Физиология лимбической системы. Эмоциональный мозг: лимбическая система

— совокупность нервных структур и их связей, расположенных в медиобазальной части больших полушарий, участвующих в управлении вегетативными функциями и эмоциональным, инстинктивным поведением, а также оказывающих влияние на смену фаз сна и бодрствования.

К лимбической системе относится наиболее древняя часть коры головного мозга, расположенная на внутренней стороне больших полушарий. К ней относятся: гиппокамп, поясная извилина, миндалевидные ядра, грушевидная извилина. Лимбические образования относятся к высшим интегративным центрам регуляции вегетативных функций организма. Нейроны лимбической системы получают импульсы с коры, подкорковых ядер, таламуса, гипоталамуса, ретикулярной формации и всех внутренних органов. Характерным свойством лимбической системы является наличие хорошо выраженных кольцевых нейронных связей, объединяющих различные ее структуры. Среди структур, ответственных за память и обучение, главную роль играют гиппокамп и связанные с ним задние зоны лобной коры. Их деятельность важна для перехода кратковременной памяти в долговременную. Лимбическая система участвует в афферентном синтезе, в контроле электрической активности мозга, регулирует процессы обмена веществ и обеспечивает ряд вегетативных реакций. Раздражение различных участков этой системы у животного сопровождается проявлениями оборонительного поведения и изменениями деятельности внутренних органов. Лимбическая система участвует и в формировании поведеческих реакций у животных. В ней находится корковый отдел обонятельного анализатора.

Структурно-функциональная организация лимбической системы

Большой круг Пейпеса:

  • гиппокамп;
  • свод;
  • мамиллярные тела;
  • мамиллярно-таламический пучок Викд"Азира;
  • таламус;
  • поясная извилина.

Малый круг Наута:

  • миндалина;
  • конечная полоска;
  • перегородка.

Лимбическая система и ее функции

Состоит из филогенетически старых отделов переднего мозга. В названии(limbus — край) отражена особенность ее расположения в виде кольца между новой корой и конечной частью ствола мозга. К лимбической системе относят ряд функционально объединенных структур среднего, промежуточного и конечного мозга. Это поясная, парагиппокампальная и зубчатая извилины, гиппокамп, обонятельная луковица, обонятельный тракт и прилежащие участки коры. Кроме того, к лимбической системе относят миндалину, переднее и септальное таламические ядра, гипоталамус и мамиллярные тела (рис. 1).

Лимбическая система имеет множественные афферентные и эфферентные связи с другими структурами мозга. Ее структуры взаимодействуют друг с другом. Функции лимбической системы реализуются на основе протекающих в ней интегративных процессов. В то же время отдельным структурам лимбической системы присущи более или менее очерченные функции.

Рис. 1. Важнейшие связи между структурами лимбической системы и ствола мозга: а — круг Пайпеца, б — круг через миндалину; МТ — мамиллярные тела

Основные функции лимбической системы:

  • Эмоционально-мотивационное поведение (при страхе, агрессии, голоде, жажде), которое может сопровождаться эмоционально окрашенными двигательными реакциями
  • Участие в организации сложных форм поведения, таких как инстинкты (пищевые, половые, оборонительные)
  • Участие в ориентировочных рефлексах: реакция настороженности, внимания
  • Участие в формировании памяти и динамике обучения (выработка индивидуального поведенческого опыта)
  • Регуляция биологических ритмов, в частности смен фаз сна и бодрствования
  • Участие в поддержании гомеостаза путем регуляции вегетативных функций

Поясная извилина

Нейроны поясной извилины получают афферентные сигналы из ассоциативных областей лобной, теменной и височной коры. Аксоны ее эфферентных нейронов следуют к нейронам ассоциативной коры лобной доли, гипиокампа, септальных ядер, миндалины, которые связаны с гипоталамусом.

Одной из функций поясной извилины является ее участие в формировании поведенческих реакций. Так, при стимуляции ее передней части у животных возникает агрессивное поведение, а после двухстороннего удаления животные становятся тихими, покорными, асоциальными — теряют интерес к другим особям группы, не пытаясь устанавливать с ними контакт.

Поясная извилина может оказывать регуляторные влияния на функции внутренних органов и поперечно-полосатой мускулатуры. Ее электрическая стимуляция сопровождается уменьшением частоты дыхания, сокращений сердца, снижением давления крови, усилением моторики и секреции желудочно-кишечного тракта, расширением зрачка, снижением тонуса мышц.

Не исключено, что влияния поясной извилины на поведение животных и функции внутренних органов являются непрямыми и опосредованы связями поясной извилины через кору лобной доли, гиппокамп, миндалину и септальные ядра с гипоталамусом и структурами ствола мозга.

Возможно, что поясная извилина имеет отношение к формированию болевых ощущений. У людей, которым по медицинским показаниям было проведено рассечение поясной извилины, уменьшалось чувство боли.

Установлено, что нейронные сети передней части поясной извилины участвуют в работе мозгового детектора ошибок. Его функцией является выявление ошибочных действий, ход выполнения которых отклоняется от программы их исполнения и действий, при завершении которых не были достигнуты параметры конечных результатов. Сигналы детектора ошибок используются для запуска механизмов коррекции ошибочных действий.

Миндалина

Миндалина расположена в височной доле мозга, и ее нейроны формируют несколько подгрупп ядер, нейроны которых взаимодействуют друг с другом и другими структурами мозга. Среди этих ядерных групп кортикомедиальная и базолатеральная подгруппы ядер.

Нейроны кортикомедиальных ядер миндалины получают афферентные сигналы от нейронов обонятельной луковицы, гипоталамуса, ядер таламуса, септальных ядер, вкусовых ядер промежуточного мозга и путей болевой чувствительности моста, по которым к нейронам миндалины поступают сигналы от больших рецептивных полей кожи и внутренних органов. С учетом этих связей предполагают, что кортикомедиальная группа ядер миндалин вовлечена в контроль осуществления вегетативных функций организма.

Нейроны базолатеральных ядер миндалины получают сенсорные сигналы от нейронов таламуса, афферентные сигналы о смысловом (осознаваемом) содержании сигналов от префронтальной коры лобной доли, височной доли мозга и поясной извилины.

Нейроны базолатеральных ядер связаны с таламусом, префронтальной частью коры больших полушарий мозга и вентральной частью полосатого тела базальных ганглиев, поэтому предполагается, что ядра базолатеральной группы миндалин принимают участие в осуществлении функций лобной и височной долей мозга.

Нейроны миндалины посылают эфферентные сигналы по аксонам преимущественно к тем же структурам мозга, от которых они получили афферентные связи. Среди них гипоталамус, медиодорсальное ядро таламуса, префронтальная кора, зрительные области височной коры, гиппокамп, вентральная часть полосатого тела.

О характере функций, выполняемых миндалиной, судят но последствиям ее разрушения или по эффектам ее раздражения у высших животных. Так, двухстороннее разрушение миндалин у обезьян вызывает потерю агрессивности, снижение эмоций и защитных реакций. Обезьяны с удаленными миндалинами держатся в одиночестве, не стремятся вступать в контакт с другими животными. При заболеваниях миндалин наблюдается разобщение между эмоциями и эмоциональными реакциями. Больные могут испытывать и выражать большую обеспокоенность по какому-либо поводу, но в это время частота сокращений сердца, давление крови и другие вегетативные реакции у них не изменены. Предполагается, что удаление миндалин, сопровождаемое разрывом ее связей с корой, ведет к нарушению в коре процессов нормальной интеграции смысловой и эмоциональной составляющих эфферентных сигналов.

Электрическая стимуляция миндалин сопровождается развитием тревоги, галлюцинаций, переживанием ранее происходивших событий, а также реакциями СНС и АНС. Характер этих реакций зависит от локализации раздражения. При раздражении ядер корково-медиальной группы превалируют реакции со стороны органов пищеварения: саливация, жевательные движения, опорожнение кишечника, мочеиспускание, а при раздражении ядер базолатеральной группы — реакции настораживания, подъема головы, расширения зрачка, поиска. При сильном раздражении у животных могут развиться состояния ярости или, наоборот, испуга.

