Безопасность жизнедеятельности от шума и пыли. " Безопасность Жизнедеятельности " На тему: «Шум и его влияние на организм

Шум и его основные параметры

Звук – это колебательное движение в материальной среде, обладающей упругостью и инерционностью, вызванное каким-либо источником.

Распространение колебательного движения в среде называется звуковой волной.

Область среды, в которой распространяются звуковые волны, называется звуковым полем. В каждой точке звукового поля при распространении звуковой волны будет наблюдаться деформация среды, т.е. зона сжатия и разряжения.

Такая деформация приведет к изменению давления в среде. Разность между атмосферным давлением и давлением в данной точке звукового поля называется звуковым давлением (Р). Звуковое давление выражается в паскалях (Па). Сила звука может характеризоваться и количеством звуковой энергии. Средний поток звуковой энергии, проходящей в единицу времени через единицу поверхности, перпендикулярной к направлению распространения звуковой волны, называется интенсивностью звука (I). За единицу измерения интенсивности принят Вт / м2.

За единицу частоты колебаний принят герц (Гц), равный 1 колебанию в секунду.

Интенсивность звука I в свободном поле связана с звуковым давлением, Вт / м2

где Р - среднеквадратичное значение давления (Па),

рс – удельное аккустическое сопротивление среды (для воздуха - 4,44 Нс / м3, для воды – 1,4 х 106 Нс / м3).

Скорость звука в газовой среде определяется по следующей зависимости:

(2.5.2)

где К – показатель адиобата (К= 1,44)

Р – давление воздуха (Па)

р – плотность воздуха (кг/м3)

Скорость звука зависит от свойств среды. Звуки в изотропной среде могут распространяться в виде сферических, плоских и цилиндрических волн. Когда размеры источника звука малы по сравнению с длиной волны, звук распространяется по всем направлениям в виде сферических волн. Если размеры источника больше чем длина излучаемой звуковой волны, то звук распространяется в виде плоской волны.

Плоская волна образуется на значительных расстояниях от источника любых размеров. Скорость звука в воздухе при t= 200 С и давлении 760 мм рт. ст, V= 344 м/с; в воде – 433м/с; в стали - 5000 м/с, в бетоне - 4000 м/с.

Если на пути распространения звуковой волны встречается препятствие, то в силу явления дифракции происходит огибание волнами препятствий. Величина огибания тем больше, чем больше длина волны по сравнению с размерами препятствия.

При длине волны меньшей размера препятствия, наблюдается отражение звуковых волн и образование за препятствием «звуковой тени» (шумозащитные экраны).

Графическое изображение частотного состава шума называется спектром.

Шум представляет собой хаотическое сочетание множества различных по частоте и силе звуков. В ГОСТ 12.1.003-76 (ССБТ) дана классификация шумов. По характеру спектра шумы делятся на широкополосные (с непрерывным спектром шириной более 1-ой октавы) и тональные (в спектре которых имеются слышимые дискретные тона) с превышением уровня в одном полюсе над соседними не менее чем на 10 дБ.

По времени действия шумы подразделяются на постоянные (уровень звука которых за 8-часовой рабочий день изменяются по времени не более чем на 5 дБ при измерениях на временной характеристике «медленно» шумомера по ГОСТ 17187-71) и непостоянные, при изменении уровня звука более 5 дБ. Непостоянные шумы, в свою очередь, делятся на колеблющиеся по времени (уровень звука которых непрерывно изменяется во времени), прерывистые (уровень звука которых резко падает до уровня фонового шума, с интервалом в 1 с и более), импульсные (состоящие из 1-го или нескольких звуковых сигналов с длительностью более 1 с и уровнем звука более 10 дБ). Вибрация является одним из источников шума.

Влияние шума на организм человека

Человек способен воспринимать звуки частотой от 16 до 20000 Гц различной силы и интенсивности от еле слышимых до болевых. В ухе человека находится около 25000 клеток, которые реагируют на звук. Всего человек различает 34 тысячи звуков различной частоты. Звуки частотой меньше 16-20 Гц называют инфразвуковыми, а частотой более 20000 Гц – ультразвуковыми.

Звук, а следовательно и шум имеет 2 характеристики:

1 – физическая (объективная)

2 – физиологическая (субъективная)

Физическая – колебательное движение среды характеризуется звуковым давлением. Наименьшая сила звука, которая воспринимается слуховым аппаратом человека, называется порогом слышимости данного звука (Ро) при частоте колебаний 1000 Гц Па или I= 10-12 Вт / м.2. Порогом слышимости называется минимальный уровень звукового давления на данной частоте, вызывающий слуховое ощущение (ГОСТ 12.4.062-78).

Человеческое ухо реагирует не на абсолютный прирост силы звука, а на относительное изменение силы звука. Изменение интенсивности и звукового давления воспринимаемого звука огромно и составляет соответственно 1014 и 107 раз.

Практическое использование абсолютных значений аккустических величин, например, для графического представления распределения звукового давления и интенсивности звука по частотному спектру невозможно из-за громоздкости графиков. При этом важно реагирование органов слуха на относительное изменение Р и I по отношению к пороговым величинам.

Так как между слуховым восприятием и раздражением существует почти логарифмическая зависимость, то для измерения звукового давления, интенсивности (сила звука) и звуковой мощности принята логарифмическая шкала. Это дало возможность значительный диапазон фактических значений (по звуковому давлению –106 и по интенсивности - 1012) разместить в небольшом интервале логарифмических единиц.

Поэтому введены логарифмические величины при определении уровня интенсивности звука (дБ):

(2.5.3)

и уровня звукового давления (дБ):

(2.5.4)

где Iо и Ро - соответствующие значения порога слышимости;

I и Р - замеренные величины уровней интенсивности звука и звукового давления.

Значение Ро выбрано таким образом, чтобы при нормальных атмосферных условиях Li = Lp.

За единицу измерений уровней I и P принят 1 Бел (Б).

Бел – это десятичный логарифм отношения фактических значений I и Р к пороговым значениям Io и Ро: I / Io = 10 - Ly = 1 Б или I / Io = 100 - Ly = 2 Б.

Учитывая, что наши органы слуха воспринимают различия в десятичную долю уровня интенсивности звукового давления, за единицу измерения принята более мелкая единица децибел (дБ), равная 0,1 Б.

Обычно параметры шума и вибрации оцениваются в октавных или третьоктавных диапазонах, где октава – это полоса частот с отношением верхней f2 и нижней f1 граничных частот равным 2 (f1 / f2 = 2). Для третьоктавной полосы f2 / f1 = 1,26. Для характеристики полосы в целом принята среднегеометрическая частота, которая равна:

(2.5.5)

Среднегеометрические частоты октавных полос стандартизованы.

Для звука (ГОСТ 12.1.001-89) с частотами более 11,2 кГц (ультразвук) среднегеометрические частоты третьоктавных полос равны 12500, 16000, 20000 Гц и более. Поэтому по ГОСТ 12.1.003-76 (ССБТ) характеристикой постоянного шума на рабочих местах являются уровни звуковых давлений в октавных полосах (дБ) со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц, определяемые по формуле (4.3. и 4.4).

Болевой порог восприятия звука соответствует и величинам I = 102 Вт/м2, Па.

Если подставить соответственно их в формулы 3.3. и 3.4., то получим дБ или дБ.

Разница уровней в 1 дБ соответствует минимальной величине различимой слухом, при этом интенсивность звука изменяется в 1,26 раза или на 26%. С учетом данного явления разработана шкала громкостей, воспринимаемых человеческим ухом, которая разделяется на 140 единиц. За нуль принята сила звука на пороге слышимости. Увеличение силы звука в 1,26 раза создает следующую ступень громкости. Уровень интенсивности различных звуков на расстоянии 1 м составляет: шепот 10-20 дБ, громкая речь 60-70 дБ, шум на улице 70-80 дБ, шум электропоезда 110дБ, шум реактивного двигателя 130-140дБ. Шум в 150 дБ непереносим для человека, в 180 дБ вызывает усталость металла, в 190 дБ вырывает заклепки из конструкций. Применение шкалы позволяет весь огромный диапазон интенсивности звука измерять в пределах от 0 до 140 дБ. При проверке уровня шума органами надзора или при разработке мер профилактики оценку постоянного шума на рабочем месте (LA) рассчитывают по формуле:

(2.5.6)

где РА= замеренная по шкале А шумомера по ГОСТ 17187-71, среднеквадратичная величина звукового давления (Па).


