Изменения соединительной ткани при старении коллагенозах. Биохимические изменения соединительной ткани при старении и некоторых патологических процессах

Монография известного индийского специалиста в области геронтологии, посвященная изменениям, наступающим при старении в структуре и функциях хроматина, активности ферментов, структуре коллагена и его синтезе, деятельности иммунной и эндокринной систем. Рассмотрены также старение клеток и современные теории старения.

Предназначена для биологов, биохимиков, геронтологов, врачей-гериатров.

Книга:

<<< Назад
Вперед >>>

Отдельные цепи коллагена диссоциируют в щелочной или в кислой среде и в растворах мочевины, тиоцианата и гуанидин-гидрохлорида. При нагревании до 40 °C водородные связи между цепями рвутся. Количество коллагена, которое экстрагируется таким способом, велико у развивающихся животных, но быстро уменьшается с возрастом. Когда коллаген экстрагировали нейтральной солью из кожи крыс возрастом от. 1, 5 до 24 мес, было обнаружено, что у более старых животных экстрагируется меньше коллагена . При этом количество экстрагирующихся одиночных?-цепей быстро уменьшалось, а тримеров?-цепей (?-коллаген) - увеличивалось (рис. 4.3 и 4.4; табл. 4.3). Для димеров?-цепей (?-коллаген) изменений не наблюдалось.

Таблица 4.3. Соотношение различных типов коллагена из кожи крыс как функция возраста


Изучены изменения поперечных сшивок коллагена из бычьей кожи по мере развития животных . В коже зародышей много сшивок типа ДДОЛНЛ, которые делают ее плохо растворимой. К рождению доля этих сшивок уменьшается примерно на одну треть. В возрасте 6 мес их практически нет, их заменяют диоксилизинонорлейцин (ДОЛНЛ) и фракция С. До 18 мес количество этих сшивок постепенно увеличивается и составляет около 95 % всех сшивок. В коже человека максимальное количество ДОЛНЛ и фракции С наблюдается в возрасте 17–20 лет.

В период развития коллаген постоянно обновляется. По-видимому, изменение характера поперечных сшивок и их соотношения в течение этого периода обусловлено появлением?-цепей различных типов. Обмен коллагена постепенно замедляется, так как развитие сопровождается уменьшением скорости синтеза и разрушением коллагена. Показано, что потребление в коже крыс аскорбиновой кислоты, которая является кофактором и пролил- и лизилгидроксилазы, велико при рождении и быстро уменьшается по мере развития животных. В возрасте 6 мес потребление аскорбиновой кислоты составляет одну сотую от ее потребления при рождении. Вместе с тем аскорбиновая кислота в течение всей жизни поглощается костями и связками, правда после 12 нед ее поглощение падает. Очевидно, синтез коллагена в коже крыс в возрасте 6–8 нед практически прекращается, тогда как в костях и связках он продолжается всю жизнь. Следовательно, аскорбиновая кислота требуется млекопитающим в течение всей жизни для поддержания нормального состояния костей и связок. Описанные результаты позволяют предположить, что появление в старческом возрасте морщин на коже может быть связано не только с прекращением обмена коллагена в ткани, но также с увеличением числа поперечных сшивок между мономерами коллагена, отложившегося в коже на ранних стадиях развития. Сообщают, что число сшивок в коллагене сухожилия хвоста крысы увеличивается в возрастном интервале 3-100 нед от 1 на 500000 до 1 на 50000, т. е. в 10 раз . Это может изменить не только физические свойства коллагена, но и его способность экстрагироваться солевым раствором .