В формировании эмоций важная роль принадлежит наличию замкнутых кругов циркуляции нервных импульсов между образованиями лимбической системы. Особую роль в этом играет так называемый лимбический круг Пайпеца (гиппокамп — свод — гипоталамус — мамиллярные тела — таламус — поясная извилина — парагиппокампальная извилина — гиппокамп). Циркулирующие по этой круговой нейронной цепи потоки нервных импульсов иногда называют «потоком эмоций».

Другой круг (миндалина — гипоталамус — средний мозг — миндалина) важен в регуляции агрессивно-оборонительных, сексуальных и пищевых поведенческих реакций и эмоций.

Миндалины являются одной из структур ЦНС, на нейронах которой имеется наибольшая плотность рецепторов половых гормонов, что объясняет одно из изменений в поведении животных после двухстороннего разрушения миндалин — развитие гиперсексуальности.

Экспериментальные данные, полученные на животных, свидетельствуют о том, что одной из важных функций миндалин является их участие в установлении ассоциативных связей между характером раздражителя и его значимостью: ожидание удовольствия (награды) или наказания за выполненные действия. В реализации этой функции участвуют нейронные сети миндалин, вентральной части полосатого тела, таламуса и префронтальной коры.

Гиппокампальные структуры

Гиппокамп вместе с зубчатой извилиной (subiculun ) и обонятельной корой образует единую функциональную гиппокампальную структуру лимбической системы, расположенную в медиальной части височной доли мозга. Между составляющими этой структуры имеются многочисленные двухсторонние связи.

Основные афферентные сигналы зубчатая извилина получает от обонятельной коры и посылает их в гиппокамп. В свою очередь обонятельная кора как главные ворота получения афферентных сигналов получает их от различных ассоциативных областей коры больших полушарий, гиппокампальной и поясной извилин. К гиппокампу поступают уже обработанные зрительные сигналы из внестриарных областей коры, слуховые — из височной доли, соматосенсорные — из постцентральной извилины и информация — из полисенсорных ассоциативных областей коры.

К гиппокампальным структурам поступают сигналы и из других областей мозга — ядер ствола, ядра шва, голубоватого пятна. Эти сигналы выполняют преимущественно модуляторную функцию по отношению к активности нейронов гиппокампа, приспосабливая ее к степени внимания и мотиваций, оказывающих решающее значение на процессы запоминания и обучения.

Эфферентные связи гиппокампа организованы так, что они следуют в основном в те области мозга, с которыми гиппокамп связан афферентными связями. Таким образом, эфферентные сигналы гиппокампа следуют главным образом к ассоциативным областям височной и лобной долей мозга. Для выполнения своих функций гиппокампальные структуры нуждаются в постоянном обмене информацией с корой и другими структурами мозга.

Одним из последствий двухстороннего заболевания медиальной части височной доли является развитие амнезии — потери памяти с последующим снижением интеллекта. При этом наиболее грубые нарушения памяти наблюдаются при повреждении всех гиппокампальных структур и менее выраженные — при повреждении только гиппокампа. Из этих наблюдений сделан вывод о том, что гиппокампальные структуры являются частью структур мозга, включая медиальный галамус, холинергические нейронные группы основания лобных долей, миндалины, играющих ключевое значение в механизмах памяти и обучения.

Особую роль в реализации гиппокампом механизмов памяти играет уникальное свойство его нейронов сохранять в течение длительного времени состояние возбуждения и синаптической передачи сигналов после их активации какими-либо воздействиями (это свойство называется посттетанической потенциацией). Посттетаническая потенциация, обеспечивающая длительное циркулирование информационных сигналов но замкнутым нейронным кругам лимбической системы, является одним из ключевых процессов в механизмах формирования долговременной памяти.

Гиппокампальные структуры играют важную роль в усвоении новой информации и сохранении ее в памяти. Информация о более ранних событиях сохраняется в памяти после повреждения этой структуры. При этом гиппокампальные структуры играют роль в механизмах декларативной или конкретной памяти на события и факты. К механизмам недекларативной памяти (память на навыки и лица) в большей степени причастны базальные ганглии, мозжечок, моторные области коры, височная кора.

Таким образом, структуры лимбической системы принимают участие в осуществлении таких сложных функций мозга как поведение, эмоции, обучение, память. Функции мозга организованы так, что чем сложнее функция, тем разветвленное нейронные сети, участвующие в ее организации. Из этого очевидно, что лимбическая система является лишь частью структур центральной нервной системы, имеющих значение в механизмах сложных функций мозга, и вносит свой вклад в их осуществление.

Так, в формировании эмоций как состояний, отражающих паше субъективное отношение к текущим или прошлым событиям, можно выделить психический (переживание), соматический (жестикуляция, мимика) и вегетативный (вегетативные реакции) компоненты. Степень проявления этих компонентов эмоций зависит от большей или меньшей вовлеченности в эмоциональные реакции структур мозга, при участии которых они реализуются. Это во многом определяется тем, какая группа ядер и структур лимбической системы активируется в наибольшей степени. Лимбическая система выступает в организации эмоций как своеобразный дирижер, усиливающий или ослабляющий выраженность того или иного компонента эмоциональной реакции.

Вовлечение в ответные реакции структур лимбической системы, связанных с корой больших полушарий, усиливает в них психический компонент эмоции, а вовлечение структур, связанных с гипоталамусом и самого гипоталамуса как части лимбической системы, усиливает вегетативный компонент эмоциональной реакции. В то же время функция лимбической системы в организации эмоций находится у человека под влиянием коры лобной доли мозга, которая оказывает корригирующее влияние на функции лимбической системы. Она сдерживает проявление излишних эмоциональных реакций, связанных с удовлетворением простейших биологических потребностей и, по-видимому, способствует появлению эмоций, связанных с реализацией социальных взаимоотношений и творчества.

Структуры лимбической системы, встроенные между частями мозга, принимающими непосредственное участие в формировании высших психических, соматических и вегетативных функций, обеспечивают согласованное их осуществление, поддержание гомеостаза и поведенческих реакций, направленных на сохранение жизни индивидуума и вида.

Печаль, отвращение. Эмоции. Несмотря на то, что мы иногда чувствуем себя подавленными в силу их интенсивности, но на самом деле жизнь без них невозможна. Что бы мы делали, к примеру, без страха? Возможно, мы бы превратились в безрассудных самоубийц. В этой статье объясняется, что такое лимбическая система, за что она отвечает, каковы ее функции, компоненты и возможные состояния. Какое отношение лимбическая система имеет к нашим эмоциям?

Что такое лимбическая система? Ещё со времен Аристотеля ученые занимались исследованиями таинственного мира человеческих эмоций. Исторически сложилось так, что эта область науки всегда вызывала много споров и интенсивных дискуссий; пока научной мир не пришёл к тому, чтобы признать, что эмоции являются неотъемлемой частью человеческой природы. В самом деле, в настоящее время наука подтверждает, что существует некая структура мозга, а именно лимбическая система, которая регулирует наши эмоции.

Термин “лимбическая система” был предложен американским ученым Полом Д. Маклином в 1952 году в качестве нервного субстрата для эмоций (Маклин, 1952). Он также предложил концепцию триединого мозга, согласно которой человеческий мозг состоит из трёх частей, насаженных одна на другую, как в матрёшке: древний мозг (или мозг рептилии), средний мозг (или лимбическая система) и неокортекс (кора больших полушарий).

Проверьте основные функции вашего мозга с помощью

Компоненты лимбической системы

Из чего состоит лимбическая система мозга? Какова её физиология? Лимбическая система имеет много центров и компонентов, однако мы остановимся лишь на тех из них, которые имеют наиболее значимые функции: миндалевидное тело (далее миндалина), и поясная извилина.