Однако уровень силы звука в дБ еще не позволяет судить о физиологическом ощущении громкости. Восприятие громкости звука зависит не только от уровня силы звука, но и от его частот (рис.2.5.1)

Рис. 2.5.1. Изолинии равной громкости.

Чувствительность слухового анализатора не одинакова к звукам различных частот и поэтому звуки, одинаковые по своей силе, но разные по частоте, могут оказаться на слух не одинаково громкими. Второй физиологической характеристикой звука является ощущение, воспринимаемое органами слуха, характеризующиеся громкостью. Ухо человека воспринимает звуки с частотой колебаний от 16 до 20000 Гц. Области звуковых колебаний с частотой до 16 Гц (инфразвуки) и более 20000 Гц (ультразвуки) ухом не улавливаются. Поэтому для оценки уровня интенсивности используется сравнение измеряемого звука с эталонным звуком частотой в 1000 Гц. Единицей измерения громкости является фон. Если какой-либо звук окажется на слух таким же громким, как звук частотой 1000 Гц и с уровнем силы 1 дБ, то уровень громкости данного звука принимается равным 1 фону. Различие между уровнем силы звука и уровнем громкости заключается в том, что первый определяет только чистую физическую величину уровня силы звука независимо от частоты, а второй учитывает также и физиологическое, субъективное ощущение звука. Для звуковой частоты 1000 Гц децибелы и фоны численно равны. По мере увеличения интенсивности звука и при уровне более 80 фон громкость звука определяется фактически его силой независимо от частоты. Шкала уровней громкости не является натуральной шкалой, т.е., например, изменение уровня громкости в 2 раза не означает, что субъективное ощущение громкости звука изменяется во столько же раз. Для оценки субъективного восприятия громкости шума или звука введена шкала фонов. Громкость (в фонах) определяется по формуле:

(2.5.7)

где L1 – уровень громкости (фон).

Например, требуется сравнить по громкости 2 звука с уровнем громкости 60 и 80 фон. По формуле 2.5.7. находим:

и

Таким образом, второй звук воспринимается слуховым аппаратом человека как звук в 2 раза более громкий, чем первый(8: 4).

Шум в производстве и в быту отрицательно влияет на организм человека, приводит к снижению производительности труда.

Устойчивый постоянный шум оказывает меньшее влияние на организм человека, чем нерегулярно возникающий высокочастотный. Шум способствует быстрому наступлению у человека чувства усталости. Шум с уровнем интенсивности более 60 дБ тормозит нормальную пищеварительную деятельность желудка. При шуме 80-90 дБ число сокращений желудка в минуту уменьшается на 37%. Установлено, что при интенсивности шума более 60 дБ выделение слюны и отделение желудочного сока понижается на 44%. Временное, а иногда и постоянное повышение кровяного давления, повышенная раздражительность, понижение работоспособности, душевная депрессия и т.п. являются следствием действия шума. Неопределенные шумы, не доходящие до сознания, также вызывают истощение центральной нервной системы, в результате чего они могут служить причиной незаметных до поры нарушений в организме.

У человека, находящегося в течение 6-8 часов под воздействием шума интенсивностью 90 дБ, наступает умеренное понижение слуха, исчезающее примерно через 1 ч после его прекращения. Шум, превышающий 120 дБ, очень быстро вызывает у человека усталость и заметное понижение слуха. В каждом отдельном случае степень потери слуха и длительность периода восстановления пропорциональны уровню интенсивности и длительности воздействия.

При большой интенсивности шум не только влияет на слух, но и оказывает другое воздействие (головная боль, плохая восприимчивость речи), порой чисто психологическое воздействие на человека. Все части тела испытывают при этом постоянное давление или ощущение порыва ветра; в костях черепа и зубах точно так же, как и в мягких тканях носа и горла, возникают вибрации. При уровне шума 140 дБ (порог болевого ощущения) и выше ощущение давления усиливается и распространяется по всему телу, а грудная клетка, мышцы ног и рук начинают вибрировать. Когда уровень интенсивности шума достигнет 160 дБ, может произойти разрыв барабанной перепонки.

Продолжительный и сильный шум вредно отражается на здоровье и работоспособности человека. Продолжительное действие шума вызывает общее утомление, может постепенно привести к потере слуха и к глухоте. Под потерей слуха (ССБТ, ГОСТ 12.4.062-78) понимают постоянное смещение порога слышимости на данной частоте, т.е. необратимое (стойкое) нижение остроты слуха от воздействия шума. ГОСТ 12.4.062-78 для определения потерь слуха устанавливает 3 метода: на 8-ми частотах; на 4-х частотах; на 2-х частотах.

Оценка результатов производится по среднему арифметическому значению величин потерь слуха отдельно для правого (0) и левого (Х) уха на речевых частотах 500, 1000, 2000 Гц:

дБ дБ

Если потери слуха на речевых частотах равны 10-20 дБ, то это легкое снижение слуха (1 степень); при потере слуха – 21-30 дБ наблюдается умеренное снижение слуха (2 степень); если снижение слуха – 31 дБ и более, то наблюдается значительное снижение слуха (3 степень). Действуя на центральную нервную систему, шум оказывает влияние на деятельность всего организма человека: ухудшается зрение, деятельность органов дыхания и кровообращения, повышается кровяное давление. Шум ослабляет внимание и затормаживает психологические реакции. По этим причинам шум способствует возникновению несчастных случаев и ведет к снижению производительности труда.

Шум усиливает действие профессиональных вредностей: на 10-15% повышает общую заболеваемость работающих, снижает производительность труда, особенно сложного (умственного). Для сохранения производительности при повышении шума с 70 до 90 дБ рабочий должен затратить на 10-20% больше физических и нервных усилий. Действие шума на организм возрастает при повышении напряженности и тяжести труда.

При систематическом воздействии сильного шума и при недостаточном времени отдыха, когда за время отдыха слух не успевает полностью восстановиться, наступает стойкое ослабление слуха. Шумы со сплошными спектрами являются менее раздражающими, чем шумы, содержащие тональные составляющие. Если источники шума одинаковые по интенсивности (когда L1 = L2 = Ln), то:

(2.5.8)

где Lm – уровень интенсивности шума 1-го источника, дБ;

N – количество одинаковых источников шума.

Если они разные, то:

где L1, L2, Ln – уровни звукового давления, создаваемые в расчетной точке, а 1, 2 … n – источники шума.

Следует учитывать:

Если один источник шума создает уровень звукового давления 90 дБ, а другой – 84 дБ, то их суммарный уровень не равен 174 дБ, а всего примерно 91 дБ (добавим к уровню 90 дБ – 1 дБ). Из этого следует, что для успешного снижения шума необходимо, в первую очередь, выявить и заглушить наиболее интенсивный источник шума, так как добавка шумов меньшей интенсивности незначительны.

При наличии множества примерно одинаковых источников шума устранение одного или двух из них, практически не снижает общего шума.

Так, например, если вместо 10 одинаковых источников оставить 6, то уровень шума снизится всего на 2 дБ.

Снижение уровня звукового давления на каждые 10 дБ соответствует уменьшению физиологически воспринимаемой человеком громкости звука в 2 раза: например, шум в 60 дБ вдвое тише, чем шум в 70 дБ.

Звуковые волны в помещении, многократно отражаясь от стен, потолка, производственного оборудования, увеличивают общий шум на 5-15 дБ.


Адаптации (табл. 2.1.2.). При этом не возникает нарушений или ухудшения состояния здоровья, но наблюдается дискомфортное тепловосприятие, ухудшение самочувствия и снижение работоспособности. Условия микроклимата, выходящие за допустимые границы называются критическими и ведут, как правило, к серьезным нарушениям в состоянии организма человека. Оптимальные условия микроклимата создаются для...