Другим фактором, влияющим на обмен коллагена в течение жизни животного, является фермент коллагеназа. Этот фермент расщепляет в коллагене связь Gly - Leu . Паратгормон стимулирует синтез коллагеназы и вызывает деминерализацию костей. В матке в период беременности синтез фермента усиливается, тогда как прогестерон ингибирует его синтез . В коже человеческого эмбриона коллагеназы больше, чем у взрослого человека. Если кожу эмбриона и взрослого человека культивировать in vitro, то из первой выделяется в среду значительное количество латентной, неактивной, коллагеназы (зимогена), однако из последней латентная коллагеназа не выделяется . Молекулярная масса латентной коллагеназы из кожи человека - 55000-60000, а активной коллагеназы - 45000-50000 . Если латентный фермент пропустить через колонку с сефадексом G-50, обработанным предварительно NaI, то он активируется. Трипсин удаляет из молекулы фермента пептид с мол. массой 10000 и активирует его. Таким образом, фермент, по-видимому, инактивируется путем связывания с ингибитором, имеющим мол. массу 10000. Комплекс фермент - ингибитор (латентная коллагеназа) активируется тиолблокирующими агентами, например 4-аминофенилмеркуриацетатом . Природу ингибитора еще предстоит установить, однако ясно, что активность коллагеназы может быть еще одним контрольным пунктом обмена коллагена и изменения его структуры при старении.

Согласно одной из теорий старения, основанной на образовании поперечных сшивок , увеличение числа таких сшивок в коллагене и других внеклеточных макромолекулах вызывает изменение физических и химических свойств соединительных тканей. Свидетельством в пользу этой теории служит то, что экстрагируемость коллагена из кожи и его расщепление коллагеназой с возрастом уменьшаются, а его термостабильность и сила сокращения при этом увеличиваются. Даже если увеличение числа сшивок и вызывает эти изменения и оказывает влияние на функционирование соединительных тканей при старении животного, старение других тканей, не имеющих большого количества внеклеточного матрикса и коллагена, должно иметь другие причины. Кроме того, образование поперечных сшивок происходит после модификации, осуществляемой с помощью лизилоксидазы. Изменение содержания этого фермента в соединительных тканях с возрастом также может быть причиной увеличения числа сшивок.

В ряде работ сообщается, что количество поперечных сшивок в коллагене при старении растет. Однако более поздние исследования не подтверждают это заключение. Когда измеряли число сшивок в сухожилии коров 3- и 12-летнего возраста после расщепления коллагена цианогенбромидом, никакой разницы в количестве ковалентных сшивок не обнаружили . При определении числа сшивок, образованных пиридинолином в коллагене реберных связок и ахиллесова сухожилия крыс и человека , было показано, что у человека после 30 лет оно уменьшается, а у крыс после наступления зрелости растет. Основные типы сшивок - оксилизинонорлейцин (ОЛНЛ) и диоксилизинонорлейцин (ДОЛНЛ) с возрастом не меняются , т. е. образование поперечных сшивок в коллагене не является, по-видимому, первичной причиной старения . Было высказано предположение, что уменьшение растворимости коллагена с возрастом может определяться стабилизацией лабильных сшивок. Для того чтобы установить, меняется ли количество поперечных сшивок с возрастом, необходимы дальнейшие исследования.

Особый интерес в связи с этим представляют три типа реакций. Первый - это реакции моносахаридов, глюкозы и галактозы, с альдегидами, образовавшимися из лизиновых и оксилизиновых остатков. В коже быка интенсивность этих реакций с возрастом увеличивается. Поскольку упомянутые здесь гексозильные соединения не могут образовывать связи с другими?-цепями, в результате этих реакций уменьшается число потенциальных мест для образования сшивок. Роль происходящих изменений неясна, но, возможно, они ответственны за повышенную хрупкость кожи и костей в старческом возрасте.

Второй тип реакций - взаимодействие аллизина с оксилизином с образованием альдимина или взаимодействие оксиаллизина с оксилизином либо с лизином с образованием кетоаминов, более стабильных, чем альдимины. Доля таких поперечных сшивок в сухожилиях человека, быка и крысы в период их роста увеличивается, но затем уменьшается. Эти изменения могут регулироваться уровнем лизилгидроксилазы, который в свою очередь зависит от других факторов.