“Гипоталамус, ядро передней части поясной извилины, поясная извилина, гиппокамп и его соединения представляют собой слаженный механизм, который отвечает за центральные эмоциональные функции, а также принимает участие в выражении эмоций”. Джеймс Пейпец, 1937

Функции лимбической системы

Лимбическая система и эмоции

Лимбическая система в мозге человека выполняет следующую функцию. Когда мы говорим об эмоциях, автоматически у нас возникает чувство некоторого отторжения. Речь идет о той ассоциации, которая до сих пор имеет место с того времени, когда концепт эмоций выглядел как что-то тёмное, замутняющее разум и интеллект. Некоторые группы исследователей утверждали, что эмоции опускают нас до уровня животных. Но на самом деле, это совершенно верно, потому что, как мы увидим далее, эмоции (не столько сами по себе, сколько та система, которую они активируют) помогают нам выжить.

Эмоции были определены как взаимосвязанные ответные реакции, вызываемые ситуациями награды и наказания. Награды, например, способствуют реакциям (удовлетворение, комфорт, благополучие и т.д.), которые привлекают животных к адаптивным стимулам.

  • Автономные реакции и эмоции зависят от лимбической системы: взаимосвязь между эмоциями и вегетативными реакциями (изменениями тела) имеет важное значение. Эмоции представляют собой, в сущности, диалог между мозгом и телом. Мозг обнаруживает значительный стимул и посылает информацию к телу, чтобы оно могло реагировать на эти раздражители надлежащим образом. Последним шагом является то, что изменения в нашем теле происходят осознанно, и, таким образом, мы признаём наши собственные эмоции. Например, реакции страха и гнева начинаются в лимбической системе, что вызывает диффузное влияние на симпатическую нервную систему. Реакция организма, известная как “бей или беги”, готовит человека к угрожащим ситуациям, чтобы он мог в зависимости от обстоятельств защищаться или бежать, увеличивая частоту его сердечных сокращений, дыхания и кровяного давления.
  • Страх зависит от лимбической системы: реакции страха формируются в результате стимуляции гипоталамуса и миндалины. Именно поэтому, разрушение миндалины устраняет реакцию страха и связанные с ним телесные эффекты. Миндалина также участвует в процессе обучения на основе страха. Аналогичным образом, исследования нейровизуализации показывают, что страх активизирует левую миндалину.
  • и спокойствие также являются функциями лимбической системы: наблюдаются реакции гнева на минимальные стимулы после удаления неокортекса. Разрушение как некоторых областей гипоталамуса, так и вентрамедиального ядра и перегородочных ядер, также вызывает реакцию гнева у животных. Гнев также может быть сгенерирован посредством стимуляции более широких областей среднего мозга. И наоборот, двустороннее разрушение миндалины нарушает реакции гнева и приводит к чрезмерному спокойствию.
  • Удовольствие и зависимость берут начало в лимбической системе: нейронные сети, отвечающие за удовольствия и аддиктивное поведение, входят в структуру миндалины, прилежащего ядра и гиппокампа. Эти цепи участвуют в мотивации к употреблению наркотиков, обуславливают природу импульсивного потребления и возможные рецидивы. Узнайте больше о пользе когнитивной реабилитации при лечении от зависимостей.

Функции лимбической системы, не связанные с эмоциями

Лимбическая система принимает участие в формировании других процессов, связанных с выживанием. В научной литературе широко описаны её нейронные сети, специализирующиеся на таких функциях, как сон, сексуальное поведение или память .

Как и следовало ожидать, память – это ещё одна важная функция, необходимая нам для выживания. Хотя существуют и другие типы памяти, эмоциональная память относится к стимулам или ситуациям, которые являются жизненно важными. Миндалина, префронтальная кора головного мозга и гиппокамп участвуют в процессах приобретения, поддержания и исчезновения фобий из нашей памяти. Например, боязнь пауков, которая присутствует у людей, чтобы в конечном итоге облегчить им выживание.

Лимбическая система также контролирует пищевое поведение, аппетит и работу обонятельной системы.

Клинические проявления. Нарушения в работе лимбической системы

1- Деменция

Лимбическая система связана с причинами возникновения , в частности болезни Альцгеймера и болезни Пика. Эти патологии сопровождаются атрофией в лимбической системе, особенно в области гиппокампа. При болезни Альцгеймера появляются старческие бляшки и нейрофибриллярные сплетения (клубки).

ЛИМБИЧЕСКАЯ СИСТЕМА (син.: висцеральный мозг, лимбическая доля, лимбический комплекс, тимэнцефалон ) - комплекс структур конечного, промежуточного и среднего отделов мозга, составляющих субстрат для проявления наиболее общих состояний организма (сна, бодрствования, эмоций, мотиваций и т. д.). Термин «лимбическая система» введен П. Мак-Лейном в 1952 г.

Нет единого мнения о точном составе структур, входящих в состав Л. с. Большинство исследователей, в частности, рассматривают гипоталамус (см.) как самостоятельное образование, выделяя его из Л. с. Однако такое выделение условно, т. к. именно на гипоталамусе происходит конвергенция влияний, исходящих от структур, участвующих в регуляции различных вегетативных функций и формировании эмоционально окрашенных поведенческих реакций. Связь функций Л. с. с деятельностью внутренних органов дала основание нек-рым авторам обозначить всю эту систему структур как «висцеральный мозг», однако этот термин лишь частично отражает функц, значение системы. Поэтому большинство исследователей применяют термин «лимбическая система», подчеркивая тем самым, что все структуры этого комплекса филогенетически, эмбриологически и морфологически связаны с большой лимбической долей Брока.

Основную часть Л. с. составляют структуры, относящиеся к древней, старой и новой коре, расположенные преимущественно на медиальной поверхности полушарий головного мозга, и многочисленные подкорковые образования, тесно с ними связанные.

На начальном этапе развития позвоночных животных структуры Л. с. обеспечивали все важнейшие реакции организма (пищевые, ориентировочные, оборонительные, половые). Эти реакции формировались на основе первого дистантного чувства - обоняния. Поэтому обоняние (см.) выступило в качестве организатора множества целостных функций организма, объединив и морфол, основу их - структуру конечного, промежуточного и среднего отделов головного мозга (см.).

Л. с.- сложное переплетение восходящих и нисходящих путей, образующих в пределах этой системы множество замкнутых концентрических кругов разного диаметра. Из них можно выделить следующие круги: амигдалоидная область - конечная полоска - гипоталамус - амигдалоидная область; гиппокамп - свод - септальная область - мамиллярные (сосцевидные, Т.) тела - сосцевидно-таламический пучок (Вик-д’Азира) - таламус - поясная извилина - поясной пучок - гиппокамп (круг Пейпса, рис. 1).

Восходящие пути Л. с. анатомически изучены недостаточно. Известно, что они наряду с классическими сенсорными путями включают также и диффузные, идущие не в составе медиальной петли. Нисходящие пути Л. с., связывающие ее с гипоталамусом, ретикулярной формацией (см.) среднего мозга и другими структурами ствола мозга, проходят в основном в составе медиального пучка переднего мозга, конечной (терминальной, т.) полоски и свода. Волокна, идущие от гиппокампа (см.), оканчиваются гл. обр. в области латеральной части гипоталамуса, в воронке, преоптической зоне и мамиллярных телах.

Морфология

В Л. с. входят обонятельные луковицы, обонятельные ножки, переходящие в соответствующие тракты, обонятельные бугорки, переднее продырявленное вещество, диагональный пучок Брока, ограничивающий сзади переднее продырявленное вещество, и две обонятельные извилины - латеральная и медиальная с соответствующими полосками. Все эти структуры объединены общим названием «обонятельная доля».

На медиальной поверхности мозга к Л. с. относятся передняя часть ствола мозга и межполушарные спайки, окруженные большой аркообразной извилиной, дорсальную половину которой занимает поясная, а вентральную - парагиппокампальная извилины. Сзади поясная и парагиппокампальная извилины образуют ретросплениальную область, или перешеек (isthmus). Впереди между передне-нижними концами этих извилин расположена кора задней орбитальной поверхности лобной доли, передней части островка и полюса височной доли. Парагиппокампальную извилину следует отличать от гиппокампальной формации, образованной телом гиппокампа, зубчатой извилиной, или зубчатой фасцией, околокаллозальным остатком старой коры и, по мнению нек-рых авторов, субикулумом и пресубикулумом (т. е. основанием и предоснованием гиппокампа).