Декодирования состоит в получении k - элементной комбинации из принятого n - разрядного кодового слова при одновременном обнаружении или исправлении ошибок. Основные параметры помехоустойчивых кодов: Длина кода - n; Длина информационной последовательности - k; Длина проверочной последовательности - r=n-k; Кодовое расстояние кода - d0; Скорость кода - R=k/n; Избыточность кода - R ...

Персонала и населения в чрезвычайных ситуациях и при необходимости принимать участие в проведении спасательных и других неотложных работ при ликвидации последствий чрезвычайных ситуаций. В курсе «Безопасность жизнедеятельности» в равных пропорциях изучаются общие вопросы охраны окружающей среды, чрезвычайных ситуаций, гражданской защиты и охраны труда. 2. Обеспечение комфортных условий...

Параметров модели транзистора, зависимости этих параметров от температуры и конструкции, рассмотрены методы экстракции параметров модели из экспериментальных характеристик. Анализ PSpice модели БТ показал, что наряду с достоинствами этой модели есть и существенные недостатки. В целом модель биполярного транзистора в PSpice может с высокой точностью и в широком диапазоне напряжений, токов и...

" Безопасность Жизнедеятельности " На тему: «Шум и его влияние на организм. Предупреждение вредного действия шума на производстве»

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН

ФЕРГАНСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Кафедра «Химические технологии»

по дисциплине

" Безопасность Жизнедеятельности "

На тему: «Шум и его влияние на организм. Предупреждение вредного действия шума на производстве »

ВЫПОЛНИЛ: студент гр. 58-03 ЭМЭ

Юсупов Д.

ПРИНЯЛ: Домуладжанов И.

Фергана – 2007 г.

План реферата:


  1. Физическая характеристика шума, его частотная характеристика.

  1. Предельно допустимые уровни шума.

  1. Патогенез шумовой болезни.

  1. Клинические проявления шумовой болезни.

  1. Меры по предупреждению вредного воздействия шума.

  1. Список использованной литературы

Шум – беспорядочное сочетание различных по силе и частоте звуков; способен оказывать неблагоприятное воздействие на организм. Источником шума является любой процесс, вызывающий местное изменение давления или механические колебания в твердых, жидких или газообразных средах. Действие его на организм человека связано главным образом с применением нового, высокопроизводительного оборудования, с механизацией и автоматизацией трудовых процес­сов: переходом на большие скорости при эксплуатации различных станков и агрегатов. Источниками шума могут быть двигатели, насосы, компрессоры, турбины, пневматические и электрические инструменты, молоты, дробилки, станки, центрифуги, бункеры и прочие установки, имеющие движущиеся детали. Кроме того, за последние годы в связи со значительным развитием городского транспорта возросла интенсивность шума и в быту, поэтому как неблагоприятный фактор он приобрел большое социальное значе­ние.

Шум имеет определенную частоту, или спектр, выражаемый в герцах, и интенсивность – уровень звукового давления, измеряемый в децибелах. Для человека область слышимых звуков определяется в интервале от 16 до 20 000 Гц. Наиболее чувствителен слуховой анализатор к восприятию звуков частотой 1000-3000 Гц (речевая зона).

Измерение, анализ и регистрация спектра шума производятся специаль­ными приборами - шумомерами и вспомогательными приборами (са­мописцы уровней шума, магнитофон, осциллограф, анализаторы стати­стического распределения, дозимет­ры и др.). Поскольку ухо менее чув­ствительно к низким и более чувст­вительно к высоким частотам, для получения показаний, соответствую­щих восприятию человека, в шумомерах используют систему коррек­тированных частотных характери­стик - шкалы А, В, С, D и линей­ную шкалу, которые отличаются по восприятию. В практике применяет­ся в основном шкала А.

Нормируемыми параметрами шума являются уровни звукового давле­ния в октавных полосах со средне­геометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц и эквивалентный (по энергии) уровень звука в децибелах (шкала А). До­пустимые уровни шума на рабочих местах не превышают соответствен­но 110, 94, 87, 81, 78, 75, 73 дБ, а по шкале А - 80 дБ.

Шум-один из наиболее распрост­раненных неблагоприятных физи­ческих факторов окружающей среды, приобретающих важное социально-гигиеническое значение, в связи с урбанизацией, а также механизацией и автоматизацией технологических процессов, дальнейшим развитием дизелестроения, реактивной авиации, транспор­та. Например, при запуске реактивных двигателей самолетов уровень шума колеблется от 120 до 140 дБ при клепке и рубке листовой стали - от 118 до 130 дБ, работе деревообра­батывающих станков-от 100 до 120 дБ, ткацких станков-до 105 дБ; бытовой шум, связанный с жизне­деятельностью людей, составляет 45-60 дБ.

Для гигиенической оценки шум подразделяют: по характеру спектра - на широко­полосный с непрерывным спектром шириной более одной октавы и то­нальный, в спектре которого имеются дискретные тона; по спектральному составу - на низкочастотный (мак­симум звуковой энергии приходит­ся на частоты ниже 400 гЦ), средне-частотный (максимум звуковой энергии на частотах от 400 до 1000 гЦ) и высокочастотный (макси­мум звуковой энергии на частотах выше 1000 гЦ); по временным харак­теристикам - на постоянный (уро­вень звука изменяется во времени но более чем на 5 Дб - по шкале А) и непостоянный. К непостоянному шуму относятся колеблющийся шум, при котором уровень звука непрерывно изменяется во времени; прерыви­стый шум (уровень звука остается постоянным в течение интервала дли­тельностью 1 сек. и более); импульс­ный шум, состоящий из одного или нескольких звуковых сигналов дли­тельностью менее 1 сек.

Патогенез. Механизм действия шума на организм сложен и не­достаточно изучен. Когда речь идет о влиянии шума, то обычно основное внимание уделяют состоянию органа слуха, так как слу­ховой анализатор в первую очередь воспринимает звуковые коле­бания и поражение его является адекватным действию шума на организм. Наряду с органом слуха восприятие звуковых колеба­ний частично может осуществляться и через кожный покров ре­цепторами вибрационной чувствительности. Имеются наблюдения, что люди, лишенные слуха, при прикосновении к источникам, ге­нерирующим звуки, не только ощущают последние, но и могут оце­нивать звуковые сигналы определенного характера.

Возможность восприятия и оценки звуковых колебаний рецепторами вибрационной чувствительности кожи объясняется тем, что на ранних этапах развития организма они осуществляли функцию органа слуха. В дальнейшем, в процессе эволюционного развития, из кожного покрова сформировался более дифференцированный орган слуха, который постепенно совершенствовался в реагировании на акустическое воздействие.

Изменения, возникающие в органе слуха, некоторые исследова­тели объясняют травмирующим действием шума на перифериче­ский отдел слухового анализатора - внутреннее ухо. Этим же обычно объясняют первичную локализацию поражения в клетках внутренней спиральной борозды и спирального (кортиева) органа. Имеется мнение, что в механизме действия шума на орган слуха существенную роль играет перенапряжение тормозного процесса, которое при отсутствии достаточного отдыха приводит к истоще­нию звуковоспринимающего аппарата и перерождению клеток, входящих в его состав. Некоторые авторы склонны считать, что длительное воздействие шума вызывает стойкие нарушения в сис­теме кровоснабжения внутреннего уха, которые являются непо­средственной причиной последующих изменений в лабиринтной жидкости и дегенеративных процессов в чувствительных элемен­тах спирального органа.

В патогенезе профессионального поражения органа слуха нель­зя исключить роль ЦНС. Патологические изменения, развивающи­еся в нервном аппарате улитки при длительном воздействии интен­сивного шума, в значительной мере обусловлены переутомлением корковых слуховых центров.

Механизм профессионального снижения слуха обусловлен из­менениями некоторых биохимических процессов. Так, гистохимические исследования спирального органа у подопытных животных, содержавшихся в условиях воздействия шума, позволили обнару­жить изменения в содержании гликогена, нуклеиновых кислот, ще­лочной и кислой фосфатаз, янтарной дегидрогеназы и холинэстеразы. Приведенные сведения полностью не раскрывают механизм действия шума на орган слуха. По-видимому, каждый из указан­ных моментов имеет определенное значение на каком-то из этапов поражения слуха в результате воздействия шума.