Третий тип реакций - определение сшивок путем восстановления 3 Н-боргидридом. С возрастом количество включающегося трития уменьшается. Возможно, причиной этому служит уменьшение доли таких сшивок. Вместе с тем причиной уменьшения включения трития может быть то, что эти сшивки в старческом возрасте становятся более стабильными и поэтому не восстанавливаются.

В ранний период развития в тканях меняются не только число и стабильность поперечных сшивок, но также и типы коллагена. Как было показано ранее , в коже и, возможно, в других тканях изменяется соотношение коллагена типа I и III. Обычно в культуре in vitro хондроциты синтезируют коллаген типа II, но если их обработать бромдезоксиуридином, аналогом тимидина, то они синтезируют тип I и другой тип коллагена, которого в тканях в норме нет . Коллаген типа I синтезируют также старые хондроциты. Если в связках обычно синтезируется коллаген типа II, то в связках суставов при остеоартрите появляется коллаген типа I . Было бы существенно выяснить, по этой ли причине происходит уменьшение в старческом возрасте коллагенового матрикса при остеопорозе. Может ли произойти замена синтеза остеобластами коллагена типа I на синтез коллагена какого-либо другого типа? При врожденной болезни - osteogenesis imperfecta - при которой кости становятся очень хрупкими, фибробласты кожи в культуре синтезируют в большом количестве коллаген типа III. Некоторые связанные с коллагеном заболевания возникают из-за уменьшения уровня специфических ферментов, необходимых для его синтеза . Происходит ли при этом сдвиг в синтезе или ингибирование синтеза коллагена типа I, неизвестно. Любое из этих изменений может повлиять на способность матрикса содействовать кристаллизации апатита, в результате чего кость может стать более хрупкой, так как известно, что все типы коллагена, кроме типа I, образуют аморфные волокна.

Структурные изменения коллагена при старении могут быть обусловлены несколькими факторами. Один из них, возможно, изменение в синтезе различных?-цепей, кодируемых разными генами. В таком случае интересно выяснить, что является причиной включения гена?-цепей одного типа и "выключения" гена?-цепей другого типа? Вместе с тем с возрастом может меняться активность пролил- и лизилгидроксилазы, лизилоксидазы и гликозилтрансфераз, влияющих на образование поперечных сшивок, и это также может отражаться на возрастных структурных изменениях. Хорошо известно, что уровень этих ферментов с возрастом меняется. Тогда что определяет уровень их синтеза? Одним из определяющих факторов может быть обмен коллагена, который зависит от активности коллагеназы. Коллагеназа, когда в ней нет необходимости, существует в неактивной форме. Синтез этого фермента, а также синтез его ингибитора и активация неактивной коллагеназы могут определяться различными факторами, уровень которых в свою очередь может меняться с возрастом.

Таким образом, можно предположить, что структурные изменения коллагена, зависящие от возраста, происходят из-за изменения уровня некоторых ферментов и, следовательно, являются вторичными причинами старения. Какое-либо повреждение первичных центров, т. е. генома, в результате которого может измениться синтез ферментов, принимающих участие в синтезе?-цепей, их деградации и модификации, может привести к нарушению структуры коллагена, а следовательно, и его функции. Отсюда вытекает необходимость изучения изменения в регуляции синтеза этих ферментов и разных типов?-цепей на уровне генома; только тогда можно разобраться в молекулярных событиях, связанных с изменениями в структуре коллагена как функции возраста. Полиморфизм молекул коллагена и сдвиги в соотношениях типов коллагена в тканях, наблюдающиеся на протяжении жизни, похожи на те явления, которые имеют место для изоферментов лактатдегидрогеназы и аланинаминотрансферазы . Все это может объясняться разной активностью генов, кодирующих свойства?-цепей разных типов. Активность генов может определяться факторами, уровень которых меняется на протяжении жизни. В пользу этой точки зрения свидетельствует тот факт, что синтез коллагена в период постэмбрионального развития свободно живущей нематоды Panagrellus silusiae имеет прерывистый характер, и каждая очередная его вспышка совпадает с увеличением уровня пролилгидроксилазы .