Парагиппокампальная извилина подразделяется на следующие три части: 1. Грушевидную область (area piriformis), к-рая у макросматиков образует грушевидную долю (lobus piriformis), занимающую наибольшую часть крючка (uncus). Она подразделяется, в свою очередь, на периамигдалоидную и препириформную области: первая покрывает ядерную массу амигдалоидной области и при этом очень плохо отделена от нее, вторая сливается впереди с латеральной обонятельной извилиной. 2. Энторинальную область (area entorhinalis), занимающую среднюю часть извилины снизу и сзади от крючка. 3. Субикулярную и пресубикулярную области, расположенные между энториальной корой, гиппокампом и ретросплениальной областью и занимающие медиальную поверхность извилины.

Подмозолистую (паратерминальную, т.) извилину вместе с рудиментарным передним гиппокампом, септальными ядрами и серыми прекомиссуральными образованиями иногда называют септальной областью, а также пре- или паракомиссуральной областью.

Из образований новой коры к Л. с. нек-рые исследователи относят ее височные и лобные отделы и промежуточную (лобно-височную) зону. Эта зона лежит между препириформной и периамигдалоидной корой, с одной стороны, и орбито-фронтальной и височно-полюсной - с другой. Иногда ее называют орбито-инсуловисочной корой.

Филогенез

Все образования мозга, составляющие Л. с., относятся к наиболее филогенетически древним его областям и поэтому их можно обнаружить у всех позвоночных (рис. 2).

Эволюция лимбических структур в ряду позвоночных тесно связана с эволюцией обонятельного анализатора и тех образований мозга, к-рые получают импульсы от обонятельной луковицы. У низших позвоночных (круглоротые, рыбы, амфибии и рептилии) первыми акцепторами такой обонятельной импульсации оказываются септальная и амигдалоидная области, гипоталамус, а также старая, древняя и межуточная области коры. Уже на самых ранних стадиях эволюции эти структуры были тесно связаны с ядрами нижнего ствола мозга и выполняли наиболее важные интегративные функции, к-рые обеспечивали организму адекватное приспособление к условиям окружающей среды.

В процессе эволюции за счет чрезвычайно интенсивного роста новой коры, неостриатума и специфических ядер таламуса относительное (но не абсолютное) развитие лимбических структур несколько снизилось, однако не остановилось. Они лишь претерпели нек-рые морфол, и топографические изменения. Так, напр., у низших позвоночных архистриатум, или миндалина, занимает в области конечного мозга почти срединное положение, у сумчатых располагается на дне височного рога бокового желудочка, а у большинства млекопитающих смещается к височному концу рога бокового желудочка, приобретая форму миндального ореха, в связи с чем и получил название миндалины. У человека эта структура занимает область полюса височной доли.

Септальная область у всех животных, кроме приматов,- это обширная часть конечного мозга, составляющая медиальную поверхность полушарий. У человека вся ядерная масса септальной области смещена в вентральном направлении, и поэтому верхнемедиальную стенку бокового желудочка образуют не ганглиозные элементы мозга, а своеобразная пленка - прозрачная перегородка (septum pellucidum).

Древние корковые формации в процессе эволюции претерпели настолько серьезные изменения, что превратились из поверхностных структур типа плаща в отдельные дискретные образования самой причудливой формы. Так, старая кора приобрела форму рога и стала называться аммоновым рогом, древняя и межуточная области коры превратились в обонятельный бугорок, перешеек, кору грушевидной извилины.

В ходе эволюции лимбические структуры вступили в тесную связь с более молодыми образованиями мозга, обеспечивая высокоорганизованным животным более тонкое приспособление к усложняющимся и постоянно меняющимся условиям существования.

Цитоархитектоника коры лимбической системы

Древняя кора (палеокортекс), по мнению И. Н. Филимонова, характеризуется примитивно построенной корковой пластинкой, к-рая нечетко отделяется от подлежащих субкортикальных клеточных скоплений. В ее состав входят грушевидная область, обонятельный бугорок, диагональная область, базальная часть перегородки. Поверх молекулярного слоя древней коры располагаются афферентные волокна, в других корковых областях проходящие в белом веществе под корой. Поэтому кора и не отделена столь четко от подкорки. Под волоконным слоем расположен молекулярный, затем слой гигантских полиморфных клеток, еще глубже - слой пирамидальных клеток с кистеобразными дендритами у основания клетки (букетные клетки) и, наконец, глубокий слой полиморфных клеток.

Старая кора (архикортекс) имеет дугообразную форму. Окружая мозолистое тело и фимбрию гиппокампа, она соприкасается спереди своим задним концом с периамигдалоидной, а передним - с диагональной областями древней коры. К старой коре относят гиппокампальную формацию и субикулярную область. Старая кора отличается от древней полным отделением корковой пластинки от подлежащих образований, а от новой - более простым строением и отсутствием характерного разделения на слои.

Межуточной корой называют области коры, отделяющие новую кору от старой (периархикортикальная) и древней (перипалеокортикальная).

Корковая пластинка периархикортикальной зоны, отделяющей на всем протяжении старую кору от новой, делится на три главных слоя: наружный, средний и внутренний. К межуточной коре этого типа относятся пресубикулярная, энторинальная и перитектальная области. Последняя представляет собой часть поясной извилины и непосредственно соприкасается с надмозолистым рудиментом гиппокампа.

Перипалеокортикальная, или переходная островковая, зона окружает древнюю кору, отделяя ее от новой коры, и смыкается сзади с периархикортикальной зоной. Она состоит из ряда полей, осуществляющих последовательный, но прерывистый переход от древней коры к новой и занимающих наружнонижнюю поверхность коры островка.

В литературе часто можно встретить и другую классификацию корковых структур Л. с.- с цитоархитектонической точки зрения. Так, Фогт (С. Vogt) и О. Фогт (1919) архи- и палеокортекс вместе называют аллокортексом или гетерогене-тической корой. К. Брод май (1909), Роуз (М. Rose, 1927) и Роуз (J. Е. Rose, 1942) кору лимбической, ретросплениальной и нек-рых других областей (напр., островка), образующих промежуточную кору между неокортексом и аллокортексом, называют мезокортексом. И. Н. Филимонов (1947) промежуточную кору называет парааллокортексом (juxtallocortex). Прибрам, Кругер (К. Н. Pribram, L. Kruger, 1954), Каада (В. R. Kaada, 1951) мезокортекс рассматривают только как часть парааллокортекса.

Подкорковые структуры . К подкорковым образованиям Л. с. относятся базальные ядра, неспецифические ядра таламуса, гипоталамус, поводок и, по мнению нек-рых авторов, ретикулярная формация среднего мозга.

Нейрохимия

На основании данных, полученных в последние десятилетия с помощью гистохим, методов исследования, в основном метода флюоресцентной микроскопии, было показано, что практически все структуры Л. с. принимают терминали нейронов, секретирующих различные биогенные амины (так наз. моноаминергические нейроны). Тела этих нейронов лежат в области нижнего ствола мозга. В соответствии с секретируемым биогенным амином выделяют три типа моноаминергических нейрональных систем - дофаминергическая (рис. 4), норадренергическая (рис. 5) и серотонинергическая. В первой выделяются три пути.

1. Нигронео-стриатный начинается в черном веществе и оканчивается на клетках хвостатого ядра и скорлупы. Каждый нейрон этого пути имеет множество терминалей (до 500 000) с общей длиной отростков до 65 см, что дает возможность мгновенно воздействовать на большое число клеток неостриатума. 2. Мезолимбический начинается в вентральной области покрышки среднего мозга и оканчивается на клетках обонятельного бугорка, септальной и амигдалоидной областей. 3. Туберо-инфундибулярный берет начало от передней части аркуатного ядра гипоталамуса и оканчивается на клетках eminentia mediana. Все эти пути мононейрональные и не содержат синаптических переключений.

