команда к действию на рабочий орган передается двигательным или эффекторным нейроном. Эффекторный нейрон может получить импульс непосредственно от чувствительной клетки, тогда рефлекторная дуга будет состоять из двух нейронов.

В более сложных рефлекторных дугах есть среднее звено – вставочный нейрон. Он воспринимает импульс от чувствительной клетки и передает на двигательную.

Иногда несколько клеток с одинаковой функцией (чувствительные или двигательные) объединяются одним нейроном, который концентрирует в себе импульсы с нескольких клеток – это ассоциативные невроны. Эти нейроны передают импульс дальше на вставочные или на эффекторные нейроны.

В теле нейрона у большинства нервных клеток содержится одно ядро. Многоядерные нервные клетки свойственны некоторым периферическим ганглиям вегетативной нервной системы. На гистологических препаратах ядро нервной клетки имеет вид светлого пузырька с четко различимым ядрышком и немногочисленными глыбками хроматина. При электронной микроскопии обнаруживаются те же субмикроскопические компоненты, что и в ядрах других клеток. Ядерная оболочка имеет многочисленные поры. Хроматин распылен. Такая структура ядра характерна для активных в метаболическом отношении ядерных аппаратов.

Ядерная оболочка в процессе эмбриогенеза образует глубокие складки, заходящие в кариоплазму. К моменту рождения складчатость становится значительно меньше. У новорожденного наблюдается уже преобладание объема цитоплазмы над ядром, так как в период эмбриогенеза эти отношения обратные.

Цитоплазма нервной клетки носит название нейроплазмы. В ней располагаются органоиды и включения.

Аппарат Гольджи был впервые обнаружен в нервных клетках. Он имеет вид сложной корзинки, окружающей ядро со всех сторон. Это своеобразный диффузный тип аппарата Гольджи. При электронной микроскопии он состоит из крупных вакуолей, мелких пузырьков и пакетов двойных мембран, образующих анастомозирующую сеть вокруг ядерного аппарата нервной клетки. Однако чаще всего аппарат Гольджи располагается между ядром и местом отхождения аксона – аксонный холмик. Аппарат Гольджи является местом генерации потенциала действия.

Митохондрии имеют вид очень коротких палочек. Они обнаруживаются в теле клетки и во всех отростках. В концевых разветвлениях нервных отростков, т.е. в нервных окончаниях наблюдается их скопление. Ультраструктура митохондрий типична, но их внутренняя мембрана не образует большого количества крист. Они очень чувствительны к гипоксии. Впервые митохондрии описал в мышечных клетках Келликер более 100 лет назад. В некоторых нейронах между кристами митохондрий имеются анастамозы. Количество крист и их общая поверхность прямо связаны с интенсивностью их дыхания. Необычным является накопление митохондрий в нервных окончаниях. В отростках они ориентируются своей продольной осью по ходу отростков.

Клеточный центр в нервных клетках состоит из 2-ух центриолей, окруженных светлой сферой, и выражен в молодых нейронах значительно лучше. В зрелых нейронах клеточный центр обнаруживается с трудом и во взрослом организме центросома претерпевает дегенеративные изменения.

При окрашивании нервных клеток толуоидным синим в цитоплазме обнаруживаются глыбки различных размеров – базофильное вещество, или субстанция Ниссля. Это очень нестойкое вещество: при общей усталости в следствии длительной работы или нервного возбуждения глыбки вещества Ниссля исчезают. Гистохимически в глыбках была обнаружена РНК и гликоген. Электронно-микроскопические исследования показали, что глыбки Ниссля представляют собой эндоплазматическую сеть. На мембранах эндоплазматической сети много рибосом. В нейроплазме так же много и свободных рибосом, образующих розеткообразные скопления. Развитая гранулярная эндоплазматическая сеть обеспечивает синтез большого количества белка. Синтез белка наблюдается только в теле нейрона и в дендритах. Для нервных клеток характерен высокий уровень синтетических процессов и в первую очередь белку и РНК.