Возникновение неадекватных изменений и ответ на воздействие шума обусловлено обширными анатомо-физиологическими связя­ми слухового анализатора с различными отделами нервной систе­мы. Акустический раздражитель, действуя через рецепторный ап­парат слухового анализатора, вызывает рефлекторные сдвиги в функциях не только его коркового отдела, но и других органов.

Клиника. Основным признаком воздействия шума является снижение слуха по типу кохлеарного неврита. Професси­ональное снижение слуха бывает обычно двусторонним.

Стойкие изменения слуха вследствие воздействия шума, как правило, развиваются медленно. Нередко им предшествует адап­тация к шуму, которая характеризуется нестойким снижением слу­ха, возникающим непосредственно после его воздействия и исчеза­ющим вскоре после прекращения его действия. Начальные проявления профессиональной тугоухости чаще всего встречаются у лиц со стажем работы в условиях шума около 5 лет. Риск потери слуха у работающих при десятилетней продолжительности воздействия шума составляет 10% при уровне 90 дБ (шкала А), 29% - при 100 дБ (шкала А) и 55% - при 110 дБ (шкала А

Адаптация к шуму рассматривается как защитная реакция слу­хового анализатора на акустический раздражитель, а утомление является предпатологическим состоянием, которое при отсутствии длительного отдыха может привести к стойкому снижению слуха. Развитию начальных стадий профессионального снижения слуха могут предшествовать ощущение звона или шума в ушах, голово­кружение, головная боль. Восприятие разговорной и шепотной ре­чи в этот период не нарушается.

Важным диагностическим методом выявления снижения слуха считают исследование функции слухового анализатора с помощью тональной аудиометрии. Последнюю следует проводить спустя не­сколько часов после прекращения действия шума.

Характерным для начальных стадий поражения слухового ана­лизатора, обусловленного воздействием шума, является повышение порога восприятия высоких звуковых частот (4000-8000 Гц). По мере прогрессирования патологического процесса повышается по­рог восприятия средних, а затем и низких частот. Восприятие ше­потной речи понижается в основном при более выраженных стади­ях профессионального снижения слуха, переходящего в тугоухость.

Для оценки состояния слуха у лиц, работающих в условиях воздействия шума различают четыре степени потери слуха (табл.1).

Таблица 1. Критерии оценки слуховой функции, разработанные В.Е.Остапович и Н.И.Пономаревой для лиц, работающих в условиях шума и вибрации.


Степень потери слуха

Тотальная пороговая аудиометрия

Восприятие шепотной речи, м

потери слуха на звуковые частоты 500, 1000 и 2000 Гц, дБ (среднее арифметическое)

потеря слуха на 4000 Гц и пределы возможного колебания, дБ

I. Признаки воздействия шума на орган слуха

До 10

50±20

5±1

II. Кохлеарный неврит с легкой степенью снижения слуха

11-12

60±20

4±1

III. Кохлеарный неврит с умеренной степенью снижения слуха

21±30

65±20

2±1

IV. Кохлеарный неврит со значительной степенью снижения слуха

31±45

70±20

1±0,5

Особое место в патологии органа слуха занимают поражения, обусловленные воздействием сверхинтенсивных шумов и звуков. Их кратковременное действие может вызвать полную гибель спи­рального органа и разрыв барабанной перепонки, сопровождающи­еся чувством заложенности и резкой болью в ушах. Исходом баротравмы нередко бывает полная потеря слуха. В производственных условиях такие случаи встречаются чрезвычайно редко, в основном при аварийных ситуациях или взрывах.

Функциональные нарушения деятельности нервной и сердечно­сосудистой системы развиваются при систематическом воздей­ствии интенсивного шума, развиваются преимущественно по типу астенических реакций и астеновегетативного синдрома с явления­ми сосудистой гипертензии. Указанные изменения нередко возни­кают при отсутствии выраженных признаков поражения слуха. Ха­рактер и степень изменений нервной и сердечно-сосудистой систе­мы в значительной мере зависят от интенсивности шума. При воз­действии интенсивного шума чаще отмечается инертность вегета­тивных и сосудистых реакций, а при менее интенсивном шуме пре­обладает повышенная реактивность нервной системы.

В неврологической картине воздействия шума основными жа­лобами являются головная боль тупого характера, чувство тяжести и шума в голове, возникающие к концу рабочей смены или после работы, головокружение при перемене положения тела, повышен­ная раздражительность, быстрая утомляемость, снижение трудо­способности, внимания, повышенная потливость, особенно при волнениях, нарушение ритма сна (сонливость днем, тревожный сон в ночное время). При обследовании таких больных нередко обна­руживают снижение возбудимости вестибулярного аппарата, мы­шечную слабость, тремор век, мелкий тремор пальцев вытянутых рук, снижение сухожильных рефлексов, угнетение глоточного, неб­ного и брюшных рефлексов. Отмечается легкое нарушение болевой чувствительности. Выявляются некоторые функциональные вегета­тивно-сосудистые и эндокринные расстройства: гипергидроз, стой­кий красный дермографизм, похолодание кистей и стоп, угнетение и извращение глазосердечного рефлекса, повышение или угнетение ортоклиностатического рефлекса, усиление функциональной актив­ности щитовидной железы. У лиц, работающих в условиях более интенсивного шума, наблюдается снижение кожно-сосудистой ре­активности: угнетаются реакция дермографизма,пиломоторный рефлекс, кожная реакция на гистамин.

Изменения сердечно-сосудистой системы в начальных стадиях воздействия шума носят функциональный характер. Больные жалуются на неприятные ощущения в области сердца в виде пока­лываний, сердцебиения, возникающие при нервно-эмоциональном напряжении. Отмечается выраженная неустойчивость пульса и артериального давления, особенно в период пребывания в условиях шума. К концу рабочей смены обычно замедляется пульс, повыша­ется систолическое и снижается диастолическое давление, появля­ются функциональные шумы в сердце. На электрокардиограмме выявляются изменения, свидетельствующие об экстракардиальных нарушениях: синусовая брадикардия, брадиаритмия, тенденция к замедлению внутрижелудочковой или предсердно-желудочковой проводимости. Иногда наблюдается наклонность к спазму капил­ляров конечностей и сосудов глазного дна, а также к повышению периферического сопротивления. Функциональные сдвиги, возни­кающие в системе кровообращения под влиянием интенсивного шума, со временем могут привести к стойким изменениям сосуди­стого тонуса, способствующим развитию гипертонической болезни.

Изменения нервной и сердечно-сосудистой систем у лиц, рабо­тающих в условиях шума, являются неспецифической реакцией организма на воздействие многих раздражителей, в том числе шу­ма. Частота и выраженность их в значительной мере зависят от наличия других сопутствующих факторов производственной среды. Например, при сочетании интенсивного шума с нервно-эмоцио­нальным напряжением часто отмечается тенденция к сосудистой гипертензии. При сочетании шума с вибрацией нарушения перифе­рического кровообращения более выражены, чем при воздействии только шума.

Доказано, что шум и напряжен­ность труда биологически эквива­лентны по своему воздействию на нервную систему. На примере изу­чения разных профессий установле­на величина физиолого-гигиенического эквивалента шума и напряженности нервно-эмоционального труда, которая находится в пределах 7- 13 дБ (шкала А) на одну категорию напряженности.

Защита. Эффективная защита работающих от неблагоприятного влияния шума требует осуществления комплекса организационных, технических и медицинских мер на этапах проекти­рования, строительства и эксплуа­тации производственных предприя­тий, машин и оборудования. В це­лях повышения эффективности борь­бы с шумом введены обя­зательный гигиенический контроль объектов, генерирующих шум, регистрация физических факторов, оказываю­щих вредное воздействие на окружа­ющую среду и отрицательно вли­яющих на здоровье людей.