Восходящие проекции норадренергической системы представлены двумя путями: дорсальным и вентральным. Дорсальный начинается от синего пятна, а вентральный - от латерального ретикулярного ядра и красноядерно-спинномозгового пути. Они простираются вперед и оканчиваются на клетках гипоталамуса, преоптической области, септальной и амигдалоидной областей, обонятельного бугорка, обонятельной луковицы, гиппокампа и новой коры.

Восходящие проекции серотонинергической системы начинаются от ядер шва среднего мозга и ретикулярной формации покрышки. Они простираются вперед вместе с волокнами медиального пучка переднего мозга, отдавая много коллатералей в область покрышки на границе промежуточного и среднего отделов мозга.

Шат и Лыоис (G. С. D. Shute, P. R. Lewis, 1967) показали, что в Л. с. находится большое количество веществ, связанных с обменом ацетилхолина; ими были прослежены четкие холинергические пути от ретикулярных и покрышковых ядер ствола мозга ко многим образованиям переднего мозга, и прежде всего к лимбическим, - так наз. дорсальный и вентральный тегментальные пути, к-рые непосредственно или с одним-двумя синаптическими переключениями достигают многих таламо-гипоталамических ядер, структур полосатого тела, амигдалоидной и септальной областей, обонятельной формации, гиппокампа и новой коры.

В Л. с., особенно в обонятельных структурах, обнаружено много глутаминовой, аспарагиновой и гамма-аминомасляной к-т, что может свидетельствовать о медиаторной функции этих веществ.

Л. с. содержит значительное количество биологически активных веществ, относящихся к группе энкефалинов и эндорфинов. Больше всего их содержится в полосатом теле, миндалевидном теле, поводке, гиппокампе, гипоталамусе, таламусе, межножковом ядре и других структурах. Только в этих структурах обнаружены рецепторы, к-рые воспринимают действие веществ этой группы - так наз. опиатные рецепторы [Снайдер (S. И. Snyder), 1977].

В 1976 г. Вейндлом с соавт. (А. Weindl) было обнаружено, что, помимо гипоталамуса, септальная и амигдалоидная области, а отчасти и таламус содержат нейроны, способные секретировать нейропептиды типа вазопрессина и др.

Физиология

Объединяя образования конечного, промежуточного и среднего отделов мозга, Л. с. обеспечивает формирование наиболее общих функций организма, реализующихся через целый спектр отдельных или сопряженных частных реакций. В структурах Л. с. происходит взаимодействие экстероцептивных (слуховых, зрительных, обонятельных и др.) и интероцептивных воздействий. Даже при самом примитивном воздействии практически на все структуры Л. с. (механическом, химическом, электрическом) можно обнаружить целый ряд изолированных простых или фрагментарных ответов, различающихся по степени выраженности и латентному периоду в зависимости от того, какая структура подвергается раздражению. Часто наблюдаются такие вегетативные реакции, как саливация, пилоэрекция, дефекация и др., изменения в работе дыхательной, сердечно-сосудистой и лимф, систем, изменение зрачковой реакции, терморегуляции и т. д. Продолжительность этих реакций бывает иногда весьма значительной, что свидетельствует о включении в работу и отдельных эндокринных аппаратов. Часто такие вегетативные реакции наблюдаются вместе с координированными моторными проявлениями (напр., жевательными, глотательными и другими движениями).

Наряду с вегетативными реакциями Л. с. определяет и вестибулосоматические функции, а также такие соматические реакции, как познотонические и голосовые. По-видимому, Л. с. следует рассматривать как центр интеграции вегетативных и соматических компонентов реакций иерархически более высокого уровня - эмоциональных и мотивационных состояний, сна, ориентировочно-исследовательской активности и т. д. Эти сложные реакции проявляются у животных или человека при раздражении вполне определенных структур Л. с. Показано, что раздражение или разрушение миндалины, перегородки, лобно-височной коры, гиппокампа и других отделов лимбической системы может повести к усилению или, наоборот, ослаблению пищедобывательных, оборонительных и половых реакций. Особенно наглядно в этом отношении разрушение височной, орбитальной и инсулярной коры, миндалины и примыкающей к ним части поясной извилины, вызывающее возникновение так наз. синдрома Клювера-Бьюси, при к-ром нарушается способность животных оценивать как свое внутреннее состояние, так и полезность или вредность внешних раздражителей. Животные после такой операции становятся ручными; беспрерывно обследуя окружающие предметы, они без разбора хватают все, что попадается, лишаются страха даже перед огнем и, даже обжигаясь, продолжают его трогать (возникает так наз. зрительная агнозия). Нередко они становятся выраженью гиперсексуальными, проявляя половые реакции даже в отношении животных другого вида. Изменяется и их отношение к пище.

Богатство взаимосвязей внутри Л. с. определяет и другую сторону эмоциональной деятельности - возможность значительного усиления эмоции, длительность ее удерживания и нередко переход ее в застойное патол, состояние. Пейпс (J. W. Papez), напр., считает, что эмоциональное состояние является результатом циркуляции возбуждений по структурам Л. с. от гиппокампа через мамиллярные тела (см.) и передние ядра таламуса к поясной извилине, причем последняя, по его мнению, и является истинно рецептивной зоной переживаемой эмоции. Однако эмоциональное состояние, проявляющееся не только субъективно, но и способствующее той или иной целенаправленной деятельности, т. е. отражающее ту или иную мотивацию животного, возникает, по-видимому, лишь в том случае, когда возбуждение от лимбических структур распространяется на новую кору, и прежде всего в ее лобные отделы (рис. 6). Без участия новой коры эмоция получается неполноценной; она теряет свой биол, смысл и выступает как ложная.

Мотивационные состояния животных, возникающие в ответ на электрическое раздражение гипоталамуса и тесно связанных с ним лимбических образований, поведенчески могут проявляться во всей их естественной сложности, т. е. в виде ярости и организованных реакций нападения на другое животное или, наоборот, в виде реакций обороны и избегания неприятного раздражителя или убегания от нападающего животного. Особенно заметно участие Л. с. в организации пищедобывательного поведения. Так, двустороннее удаление миндалины приводит либо к длительному отказу животных от пищи, либо к гиперфагии. Как показали К. В. Судаков (1971), Нода (К. Noda) с сотр. (1976), Паксинос (G. Paxinos, 1978), изменения пищедобывательного поведения и реакции утоления жажды наблюдаются и в случае раздражения пли разрушения прозрачной перегородки, пириформной коры и нек-рых мезэнцефалических ядер.

Удаление миндалины и грушевидной коры приводит к постепенному развитию выраженного гиперсексуального поведения, к-рое можно ослабить или снять разрушением нижнемедиального ядра гипоталамуса или септальной области.

Воздействия на Л. с. могут приводить к мотивационным изменениям более высокого порядка, проявляющимся на уровне сообщества. Наиболее демонстративно эмоционально-мотивационные состояния животных проявляются в случае их реакций самораздражения или избегания неблагоприятного раздражителя, когда воздействию подвергаются различные образования Л. с.

Формирование поведенческого акта на основе любой мотивации (см.) начинается с ориентировочно-исследовательской реакции (см.). Последняя, как показывают экспериментальные данные, также реализуется при обязательном участии Л. с. Установлено, что действие индифферентных раздражителей, вызывающих поведенческую реакцию настораживания, сопровождается характерными электрографическими изменениями в структурах Л. с. В то время как в коре больших полушарий при этом регистрируется десинхронизация электрической активности, в нек-рых структурах Л. с., напр, в амигдалоидной области, гиппокампе и грушевидной коре, происходят иные изменения электрической активности. На фоне достаточно сниженной активности обнаруживаются пароксизмальные вспышки высокочастотных колебаний; в гиппокампе регистрируется медленный регулярный ритм с частотой 4-6 в 1 сек. Такая типичная для гиппокампа реакция возникает не только при сенсорных раздражениях, но и при прямой электрической стимуляций ретикулярной формации и любой лимбической структуры, приводящей к возникновению поведенческой реакции настораживания или беспокойства.