<<< Назад
Вперед >>>

Согласно наиболее общей оценке морфологические симптомы старости, так же как и клинико-физиологические, по времени, по месту и по степени их развития «не допускают строгой регламентации и не поддаются предвидению». Сказанное отражает одну из принципиальных характеристик старения - его «ассиметричность» относительно различных систем, соответствие принципам гетерохронии (разновременность), гетеротопии (разноместность) и гетерометрии (разномерность). Вместе с тем, если брать организм как таковой, остается справедливым представление о синхронности появления разнообразных признаков старения (оформление фенотипа пожилого и старого человека), что отражает закономерность и целостность соответствующего процесса, его связь с определенным возрастным периодом онтогенеза. Все это было отмечено еще классической геронтологией, в основе формирования представлений которой лидирующая роль принадлежала морфологии.

При анализе морфологических изменений в стареющем организме обнаруживаются признаки практически всех общепатологических процессов, причем на разных структурных уровнях - в макромолекулах и их комплексах, мембранах, органеллах, клетках, тканях, органах и системах.

Наиболее заметны из них атрофические, инволютивные изменения («физиологическая атрофия» - специфический геронтологический термин), альтеративные изменения - разного рода повреждения (дегенеративные и дистрофические изменения, гибель клеток, разрушение и уменьшение количества структурно-функциональных единиц и межклеточных структур), а также адаптивные изменения (регенераторные, гипертрофические, компенсаторные).

Наличие во внешнем облике старых пациентов атрофических изменений, квалифицируемых относительно «старческого комплекса признаков» как ведущих, обращает на себя внимание в определенном возрасте уже при жизни. Они же доминируют в общей картине макроскопических изменений на секции умерших пожилых людей и долгожителей. Атрофические процессы, распространяясь в той или иной мере на все органы и структуры, охватывают кожу и ее придатки, подкожную жировую клетчатку, молочные железы, слизистые оболочки (желудок, кишечник, мочевыводящие пути), костно-суставной аппарат, половые органы, лимфатические узлы, костный мозг, экзокринные и эндокринные железы, нервные образования и др.

Одна из составляющих процесса сенильной (старческой) атрофии - общее уменьшение количества клеток паренхимы органов.

В отличие от несенильной атрофии, наступающей, например, вследствие голодания, при возрастной атрофии на фоне суммарного обеднения клеточными элементами нередко отмечается неравномерный рост объемов клеток. При типичной старческой атрофии не происходит увеличения массы соединительной ткани.

При морфологическом анализе органов и тканей стареющих людей выявляются варианты сочетания инволютивных, деструктивных и адаптивных изменений. При этом за счет последних, как правило, достаточно длительное время обеспечивается уровень адаптации, требуемый для поддержания гомеостаза и осуществления всего комплекса процессов жизнедеятельности, сохраняющего жизнь. Конечно, с возрастом полнота компенсации утрачиваемых функций снижается. Тем не менее продолжительное время морфологическое обеспечение такой компенсации в целом соответствует объему функций, выполняемых органами стареющего живущего человека, особенно при физиологическом течении возрастного процесса.

Функционально (и клинически) это проявляется в прогрессивно нарастающей «старческой недужности» (одряхление организма или «frailty»). Темпы одряхления подвержены индивидуальной вариабильности, что находит отражение в различии морфологических картин, выявляемых в органах и тканях в сравнительных исследованиях. Один из «парадоксов» процесса старения заключается в том, что, с одной стороны, наблюдается разнообразие, в частности, от особи к особи, от индивидуума к индивидууму возрастных морфологических изменений, а с другой - развертывается достаточно стереотипная унифицированная картина финала возрастной перестройки в виде генерализованной атрофии, которая сопровождается потерей структур и дряхлостью.