Эффективным путем решения проблемы борьбы с шумом является снижение его уровня в самом источ­нике за счет изменения технологии и конструкции машин. К мерам это­го типа относятся замена шумных процессов бесшумными, ударных - безударными, например замена клепки - пайкой, ковки и штамповки обра­боткой давлением; замена металла в некоторых деталях незвучными ма­териалами, применение виброизоля­ции, глушителей, демпфирования, звукоизолирующих кожухов и др. При невозможности снижения шума оборудование, являющееся источни­ком повышенного шума, устанавли­вают в специальные помещения, а пульт дистанционного управления размещают в малошумном помеще­нии. В некоторых случаях снижение уровня шума достигается применением звукопоглощающих пористых ма­териалов, покрытых перфорирован­ными листами алюминия, пластмасс. При необходимости повышения коэффициента звукопоглощения в области высоких частот звукоизолирующие слои покрывают защитной оболочкой с мелкой и частой перфорацией, применяют также штучные звукопоглотители в виде конусов, кубов, закрепленных над оборудованием, являющимся источником повышенного шума. Большое значение в борьбе с шумом имеют архитектурно-планировочные и строительные мероприятия. В тех случаях, когда технические способы не обеспечивают достижения требований действующих нормативов, необходимо ограничение длительности воздействия шума и применение противошумов.

Пртивошумы – средства индивидуальной защиты органа слуха и предупреждения различных расстройств организма, вызываемых чрезмерным шумом. Их используют в основном тогда, когда технические средства борьбы с шумом не обеспечивают снижения его до безопасных пределов. Противошумы подразделяют на три типа: вкладыши, наушники и шлемы.

Противошумные вкладыши вводят в наружный слуховой проход. Вкладыши бывают многократного и однократного пользования. К вкладышам многократного пользования относятся многочисленные варианты заглушек в виде колпачков различной конструкции и формы из резины, каучука и других пластичных полимерных материалов, в некоторых случаях надетых на железные стержни. Противошумные вкладыши многократного использования выпускают нескольких типов и размеров; вес их не регламентируется и колеблется в пределах до 10 г. «Беруши» – коммерческое название отечественных противошумных вкладышей однократного пользования из органического перхлорвинилового фильтрующего шумопоглощающего материала.

Противошумные наушники представляют собой чаши, по форме близкие к полусфере, из легких металлов или пластмасс, наполненные волокнистыми или пористыми звукопоглотителями, удерживаемые с помощью оголовья. Для удобного и плотного прилегания к околоушной области они снабжаются уплотняющими валиками из синтетических тонких пленок, часто заполненных воздухом или жидкими веществами с большим внутренним трением (глицерин, вазелиновое масло и др.). Уплотняющий валик одновременно демпфирует колебания самого корпуса наушника, что существенно при низкочастотных звуковых колебаниях.

Противошумные шлемы – самые громоздкие и дорогостоящие из индивидуальных средств противошумной защиты. Они используются при высоких уровнях шумов, часто применяются в комбинации с наушниками или вкладышами. Расположенный по краю шлема уплотняющий валик обеспечивает плотное прилегание его к голове. Имеются конструкции шлемов с поддутием валика воздухом для надежного облегания головы.

Важное значение в предупреждении развития шумовой патологии имеют предварительные при поступлении на работу и периоди­ческие медицинские осмотры. Таким осмотрам подлежат лица, ра­ботающие на производствах, где шум превышает предельно допус­тимый уровень (ПДУ) в любой октавной полосе.

Медицинскми противопоказаниями к допуску на работу, связанную с воздействием интенсивного шума, являются следующие заболевания:


  1. Стойкое понижение слуха, хотя бы на одно ухо, любой этиологии

  2. Отосклероз и другие хронические заболевания уха с заведомо неблагоприятным прогнозом

  3. Нарушение функции вестибулярного аппарата любой этиологии, в том числе болезнь Меньера

  4. Наркомании, токсикомании, в том числе хронический алкоголизм

  5. Выраженная вегетативная дисфункция

  6. Гипертоническая болезнь (все формы)
Сроки периодических медицинских осмотров устанавливаются в зависимости от интенсивности шума. При интенсивности шума от 81 до 99 дБА - 1 раз в 24 мес, 100 дБА и выше - 1 раз в 12 мес. Первый осмотр отоларинголог проводит через б мес после предва­рительного медицинского осмотра при поступлении на работу, свя­занную с воздействием интенсивного шума. Медицинские осмотры должны проводиться с участием отоларинголога, невропатолога и терапевта.

Список использованной литературы


  1. В.Г.Артамонова, Н.Н.Шаталов “Профессиональные болезни”, Медицина, 1996

  2. Е.Ц.Андреева-Галанина и др. “Шум и шумовая болезнь”, Ленинград, 1972

  3. Г.А.Суворов, А.М.Лихницкий “Импульсный шум и его влияние на организм человека”, Ленинград, 1975

Звук – это колебательное движение в материальной среде, обладающей упругостью и инерционностью, вызванное каким-либо источником.

Распространение колебательного движения в среде называется звуковой волной.

Область среды, в которой распространяются звуковые волны, называется звуковым полем. В каждой точке звукового поля при распространении звуковой волны будет наблюдаться деформация среды, т.е. зона сжатия и разряжения.

Такая деформация приведет к изменению давления в среде. Разность между атмосферным давлением и давлением в данной точке звукового поля называется звуковым давлением (Р). Звуковое давление выражается в паскалях (Па). Сила звука может характеризоваться и количеством звуковой энергии. Средний поток звуковой энергии, проходящей в единицу времени через единицу поверхности, перпендикулярной к направлению распространения звуковой волны, называется интенсивностью звука (I). За единицу измерения интенсивности принят Вт / м2.

За единицу частоты колебаний принят герц (Гц), равный 1 колебанию в секунду.

Интенсивность звука I в свободном поле связана с звуковым давлением, Вт / м2

где Р - среднеквадратичное значение давления (Па),

рс – удельное аккустическое сопротивление среды (для воздуха - 4,44 Нс / м3, для воды – 1,4 х 106 Нс / м3).

Скорость звука в газовой среде определяется по следующей зависимости:

(2.5.2)

где К – показатель адиобата (К= 1,44)

Р – давление воздуха (Па)

р – плотность воздуха (кг/м3)

Скорость звука зависит от свойств среды. Звуки в изотропной среде могут распространяться в виде сферических, плоских и цилиндрических волн. Когда размеры источника звука малы по сравнению с длиной волны, звук распространяется по всем направлениям в виде сферических волн. Если размеры источника больше чем длина излучаемой звуковой волны, то звук распространяется в виде плоской волны.

Плоская волна образуется на значительных расстояниях от источника любых размеров. Скорость звука в воздухе при t= 200 С и давлении 760 мм рт. ст, V= 344 м/с; в воде – 433м/с; в стали - 5000 м/с, в бетоне - 4000 м/с.

Если на пути распространения звуковой волны встречается препятствие, то в силу явления дифракции происходит огибание волнами препятствий. Величина огибания тем больше, чем больше длина волны по сравнению с размерами препятствия.

При длине волны меньшей размера препятствия, наблюдается отражение звуковых волн и образование за препятствием «звуковой тени» (шумозащитные экраны).

Графическое изображение частотного состава шума называется спектром.

Шум представляет собой хаотическое сочетание множества различных по частоте и силе звуков. В ГОСТ 12.1.003-76 (ССБТ) дана классификация шумов. По характеру спектра шумы делятся на широкополосные (с непрерывным спектром шириной более 1-ой октавы) и тональные (в спектре которых имеются слышимые дискретные тона) с превышением уровня в одном полюсе над соседними не менее чем на 10 дБ.

По времени действия шумы подразделяются на постоянные (уровень звука которых за 8-часовой рабочий день изменяются по времени не более чем на 5 дБ при измерениях на временной характеристике «медленно» шумомера по ГОСТ 17187-71) и непостоянные, при изменении уровня звука более 5 дБ. Непостоянные шумы, в свою очередь, делятся на колеблющиеся по времени (уровень звука которых непрерывно изменяется во времени), прерывистые (уровень звука которых резко падает до уровня фонового шума, с интервалом в 1 с и более), импульсные (состоящие из 1-го или нескольких звуковых сигналов с длительностью более 1 с и уровнем звука более 10 дБ). Вибрация является одним из источников шума.