Многочисленные эксперименты показывают, что слабые раздражения лимбических структур при отсутствии специфической эмоциональной реакции всегда вызывают настораживание или ориентировочно-исследовательскую реакцию животного. С ориентировочноисследовательской реакцией тесно связано выявление животным в окружающей среде значимых для данной ситуации сигналов и их запоминание. В осуществлении этих механизмов ориентировки, обучения и запоминания большая роль отводится гиппокампу и амигдалоидной области. Разрушение гиппокампа резко нарушает кратковременную память (см.). Во время раздражения гиппокампа и какое-то время после него животные теряют способность отвечать на условные раздражители.

Клин, наблюдения показывают, что двустороннее удаление медиальной поверхности височных долей также вызывает тяжелые расстройства памяти. У больных наблюдается ретроградная амнезия, они полностью забывают события, предшествовавшие операции. Кроме того, ухудшается способность запоминания. Больной не может запомнить названия б-цы, в к-рой находится. Резко страдает кратковременная память: больные теряют нить разговора, оказываются не способными следить за счетом спортивных игр и т. д. У животных после подобной операции нарушаются ранее приобретенные навыки, ухудшается способность к выработке новых, особенно сложных.

По мнению О. С. Виноградовой (1975), основной функцией гиппокампа является регистрация информации, а по мнению М. Л. Пигаревой (1978),- обеспечение реакций на сигналы с малой вероятностью подкрепления в случаях, когда имеется дефицит прагматической информации, т. е. эмоциональное напряжение.

Л. с. тесно связана с механизмами сна (см.). Эрнандес-Пеон (R. Hernandez-Peon) с сотр. показал, что при инъекциях малых доз ацетилхолина или антихолинэстеразных веществ в различные отделы Л. с. у животных развивается сон. Особенно эффективны в этом отношении следующие отделы Л. с.: медиальная преоптическая область, медиальный пучок переднего мозга, межножковые ядра, ядра Бехтерева и медиальная часть покрышки моста. Эти структуры составляют так наз. гипногенный лимбико-среднемозговой круг. Возбуждение структур этого круга производит функц, блокаду восходящих активирующих влияний ретикулярной формации среднего мозга на кору больших полушарий, к-рые определяют состояние бодрствования. Вместе с тем показано, что сон может возникнуть при аппликации ацетилхолина" и антихолинэстеразных веществ и на вышележащие образования Л. с.: препириформную и периамигдалоидную области, обонятельный бугорок, полосатое тело и корковые области Л. с., расположенные на передней и медиальной поверхностях полушарий мозга. Этот же эффект может быть получен при раздражении коры больших полушарий, особенно ее передних отделов.

Характерно, что разрушение медиального пучка переднего мозга в преоптической области препятствует развитию сна, вызванного хим. раздражением вышерасположенных отделов Л. с. и коры больших полушарий.

Нек-рые авторы [Уинтер (P. Winter) с соавт., 1966; Робинсон (В. W. Robinson), 1967; Делиус (J. D. Delius), 1971] считают, что в Л. с. находятся так наз. центры коммуникаций животных (их голосовых проявлений), четко скоррелирован-ные с их поведением по отношению к своим сородичам. Эти центры образованы структурами амигдалоидной, септальной и преоптической областей, гипоталамуса, обонятельного бугорка, нек-рых ядер таламуса и покрышки. Робинсон (1976) высказал предположение, что у человека существует два центра речи. Первый, филогенетически более старый, располагается в Л. с.; он тесно связан с мотивационно-эмоциональными факторами и обеспечивает низкоинформационные сигналы. Этот центр контролируется вторым - высшим центром, расположенным в новой коре и связанным с доминирующим полушарием.

Участие Л. с. в формировании сложных интегративных функций организма подтверждается данными обследования психически больных. Так, напр., старческие психозы сопровождаются четкими дегенеративными изменениями в септальной и амигдалоидной областях, гиппокампе, своде, медиальных отделах таламуса, энторинальной, височной и лобной областях коры. Кроме того, в структурах Л. с. у больных шизофренией находят большое количество дофамина, норадреналина и серотонина, т. е. биогенных аминов, нарушение нормального метаболизма к-рых связывают с развитием целого ряда психических заболеваний, в т. ч. и шизофрении.

Особенно заметно участие Л. с. в развитии эпилепсии (см.) и различных эпилептоидных состояний. Больные, страдающие психомоторной эпилепсисй, как правило, имеют органические повреждения в областях, захватывающих лимбические структуры. Это прежде всего орбитальная часть лобной и височной коры, парагиппокампальная извилина, особенно в области крючка, гиппокамп и зубчатая извилина, а также миндалевидный ядерный комплекс.

Описанные выше клин, симптомы обычно сопровождаются четким электрографическим показателем - в соответствующих отделах мозга регистрируются электрические судорожные разряды. Наиболее отчетливо такая активность регистрируется в гиппокампе, хотя проявляется и в других структурах, напр, в миндалине и перегородке. Наличие в них диффузных сплетений нервных отростков, множественных цепей обратной связи создает условия для мультиплицирования, удержания и пролонгирования активности. Отсюда и свойственный для структур Л. с. чрезвычайно низкий порог возникновения так наз. послеразрядов, к-рые могут продолжаться после прекращения электрического или хим. раздражения в течение длительного времени.

Самый низкий порог для электрического послеразряда обнаружен в гиппокампе, миндалине и пириформной коре. Характерной особенностью этих послеразрядов является их способность распространяться из места раздражения по другим структурам Л. с.

Клин, и экспериментальные данные показывают, что в период судорожных разрядов в Л. с. нарушаются процессы памяти. У больных с височно-диэнцефальными поражениями наблюдаются полная или частичная амнезия или же, наоборот, насильственные вспышки пароксизмов ощущения уже виденного, слышанного, пережитого.

Таким образом, занимая срединное положение в пределах ц. и. с., лимбическая система способна быстро «включаться» практически во все функции организма, направленные на активное приспособление его (в соответствии с наличной мотивацией) к условиям окружающей среды. Л. с. получает афферентные посылки возбуждения от образований нижнего ствола, к-рые в каждом случае могут быть очень специфичными, от ростральных (обонятельных) структур мозга и от новой коры. Эти возбуждения по системе взаимных связей быстро достигают всех необходимых областей Л. с. и мгновенно (через волокна медиального пучка переднего мозга или прямые неостриатно-тегментальные пути) активируют (или тормозят) исполнительные (моторные и вегетативные) центры нижнего ствола и спинного мозга. Этим достигается формирование «специализированной» для данных конкретных условий функц, системы с четкой морфол, и нейрохим, архитектоникой, к-рое завершается достижением организмом необходимого полезного результата (см. Функциональные системы).