В сторону аксона и по аксону наблюдается постоянный ток полужидкого содержимого нейрона, движущегося на периферию нейрита со скоростью 1-10 мм в сутки. Помимо медленного перемещения нейроплазмы обнаружен и быстрый ток (от 100 до 2000 мм в сутки), он имеет универсальный характер. Быстрый ток зависит от процессов окислительного фосфорилирования, наличия кальция и нарушается при разрушении микротрубочек и нейрофиламентов. Быстрым транспортом переносятся холинэстераза, аминокислоты, митохондрии, нуклеотиды. Быстрый транспорт тесно связан с подачей кислорода. Через 10 минут после смерти прекращается движение в периферическом нерве млекопитающих. Для патологии существование аксоплазматического движения имеет значение в том смысле, что по аксону могут распространяться различные инфекционные агенты, как из периферии организма в центральную нервную систему, так и внутри ее. Непрерывный аксоплазматический транспорт является активным процессом, требующим затрат энергии. Некоторые вещества обладают способностью перемещаться по аксону в обратном направлении (ретроградный транспорт) : ацетилхолинэстераза, вирус полиомиэлита, вирус герпеса, столбнячный токсин, который вырабатывается бактериями, попавшими в кожную рану, по аксону достигает центральной нервной системы и вызывает судороги.

У новорожденного нейроплазма бедна глыбками базофильного вещества. С возрастом наблюдается увеличение числа и размеров глыбок.

Специфическими структурами нервных клеток являются также нейрофибриллы и микротрубочки. Нейрофибриллы обнаруживаются в нейронах при фиксации и в теле клетки имеют беспорядочное расположение в виде войлока, а в отростках лежат параллельно друг другу. В живых клетках они были найдены при помощи фазово-контрольной киносъёмки.

При электронной микроскопии в цитоплазме тела и отростков находят гомогенные нити нейропротофибриллы, состоящие из нейрофиламентов. Нейрофиламенты это фибриллярные структуры диаметром от 40 до 100 А. Они состоят из спирально закрученных нитей, представленных белковыми молекулами весом 80000. Нейрофибриллы возникают при пучковой агрегации существующих прижизненно нейропротофибрилл. Одно время нейрофибриллам приписывали функцию проведения импульсов, но оказалось, что после перерезки нервного волокна проводимость сохраняется даже тогда, когда нейрофибриллы уже дегенерируют. Очевидно, основная роль в процессе проведения импульса принадлежит межфибриллярной нейроплазмы. Таким образом, функциональное значение нейрофибрилл не ясно.

Микротрубочки представляют собой цилиндрические образования. Их сердцевина обладает низкой электронной плотностью. Стенки образованы 13 ориентированными продольно фибриллярными субъединицами. Каждая фибрилла в свою очередь состоит из мономеров, которые агрегируют и образуют вытянутую фибриллу. Большинство микротрубочек располагается в отростках продольно. По микротрубочкам осуществляется транспорт веществ (белков, нейромедиаторов), органоидов (митохондрий, везикул), ферменты синтеза медиаторов.

Лизосомы в нервных клетках мелкие, их мало, и структуры их не отличаются от других клеток. Они содержат высоко активную кислую фосфотазу. Лизосомы лежат в основном в теле нервных клеток. При дегенеративных процессах, в нейронах число лизосом возрастает.

В нейроплазме нервных клеток обнаруживаются включения пигмента и гликогена. В нервных клетках находят два вида пигментов – это липофусцин, имеющий бледно-жёлтый или зеленовато-жёлтый цвет, и меланин – пигмент тёмно-бурого или коричневого цвета (например, черное вещество –substantianigraв ножках мозга).

Меланин обнаруживается в клетках очень рано – к концу первого года жизни.Липофусцин

накапливается позднее, но к 30 годам он может быть выявлен почти во всех клетках. Пигменты типа липофусцина играют важную роль в обменных процессах. Пигменты относящиеся к хромотопротеидам, являются катализаторами в окислительно-восстановительных процессах. Они являются древней окислительно-восстановительной системой нейроплазмы.

Гликоген накапливается, в нейроне в период относительного покоя в областях распространения вещества Ниссля. Гликоген содержится в телах и проксимальных отрезках дендритов. Аксоны лишены полисахаридов. В нервных клетках содержатся и ферменты: оксидаза, фосфатаза и холинэстераза. Специфическим белком аксоплазмы является нейромодулин.



Похожие публикации