влияние шума на организм человека

Человек способен воспринимать звуки частотой от 16 до 20000 Гц различной силы и интенсивности от еле слышимых до болевых. В ухе человека находится около 25000 клеток, которые реагируют на звук. Всего человек различает 34 тысячи звуков различной частоты. Звуки частотой меньше 16-20 Гц называют инфразвуковыми, а частотой более 20000 Гц – ультразвуковыми.

Звук, а следовательно и шум имеет 2 характеристики:

1 – физическая (объективная)

2 – физиологическая (субъективная)

Физическая – колебательное движение среды характеризуется звуковым давлением. Наименьшая сила звука, которая воспринимается слуховым аппаратом человека, называется порогом слышимости данного звука (Ро) при частоте колебаний 1000 Гц Па или I= 10-12 Вт / м.2. Порогом слышимости называется минимальный уровень звукового давления на данной частоте, вызывающий слуховое ощущение (ГОСТ 12.4.062-78).

Человеческое ухо реагирует не на абсолютный прирост силы звука, а на относительное изменение силы звука. Изменение интенсивности и звукового давления воспринимаемого звука огромно и составляет соответственно 1014 и 107 раз.

Практическое использование абсолютных значений аккустических величин, например, для графического представления распределения звукового давления и интенсивности звука по частотному спектру невозможно из-за громоздкости графиков. При этом важно реагирование органов слуха на относительное изменение Р и I по отношению к пороговым величинам.

Так как между слуховым восприятием и раздражением существует почти логарифмическая зависимость, то для измерения звукового давления, интенсивности (сила звука) и звуковой мощности принята логарифмическая шкала. Это дало возможность значительный диапазон фактических значений (по звуковому давлению –106 и по интенсивности - 1012) разместить в небольшом интервале логарифмических единиц.

Поэтому введены логарифмические величины при определении уровня интенсивности звука (дБ):

(2.5.3)

и уровня звукового давления (дБ):

(2.5.4)

где Iо и Ро - соответствующие значения порога слышимости;

I и Р - замеренные величины уровней интенсивности звука и звукового давления.

Значение Ро выбрано таким образом, чтобы при нормальных атмосферных условиях Li = Lp.

За единицу измерений уровней I и P принят 1 Бел (Б).

Бел – это десятичный логарифм отношения фактических значений I и Р к пороговым значениям Io и Ро: I / Io = 10 - Ly = 1 Б или I / Io = 100 - Ly = 2 Б.

Учитывая, что наши органы слуха воспринимают различия в десятичную долю уровня интенсивности звукового давления, за единицу измерения принята более мелкая единица децибел (дБ), равная 0,1 Б.

Обычно параметры шума и вибрации оцениваются в октавных или третьоктавных диапазонах, где октава – это полоса частот с отношением верхней f2 и нижней f1 граничных частот равным 2 (f1 / f2 = 2). Для третьоктавной полосы f2 / f1 = 1,26. Для характеристики полосы в целом принята среднегеометрическая частота, которая равна:

(2.5.5)

Среднегеометрические частоты октавных полос стандартизованы.

Для звука (ГОСТ 12.1.001-89) с частотами более 11,2 кГц (ультразвук) среднегеометрические частоты третьоктавных полос равны 12500, 16000, 20000 Гц и более. Поэтому по ГОСТ 12.1.003-76 (ССБТ) характеристикой постоянного шума на рабочих местах являются уровни звуковых давлений в октавных полосах (дБ) со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц, определяемые по формуле (4.3. и 4.4).

Болевой порог восприятия звука соответствует и величинам I = 102 Вт/м2, Па.

Если подставить соответственно их в формулы 3.3. и 3.4., то получим дБ или дБ.

Разница уровней в 1 дБ соответствует минимальной величине различимой слухом, при этом интенсивность звука изменяется в 1,26 раза или на 26%. С учетом данного явления разработана шкала громкостей, воспринимаемых человеческим ухом, которая разделяется на 140 единиц. За нуль принята сила звука на пороге слышимости. Увеличение силы звука в 1,26 раза создает следующую ступень громкости. Уровень интенсивности различных звуков на расстоянии 1 м составляет: шепот 10-20 дБ, громкая речь 60-70 дБ, шум на улице 70-80 дБ, шум электропоезда 110дБ, шум реактивного двигателя 130-140дБ. Шум в 150 дБ непереносим для человека, в 180 дБ вызывает усталость металла, в 190 дБ вырывает заклепки из конструкций. Применение шкалы позволяет весь огромный диапазон интенсивности звука измерять в пределах от 0 до 140 дБ. При проверке уровня шума органами надзора или при разработке мер профилактики оценку постоянного шума на рабочем месте (LA) рассчитывают по формуле:

(2.5.6)

где РА= замеренная по шкале А шумомера по ГОСТ 17187-71, среднеквадратичная величина звукового давления (Па).


Однако уровень силы звука в дБ еще не позволяет судить о физиологическом ощущении громкости. Восприятие громкости звука зависит не только от уровня силы звука, но и от его частот (рис.2.5.1)

Рис. 2.5.1. Изолинии равной громкости.

Чувствительность слухового анализатора не одинакова к звукам различных частот и поэтому звуки, одинаковые по своей силе, но разные по частоте, могут оказаться на слух не одинаково громкими. Второй физиологической характеристикой звука является ощущение, воспринимаемое органами слуха, характеризующиеся громкостью. Ухо человека воспринимает звуки с частотой колебаний от 16 до 20000 Гц. Области звуковых колебаний с частотой до 16 Гц (инфразвуки) и более 20000 Гц (ультразвуки) ухом не улавливаются. Поэтому для оценки уровня интенсивности используется сравнение измеряемого звука с эталонным звуком частотой в 1000 Гц. Единицей измерения громкости является фон. Если какой-либо звук окажется на слух таким же громким, как звук частотой 1000 Гц и с уровнем силы 1 дБ, то уровень громкости данного звука принимается равным 1 фону. Различие между уровнем силы звука и уровнем громкости заключается в том, что первый определяет только чистую физическую величину уровня силы звука независимо от частоты, а второй учитывает также и физиологическое, субъективное ощущение звука. Для звуковой частоты 1000 Гц децибелы и фоны численно равны. По мере увеличения интенсивности звука и при уровне более 80 фон громкость звука определяется фактически его силой независимо от частоты. Шкала уровней громкости не является натуральной шкалой, т.е., например, изменение уровня громкости в 2 раза не означает, что субъективное ощущение громкости звука изменяется во столько же раз. Для оценки субъективного восприятия громкости шума или звука введена шкала фонов. Громкость (в фонах) определяется по формуле:

(2.5.7)

где L1 – уровень громкости (фон).

Например, требуется сравнить по громкости 2 звука с уровнем громкости 60 и 80 фон. По формуле 2.5.7. находим:

и

Таким образом, второй звук воспринимается слуховым аппаратом человека как звук в 2 раза более громкий, чем первый(8: 4).

Шум в производстве и в быту отрицательно влияет на организм человека, приводит к снижению производительности труда.

Устойчивый постоянный шум оказывает меньшее влияние на организм человека, чем нерегулярно возникающий высокочастотный. Шум способствует быстрому наступлению у человека чувства усталости. Шум с уровнем интенсивности более 60 дБ тормозит нормальную пищеварительную деятельность желудка. При шуме 80-90 дБ число сокращений желудка в минуту уменьшается на 37%. Установлено, что при интенсивности шума более 60 дБ выделение слюны и отделение желудочного сока понижается на 44%. Временное, а иногда и постоянное повышение кровяного давления, повышенная раздражительность, понижение работоспособности, душевная депрессия и т.п. являются следствием действия шума. Неопределенные шумы, не доходящие до сознания, также вызывают истощение центральной нервной системы, в результате чего они могут служить причиной незаметных до поры нарушений в организме.