Библиогр.: Анохин П. К. Биология и нейрофизиология условного рефлекса, М., 1968, библиогр.; Беллер H. Н. Висцеральное поле лимбической коры, Л., 1977, библиогр.; Богомолова Е.М. Обонятельные образования мозга и их биологическое значение, Усп. физиол, наук, т. 1, № 4, с. 126, 1970, библиогр.; Вальд-м а н А. В., 3 в а р т а у Э. Э. и К о з-ловская М. М. Психофармакология эмоций, Л., 1976; Виноградова О.С. Гиппокамп и память, М., 1975, библиогр.; Гельгорн Э.иЛуфборроу Дж. Эмоции и эмоциональные расстройства, пер. с англ., М., 1966, библиогр.; Пига-р e в а М. Л. Лимбические механизмы переключения (гиппокамп и миндалина), М., 1978, библиогр.; Попова Н. К., Науменко Е. В. и Колпаков В. Г. Серотонин и поведение, Новосибирск, 1978, библиогр.; Судаков К. В. Биологические мотивации, М., 1971, библиогр.; Черкес В. А. Очерки по физиологии базальных ганглиев головного мозга, Киев, 1963, библиогр.; E h 1 e A. L., M a-s o n J. W. a. Pennington L. L. Plasma growth hormone and cortisol changes following limbic stimulation in conscious monkeys, Neuroendocrinology, v. 23, p. 52, 1977; Farley I. J., Price K. S. a. Me Cullough E. Norepinephrine in chronic paranoid schizophrenia, abovenormal levels in limbic forebrain, Science, v. 200, p. 456, 1978; Flo r-H e n г у P. Lateralized temporal-limbic dysfunction and psychopathology, Ann. N. Y. Acad. Sci., v. 280, p. 777, 1976; H a m i 11 o n L. W. Basic limbic system anatomy of the rat, N. Y., 1976; Isaacson R. L. The limbic system, N. Y., 1974, bibliogr.; Limbic and autonomic nervous systems research, ed. by V. Di Cara, N. Y., 1974; Mac Lean P. D. The limbic system («visceral brain») and emotional behavior, Arch. Neurol. Psychiat. (Chic.), v. 73, p. 130, 1955; Paxinos G. Interruption of septal connections, effects on drinking, irritability and copulation, Physiol. Behav., v. 17, p. 81, 1978; Robinson B. W. Limbic influences on human speech, Ann. N. Y. Acad. Sci., v. 280, p. 761, 1976; Schei-b e 1 М. E. a. o. Progressive dendritic changes in the aging human limbic system, Exp. Neurol., v. 53, p. 420, 1976; The septal nuclei, ed. by J. F. De France, N. Y.- L., 1976; Shute C. C. D. a. L e w i s P. R. The ascending cholinergic reticular system, neoeortical, olfactory and subcor-tical projections, Brain, v. 90, p. 497, 1967; Snyder S. H. Opiate receptors and internal oniates, Sci. Amer., v. 236, № 3, p. 44, 1977; U e k i S., A r a k i Y. a. Wat ana b e S. Changes in sensitivity of mice to anticonvulsant drugs following bilateral olfactory bulb ablations, Jap. J. Pharmacol., v. 27, p. 183, 1977; W e i n d 1 A. u. S o f r o n i e w M. Y. Demonstration of extrahypothalamic peptide secreting neurons, Pharmakopsychiat. Neuro-psycopharmakol., Bd 9, S. 226, 1976, Bibliogr.

E. М. Богомолова.

В этой статье поговорим о лимбической системе, неокортексе их истории возникновении и основных функциях.

Лимбическая система

Лимбическая система головного мозга – это совокупность сложных нейрорегуляторных структур головного мозга. Эта система не ограничивается лишь несколькими функциями – она выполняет огромный ряд важнейших для человека задач. Предназначение лимбуса – регуляция высших психических функций и особых процессов высшей нервной деятельности, начиная от простого обаяния и бодрствования и заканчивая культурными эмоциями, памятью и сном.

История возникновения

Лимбическая система мозга образовалось за долго до того, как начал образовываться неокортекс. Это древнейшая гормонально-инстинктивная структура мозга, которая отвечает за выживание субъекта. За длительную эволюцию можно сформировать 3 основных цели системы для выживания:

  • Доминантность — проявление превосходства по самым разными параметрам
  • Еда — питание субъекта
  • Размножение — перенос своего генома в следующие поколение

Т.к. человек имеет животные корни, в мозгу человека присутствует лимбическая система. Изначально Человек Разумный обладал лишь аффектами, влияющие на физиологическое состояние тела. Со временем формировалось общение по типу крика (вокализация). Особи, умевшие передать свое состояние с помощью эмоций, выживали. С течением времени все больше формировалось эмоциональное восприятие действительности. Такое эволюционное наслоение позволяло людям объединяться в группы, группы в племена, племена в расселение, а последние в целые народы. Впервые же лимбическую систему открыл американский исследователь Пауль Мак-Лин еще в 1952 году.

Строение системы

Анатомически лимбус включает области палеокортекса (древняя кора), архикортекса (старая кора), часть неокортекса (новая кора) и некоторые структуры подкорки (хвостатое ядро, миндалевидное тело, бледный шар). Перечисленные названия различных видов коры обозначает их формирование в указанное время эволюции.

Масса специалистов в области нейробиологии занимались вопросом о том, какие структуры относятся к лимбической системе. Последняя включает в себя множество структур:

Кроме того, система тесно связана с системой ретикулярной формации (структура, отвечающая за активацию мозга и состояние бодрствования). Схема анатомии лимбического комплекса упирается в постепенном наслоении одной части на другую. Так, сверху лежит поясная извилина, и далее по нисходящей:

  • мозолистое тело;
  • свод;
  • мамиллярное тело;
  • миндалина;
  • гиппокамп.

Отличительной чертой висцерального мозга является его богатая связь с прочими структурами, состоящих из сложных путей и двухсторонних связей. Такая разветвленная система веток образует комплекс замкнутых кругов, что создает условия для продолжительного циркулирования возбуждения в лимбусе.

Функционал лимбической системы

Висцеральный мозг активно получает и обрабатывает информацию из окружающего мира. За что отвечает лимбическая система? Лимбус – одна из тех структур, работающая в режиме реального времени, позволяя организму эффективно приспосабливаться к условиям внешней среды.

Лимбическая система человека в мозге выполняет следующую функцию:

  • Формирование эмоций, чувств и переживаний. Сквозь призму эмоций человек субъективно оценивает предметы и явление окружающей среды.
  • Память. Эта функция осуществляется гипокампом, располагающийся в структуре лимбической системы. Мнестические процессы обеспечиваются процессами реверберации – кругового движения возбуждения в закрытых нейронных цепях морского коня.
  • Выбор и коррекция модели подходящего поведения.
  • Обучение, переобучение, страх и агрессия;
  • Выработка пространственных навыков.
  • Оборонительное и поведение поиска пищи.
  • Выразительность речи.
  • Приобретение и поддержание различных фобий.
  • Работа обонятельной системы.
  • Реакция осторожности, приготовление к действию.
  • Регуляция полового и социального поведения. Существует понятие эмоционального интеллекта – способности распознавать эмоции окружающих людей.

При выражении эмоций возникает реакция, которая проявляется в виде: изменения артериального давления, кожной температуры, частоты дыхания, реакция зрачков, потоотделение, реакция гормональных механизмов и многое другое.

Возможно, среди женщин бытует вопрос о том, как включить лимбическую систему у мужчин. Однако ответ прост: никак. У всех мужчин лимбус работает в полной мере (за исключением больных). Это обосновывается эволюционными процессами, когда женщина почти во всех временных периодах истории занималась воспитанием ребенка, что включает глубокую эмоциональную отдачу, и, следовательно, глубокое развитие эмоционального мозга. К сожалению, мужчинам уже не достичь развития лимбуса уровня женщины.

Развитие лимбической системы у грудничка во многом зависит от типа воспитания и в целом отношения к нему. Строгий взгляд и холодная улыбка не способствуют развитию лимбического комплекса, в отличии от крепких объятий и искренней улыбки.

Взаимодействие с неокортексом

Неокортекс и лимбическая система крепко связаны между собой множеством проводящих путей. Благодаря такому объединению, эти две структуры составляют одно целое психической сферы человека: они соединяют умственную составляющую с эмоциональной. Новая кора выступает в качестве регулятора животных инстинктов: прежде, чем совершить какое-либо действие, спонтанно вызванное эмоциями, человеческая мысль, как правило, проходит ряд культурных и моральных инспекций. Кроме контроля эмоций, неокортекс оказывает вспомогательное действие. Чувство голода возникает в глубинах лимбической системы, а уже высшие корковые центры, регулирующие поведение, осуществляют поиск пищи.

Такие структуры мозга не обошел в своё время и отец психоанализа Зигмунд Фрейд. Психолог утверждал, что всякий невроз образуется под гнетом подавления сексуальных и агрессивных инстинктов. Конечно, во времена его работы еще не было данных о лимбусе, но великий ученый догадывался о подобных устройствах мозга. Так, чем больше культурных и моральных наслоений (супер Эго – неокортекс) было у индивида, тем больше у него подавляются первичные животные инстинкты (Ид – лимбическая система).