У человека, находящегося в течение 6-8 часов под воздействием шума интенсивностью 90 дБ, наступает умеренное понижение слуха, исчезающее примерно через 1 ч после его прекращения. Шум, превышающий 120 дБ, очень быстро вызывает у человека усталость и заметное понижение слуха. В каждом отдельном случае степень потери слуха и длительность периода восстановления пропорциональны уровню интенсивности и длительности воздействия.

При большой интенсивности шум не только влияет на слух, но и оказывает другое воздействие (головная боль, плохая восприимчивость речи), порой чисто психологическое воздействие на человека. Все части тела испытывают при этом постоянное давление или ощущение порыва ветра; в костях черепа и зубах точно так же, как и в мягких тканях носа и горла, возникают вибрации. При уровне шума 140 дБ (порог болевого ощущения) и выше ощущение давления усиливается и распространяется по всему телу, а грудная клетка, мышцы ног и рук начинают вибрировать. Когда уровень интенсивности шума достигнет 160 дБ, может произойти разрыв барабанной перепонки.

Продолжительный и сильный шум вредно отражается на здоровье и работоспособности человека. Продолжительное действие шума вызывает общее утомление, может постепенно привести к потере слуха и к глухоте. Под потерей слуха (ССБТ, ГОСТ 12.4.062-78) понимают постоянное смещение порога слышимости на данной частоте, т.е. необратимое (стойкое) нижение остроты слуха от воздействия шума. ГОСТ 12.4.062-78 для определения потерь слуха устанавливает 3 метода: на 8-ми частотах; на 4-х частотах; на 2-х частотах.

Оценка результатов производится по среднему арифметическому значению величин потерь слуха отдельно для правого (0) и левого (Х) уха на речевых частотах 500, 1000, 2000 Гц:

дБ дБ

Если потери слуха на речевых частотах равны 10-20 дБ, то это легкое снижение слуха (1 степень); при потере слуха – 21-30 дБ наблюдается умеренное снижение слуха (2 степень); если снижение слуха – 31 дБ и более, то наблюдается значительное снижение слуха (3 степень). Действуя на центральную нервную систему, шум оказывает влияние на деятельность всего организма человека: ухудшается зрение, деятельность органов дыхания и кровообращения, повышается кровяное давление. Шум ослабляет внимание и затормаживает психологические реакции. По этим причинам шум способствует возникновению несчастных случаев и ведет к снижению производительности труда.

Шум усиливает действие профессиональных вредностей: на 10-15% повышает общую заболеваемость работающих, снижает производительность труда, особенно сложного (умственного). Для сохранения производительности при повышении шума с 70 до 90 дБ рабочий должен затратить на 10-20% больше физических и нервных усилий. Действие шума на организм возрастает при повышении напряженности и тяжести труда.

При систематическом воздействии сильного шума и при недостаточном времени отдыха, когда за время отдыха слух не успевает полностью восстановиться, наступает стойкое ослабление слуха. Шумы со сплошными спектрами являются менее раздражающими, чем шумы, содержащие тональные составляющие. Если источники шума одинаковые по интенсивности (когда L1 = L2 = Ln), то:

(2.5.8)

где Lm – уровень интенсивности шума 1-го источника, дБ;

N – количество одинаковых источников шума.

Если они разные, то:

где L1, L2, Ln – уровни звукового давления, создаваемые в расчетной точке, а 1, 2 … n – источники шума.

Следует учитывать:

Если один источник шума создает уровень звукового давления 90 дБ, а другой – 84 дБ, то их суммарный уровень не равен 174 дБ, а всего примерно 91 дБ (добавим к уровню 90 дБ – 1 дБ). Из этого следует, что для успешного снижения шума необходимо, в первую очередь, выявить и заглушить наиболее интенсивный источник шума, так как добавка шумов меньшей интенсивности незначительны.

При наличии множества примерно одинаковых источников шума устранение одного или двух из них, практически не снижает общего шума.

Так, например, если вместо 10 одинаковых источников оставить 6, то уровень шума снизится всего на 2 дБ.

Снижение уровня звукового давления на каждые 10 дБ соответствует уменьшению физиологически воспринимаемой человеком громкости звука в 2 раза: например, шум в 60 дБ вдвое тише, чем шум в 70 дБ.

Звуковые волны в помещении, многократно отражаясь от стен, потолка, производственного оборудования, увеличивают общий шум на 5-15 дБ.

Еще из раздела Безопасность жизнедеятельности:

  • Реферат: Курение - как вид опасной токсикомании, влияющий на здоровье будущих поколений
  • Курсовая работа: Конструирование и расчет технических средств коллективной защиты работников от воздействия вредных производственных факторов

Защита от шума, вибрации, ультра- и инфразвуков.

Воздействие на человека.

Вибрация – это механическое сотрясение тела с частотой 1-100Гц. Она отрицательно влияет на нервную систему, опорно-двигательный аппарат, желудок, зрение, слух. Стойкие нарушения вызывают виброболезнь.

Тело человека поглощает энергию колебаний пропорционально квадрату виброскорости . Поэтому в качестве параметра воздействия приняты среднеквадратичные (усредненные по времени) значения виброскорости V в абсолютных (м/с, мм/с) или относительных единицах (по отношению к пороговому минимальному значению V 0 = 5*10 -5 мм/c)

Шум, инфра- и ультразвуки – это звуковые волны в воздухе. Инфразвуки не слышны, имеют частоту до 20Гц ; вызывают усталость, головную боль, недомогание. Они особенно опасны в резонансе с частотой биотоков мозга (7Гц).

Шум – это слышимые звуки с частотой 20-20000Гц. Их воздействие на человека неодинаково. Природные звуки полезны и необходимы. Полное отсутствие звуков – непереносимо. Шум слабой интенсивности может вызвать душевное расстройство, невроз. Шум интенсивностью 90-110дБ вызывает гипертонию, язвенную болезнь, тугоухость; 130-150дБ – травму органов слуха.

Ультразвук человек не слышит. При частоте 20-30КГц ультразвук распространяется в воздухе, а при 30КГц и выше – в колеблющейся среде. Ультразвук интенсивностью 120-130дБ вызывает ультразвуковую патологию: головную боль, чрезмерную утомляемость, сонливость, понижение артериального давления, нарушение вестибулярной функции.

Параметр воздействия шума, инфра- и ультразвука на человека – среднеквадратичные значения звукового давления в абсолютных (Па) или относительных единицах

, дБ,

где Р 0 = 2*10 -5 – пороговое значение звукового давления на частоте 1000Гц.

Звуковое давление – это дополнительное к атмосферному переменное давление звуковых волн (положительное в фазе сжатия и отрицательное в фазе разряжения).

Частотная область вибрации и шума условно разделена на октавные полосы, в которых f в /f н = 2, где

f в – частота верхней границы полосы,

f н - частота нижней границы полосы.

Полоса характеризуется среднегеометрической частотой
.

Предельно допустимые уровни (ПДУ).

ГОСТом 12.1.012-90 установлены ПДУ вибрации: общей – передающейся через опорные поверхности на тело стоящего или сидящего человека; локальной – передающейся через руки. ПДУ установлены в зависимости от частоты вибрации и характера работ (мм/с, дБ).

ГОСТом 12.1.003-83 установлены ПДУ шума в зависимости от частоты, характера работы и характера шума. Шумы подразделяются на:

Широкополосные с непрерывным сплошным спектром;

Тональные – в спектре имеются дискретные тона с превышением уровня на 10дБ.

Постоянный шум – уровень его меняется <5дБ в течение 8-часового рабочего дня.

Непостоянный шум – уровень его меняется >5дБ.

ГОСТом установлены предельные спектры (ПС) широкополосного постоянного шума. Для тональных шумов ПДУ на 5дБ менее ПС.

Непостоянный шум оценивают эквивалентным по энергии уровнем звука в дБА. «А» - характеризует шумомер для учета воздействия на человека шумов разной частоты.

Ультразвук – ПДУ ≤75-110дБ при f = 11-20КГц.

Интенсивность звука - I (Вт/кв.м) – поток энергии через единицу площади в единицу времени. I можно выразить через звуковое давление

ρ – плотность среды, кГ/м 3 , ρ С – удельное акустическое сопротивление среды(для воздуха 410)

С – скорость звука, м/с, L P = L I , I 0 = 10 -12 Вт/м 2 (для 1000 Гц)

Контроль и измерение.