Нарушения и их последствия

Исходя из того, что лимбическая система отвечает за множество функций, это самое множество может поддаваться различным повреждениям. Лимбус, как и другие структуры головного мозга, может подвергаться травмам и другим вредительным факторам, к числу которых относятся и опухоли с кровоизлияниями.

Синдромы поражения лимбической системы богаты на количество, основные из них таковы:

Деменция – слабоумие. Развитие таких болезней, как Альцгеймера и синдром Пика связывают с атрофией систем лимбического комплекса, а особенно в локализации гиппокампа.

Эпилепсия . Органические нарушения гиппокампа ведут к развитию падучей болезни.

Патологическая тревожность и фобии. Нарушение деятельности миндалины ведет к медиаторному дисбалансу, что, в свою очередь, сопровождается расстройством эмоций, в число которых входит тревожность. Фобия же – иррациональный страх по отношению к безобидному предмету. Кроме того, дисбаланс нейромедиаторов провоцирует депрессию и манию.

Аутизм . В своей сути, аутизм – глубокая и серьезная дезадаптация в обществе. Неспособность лимбической системы распознавать эмоции других людей ведет к тяжелым последствиям.

Ретикулярная формация (или сетчатое образование) – неспецифическая формация лимбической системы, отвечающая за активацию сознания. После глубокого сна люди просыпаются благодаря работе этой структуре. В случаях её повреждения человеческий мозг подвергается различным расстройствам выключение сознания, среди которых абсанс и синкопе.

Неокортекс

Новая кора – часть мозга, присущая высшим млекопитающим. Зачатки неокортекса также наблюдаются у низших животных, сосущих молоко, однако они не достигают высокого развития. У человека изокортекс – львиная часть общей коры головного мозга, имеющая толщину в среднем до 4 миллиметров. Площадь неокортекса достигает 220 тысяч кв. мм.

История возникновения

В данный момент неокортекс – высшая ступень эволюции человека. Первые проявления новой коры ученым удалось изучить у представителей рептилий. Последними животными, не имеющие новой коры в цепочке развития, оказались птицы. И лишь развитой обладает человек.

Эволюция — сложный и длинный процесс. Каждый вид существ проходит суровый эволюционный процесс. Если вид животного не смог адаптироваться под изменчивую внешнюю среду — вид терял свое существование. Почему же человек смог адаптироваться и выжить по сей день?

Находясь в благоприятных условиях проживания (теплый климат и белковая еда), потомкам человека (до Неандертальцев) не оставалось ничего, как питаться и размножаться (благодаря развитой лимбической системе). Из-за этого масса мозга, по меркам длительности эволюции, набрала критическую массу за небольшой период времени (несколько миллионов лет). Кстати, масса мозга в те времена была на 20% больше, чем у современного человека.

Однако, всему хорошему рано или поздно приходит конец. Со сменой климата, потомкам нужно было менять место жительство, а с ним и начинать искать еду. Имея огромный мозг, потомки начали применять его для поиска пищи, а далее и для социального вовлечения, т.к. выяснилось, что объединяясь в группы по определенным критериям поведения — выживать было легче. К примеру, в группе, где каждый делился пищей с другими членами группы имела больше шансов на выживание (Кто-то хорошо собирал ягоды, а кто-то охотился и тд).

С этого момента началась отдельная эволюция по мозгу , отдельная от эволюции всего тела. С тех времен внешний вид человека не сильно поменялся, но состав мозгов отличается кардинально.

Из чего состоит

Новая кора больших полушарий – это скопление нервных клеток, образующих комплексное . Анатомически разделяют 4 типа коры, в зависимости от её локализации – , затылочная, . Гистологически же кора состоит из шести шаров клеток:

  • Молекулярный шар;
  • наружный зернистый;
  • пирамидные нейроны;
  • внутренний зернистый;
  • ганглионарный слой;
  • мульиформные клетки.

Какие функции выполняет

Новая кора головного мозга человека классифицируется по трем функциональным зонам:

  • Сенсорная . Эта зона отвечает за высшую обработку полученных раздражителей из внешней среды. Так, лед становится холодным тогда, когда информация о температуре поступает в теменную область – на пальце же холода нет, а есть только электрический импульс.
  • Ассоциативная зона . Эта область коры отвечает за информационную связь между моторной корой и чувствительной.
  • Моторная зона . В этой части мозга формируются все сознательные движение.
    Кроме таких функций, новая кора обеспечивает высшую психическую деятельность: интеллект, речь, память и поведение.

Вывод

Подводя итог, можно выделить следующее:

  • Благодаря двум основным, принципиально разным, структурам мозга человек имеет двойственность сознания. Над каждым поступком в мозгу формируется две разные мысли:
    • «Хочу» — лимбическая система (инстинктивное поведение). Лимбическая система занимает 10% от всей массы мозга, малое энергопотребление
    • «Надо» — неокортекс (социальное поведение). Неокортекс занимает до 80% от всей массы мозга, высокое энергопотребление и ограниченная скорость метаболизма

Лимбическая система, также называемая висцеральным мозгом, ринэнцефалоном, тимэнцефалоном заключает в себе целый комплекс структур разных среднего, промежуточного, конечного, которые участвуют в организации мотивационных, висцеральных и эмоциональных реакций организма.

Лимбическая система головного мозга имеет очень сложное строение, она объединяет такие отделы старой коры, как гиппокамп, лимбическую и поясную извилины; отделы новой коры: лобные, височные отделы и лобно-височную промежуточную зону; подкорковые структуры: бледный шар, скорлупу, перегородку, гипоталамус, неспецифические ядра таламуса, ретикулярную формацию среднего мозга. Все подкорковые структуры очень тесно связаны с основными структурами коры большого мозга. Структуры системы локализованы, в основном, на полушариях большого мозга.

Лимбическая система, функции которой на начальном этапе эволюции животного мира формировались на основе обоняния, обеспечивает многие жизненно важные реакции организма, такие как ориентировочные, половые и пищевые. Обоняние не только выступило в качестве основного интегрирующего фактора, но и объединило структуры головного мозга в единый целостный комплекс. Поэтому у высших позвоночных животных, в том числе и у человека, структуры лимбической системы, построенные на основе нисходящих и восходящих путей, имеют замкнутую систему функционирования.

Лимбическая система управляет многим важнейшими процессами, протекающими в организме - регуляцией водно-солевого баланса, поддержанием постоянной температуры тела, а также поведенческими реакциями, в частности, пищевыми, направленными на получение энергии и питательных веществ. Она определяет эмоциональное поведение человека, сексуальное поведение, процессы сна и бодрствования, обучения и запоминания. Эта система определяет и управляет мотивацией поведения, обеспечивает целенаправленность всех действий. В результате приспособление организма к изменениям условий окружающей среды постоянно совершенствуется. И в первую очередь это касается общественной среды, так как человек - существо сугубо социальное.

Также лимбическая система обеспечивает еще одну важнейшую функцию - вербальную или несущую информацию о каких-либо событиях, имеющихся знаниях или приобретенных навыках и опыте. В клинической практике было выявлено, что при нарушении функций или повреждениях лимбических структур у пациентов наблюдается развитие амнезии. Но ученые утверждают, что лимбическая система не является хранилищем информации, потому что фрагменты памяти рассредоточены по всей ассоциативной коре. А лимбическая система лишь функционально их объединяет и делает доступными для воспроизведения. При нарушении лимбических структур память не стирается, ее фрагменты остаются и сохраняются, а лишь происходит сбой ее сознательного воспроизведения. Поэтому практически все люди, с поражением лимбической системы способны моментально осваивать многие двигательные или перцептивные навыки и умения, но при этом они не могут вспомнить, где раньше могли этому научиться.

Нарушения функций лимбической системы могут вызывать травмы головного мозга, нейроинфекции и интоксикации, сосудистые патологии, эндогенные психозы и неврозы. В зависимости от объема поражения или его локализации могут возникать эпилепсические судорожные состояния, автоматизмы, изменения сознания и настроения, дереализация и деперсонализация, а также слуховые, вкусовые и обонятельные галлюцинации.



Похожие публикации