Уровни шума и общей вибрации измеряются на рабочих местах не реже 1 раз в год, локальные вибрации – не реже 2х раз в год.

Защита от вибрации.

На рисунке показаны: 1 – вибрирующая опора; 2 – жесткость системы;

3 – оператор; 4 – трение в системе; F – возбуждающая сила (Н)

Сила F – встречает сопротивление двух сил: 1) восстанавливающей F в = CX, C - коэффициент жесткости виброизоляции, Н/м; X – перемещение, м;

2) силы трения F с = μV, μ – коэффициент сопротивления трения Н*с/м, V - скорость перемещения, м/с (F с вызывает рассеяние механической энергии).

Колеблющаяся система оказывает также инерционное сопротивление.

F a = ma; где m – масса (кг), a – виброускорение (м/с 2)

Амплитуда виброскорости:
, где

ω = 2πf – угловая частота возбуждающей силы в случае гармонических колебаний.

Способы защиты от вибрации


Защита от шума.

Интенсивность звуковой энергии на р.м. определяется

, Вт/м 2

где 1- ый член выражает прямую энергию звуковых волн, а 2-ой – отраженную от стен, потолка, оборудования и т.п.

Меры защиты (следуют из формулы):

    уменьшение звуковой мощности P (Вт);

    уменьшение фактора направленности излучения шума Ф = Р 2 /Р 2 ср;

    увеличение площади S, на которую распространяется звуковая энергия. В свободном пространстве уровень шума в расчетной точке уменьшается пропорционально квадрату расстояния

L x = L ист -20lg(x), дБ;

    повышение коэффициента звукопоглощения (α). Помещения покрывают пористыми материалами, в порах звуковая энергия переходит в тепловую и рассеивается за счет трения воздуха.

    увеличение коэффициента ослабления К осл звуковой энергии с помощью звукоизолирующих преград из твердых тяжелых материалов. Звуковая энергия отражается от них в сторону источника.

Звукоизоляция ослабляет шум на 30-40дБ, звукопоглощение на 6-12дБ.

Расчет защиты от шума.

Ослабление шума на р.м. должно быть не менее

∆L расч ≥ (L Σист - L доп) + (3÷5), дБ

L доп – допустимый уровень шума, (3-5)дБ – запас;

L Σист – суммарный уровень шума на р.м от неск. источников.

Его измеряют или рассчитывают.

I Σ = I 1 +I 2 +I 3 +...+I n ,

L Σист = 10*lg(10 0,1L1 +10 0,1 L2+10 0,1 L3+...+10 0,1Ln),

для однотипных источников (n) - L Σист = L 1 +10*lg(n),

Ослабление шума средствами шумозащиты:

    ослабление звукоизоляционной преградой

∆L = 20*lg(mf)-60

m – масса 1м 2 преграды, кг; f - звуковая частота, Гц.

2. ослабление звукоизоляционным кожухом с поглощающим материалом

∆L = 20*lg(mf)-60+10*lg(α), где α – коэффициент звукопоглощения ЗПМ.

3. звукопоглощающие облицовки

,

A = Σα i *S i – эквив. площадь поглощения,

,

В случае только отраженного звука

или
.

Введение

шум защита нормирование

Шумом принято называть нежелательное для восприятия органами слуха человека беспорядочное сочетание звуков различной частоты и интенсивности.

Влияние шума на человека пока еще недостаточно полно изучено. Это объясняется сложностью выделения влияния шума из комплекса факторов внешней среды, воздействующих на человека, и отсутствием четких критериев его оценки. Реакция организма на шум зависит от многих факторов. Некоторые люди терпимы к нему, у других он вызывает неудовольствие, у третьих - нарушает самочувствие, сон, нормальную трудовую деятельность. Причиной различного восприятия шума может быть возраст, состояние здоровья, характер деятельности человека, его настроение.

Безопасность жизнедеятельности при воздействии шума. Действие шума на организм человека

Уровень шума и фактор времени имеют решающее значение. Степень раздражающего воздействия зависит и от того, на сколько шум превышает привычный окружающий фон, какова заключенная в нем информация.

Влияние производственного шума на организм человека также может сопровождаться развитием профессиональных заболеваний. Длительное воздействие шума на человека может привести к частичной, а иногда значительной потере слуха -- профессиональной тугоухости и оказывать глубокое воздействие на весь организм человека. Уже при шуме 130 дБ человек испытывает болевые ощущения. Шум в 150 дБ для человека, непереносим, а в 190 дБ вырывает заклепки из металлических конструкций. Шум, обладая кумулятивными качествами, накапливаясь в организме, оказывает вредное воздействие в первую очередь на центральную нервную и сердечно-сосудистую системы. Шум -источник и причина многих-заболеваний и функциональных расстройств. Как показали результаты медико-биологических исследований, каждый" децибел шума сверх допустимой нормы снижает производительность труда на один процент, увеличивает риск потери слуха на полтора процента и на полпроцента -- риск сердечно-сосудистых расстройств.

Частичная или полная потеря слуха -- не редкое профессиональное заболевание во многих промышленно развитых странах. Неблагоприятное воздействие акустических колебании приводит не только к ухудшению слуха. От избыточного шума в организме снижается иммунный барьер и частота, заболеваний, причем самых различных -- от простудных до гинекологических -увеличивается. Исследования показывают, что шумных предприятиях уровень заболеваемости выше среднего на 20%. Под влиянием шума повышается внутричерепное и кровяное давление, сердце начинает хуже сокращаться, нарушаются ритм дыхания и сон, нарушается работа эндокринной системы. Шум является причиной снижения работоспособности, ослабления памяти, внимания, остроты зрения, чувствительности к предупредительным сигналам. По мнению австрийского ученого Гриффита шум является причиной преждевременного старения в 30 случаях из 100, он сокращает жизнь человека в шумных городах на 8?12 лет. Под действием систематического шума производительность труда в ряде случаев снижается до 66%, а число ошибок в расчетных работах увеличивается более чем на 50%.

Как показали исследования, инфразвук при значительных мощностях губительно действует на человека. Объясняется это тем, что внутренние органы человека имеют собственные частоты колебании порядка 6...9 Гц. При облучении инфразвуком внутренние органы могут прийти в колебание: между сердцем, легкими и желудком возникает трение, ведущее к сильному раздражению и нарушению их нормальной жизнедеятельности. Инфразвуки малой мощности, действуют на внутреннее ухо, вызывал недомогание типа морской болезни, нервную усталость; при средних мощностях наблюдается внутренние расстройства органов пищеварения и мозга с самыми различными последствиями: параличами, обмороками, общей слабостью и т.п. Может быть вызвана слепота. Большие мощности-инфразвука особенно опасны потому, что, вызывая резонанс внутренних органов, могут вызвать их разрушение торможение кровообращения, даже остановку сердца.

Воздействие ультразвука малой мощности на человека вызывает главным образом тепловой эффект. При средних и больших интенсивностях его воздействие может оказаться паралитическим и даже смертельным Пребывание в поле ультразвукового генератора вызывает слабость, усталость, головные боли и боли в ушах, расстройство сна. При воздействии ультразвука могут наблюдаться разрушение нервной системы, понижение кровяного давления и т.д. Кроме того, следует иметь в виду, что при соприкосновении работающих с предметами и веществами, в которых возбуждены ультразвуковые колебания (инструменты, обрабатываемые детали, жидкости), происходит контактное облучение. При длительном контакте с такими предметами и веществами может появиться снижение чувствительности кистей рук и чувство онемения в пальцах. Эти явления нестойки и, как правило, исчезают при прекращении работы на ультразвуковом оборудовании.

Источники шума:

  • - все виды транспорта;
  • - промышленные объекты;
  • - строительные машины;
  • - музыкальные инструменты;
  • - группа людей и отдельные люди.
  • - техническое оснащение зданий (лифты);
  • - санитарное оснащение зданий (сливные краны туалетов);
  • - бытовые приборы.


Похожие публикации