Современные методы исследования выявляют сложный, многоаспектный, нередко противоречивый по своему конкретному выражению морфологический субстрат возрастной динамики количества (интенсивности) функций на субклеточном, клеточном, тканевом и органном уровнях.

Отношение геронтологов к вкладу в возрастной процесс событий на клеточном уровне морфофункциональной организации до сих пор неоднозначно. Одна группа исследователей ведущую роль отводит изменениям в популяциях пролиферирующих клеток, тогда как другая - изменениям в так называемых постмитотических непролиферирующих клетках, длительность жизни которых сопоставима с продолжительностью жизни организма - для человека десятки и даже более сотни лет. Именно в долгоживущих клетках обнаруживаются признанные цитоморфологические корреляты старения. Что касается изменений со стороны клеток, пролиферирующих в зрелом организме, то старение организма ассоциируют с замедлением темпов и/или прекращением клеточного размножения, а также с исходом в малигнизацию.

В непролиферирующих стареющих клетках накапливаются изменения, которые патологи квалифицируют нередко как сублетальные, что в итоге приводит либо к клеточной гибели, либо к снижению способности клеток адекватно отвечать на функциональные запросы и/или действие повреждающих агентов. В упомянутые выше изменения вовлекаются механизмы, обеспечивающие пластические и энергетические процессы, а также специфические относительно повреждающего внутриклеточные структуры агента (антиоксидантные системы) или более общие (белки теплового шока или, что более точно отражает их функциональный профиль, белки клеточного стресса) цитопротекторные эффекты. С возрастом растет вероятность онкотрансформации клеток, что может иметь в своей основе разные причины - нестабильность клеточных геномов в связи, например, с дисфункцией теломер хромосом, мутациями в супрессорных генах или онкогенах и др.

Возрастным изменениям в той или иной степени подвержено большинство внутриклеточных структур долгоживущих клеток. Известно, что длительность существования некоторых из таких структур меньше продолжительности жизни клетки. Предполагается, что средняя продолжительность жизни митохондрий в печеночных клетках составляет 10 дней. Таким образом, можно говорить, с одной стороны, о старении соответствующих внутриклеточных структур как таковых, а с другой - о состоянии конкретного класса органелл в связи со старением клеток, особенно долгоживущих, например нервных, в стареющем организме.Старение клетки, и это убедительно демонстрирует метод электронной микроскопии, нередко сопровождается изменением ее контуров за счет образования выростов.

Из общеклеточных органелл к категории стареющих относятся митохондрии. Морфологически в старых митохондриях отмечаются набухание, просветление матрикса, различные варианты вакуолизации, разрушение крист. В последнее время обращается внимание на мутации в митохондриальной ДНК, типичным итогом которых является большая или меньшая биоэнергетическая недостаточность клеток, а следовательно, и дефицит функции органов. Так, описана возрастзависимая делеция фрагмента между 8470 и 13549 п. н. (парами нуклеотидов), где расположены гены субъединиц аденозинтрифосфатазы, оксидазного и коэнзим-0-редуктазного комплексов. В целом структура митохондрий становится лабильной, снижается их устойчивость к гипоксическим воздействиям, функционально падает эффективность окислительного фосфорилирования. Изменения со стороны клеточных ядер морфологически часто проявляются в виде их дольчатости. Нередко они становятся гиперхромными.

Функциональный смысл этого до сих пор - предмет дискуссии. Цитогенетический анализ указывает на рост числа хромосомных аб-бераций. По крайней мере для некоторых типов клеток (гепатоциты) характерна возрастная по-липлоидизация. Одним из проявлений старения долгоживущих клеток является обеднение цитоплазмы мембранными структурами. Так, выполненное нами электронномикроскопическое исследование симпатических нейронов старых мышей и крыс выявляет сокращение объемов гранулярного эндоплазматического ретикулума. Соответственно, преобладающей в этих клетках становится субпопуляция свободных полисом. Последнее может свидетельствовать о смещении приоритетов в сторону синтеза так называемых белков «домашнего хозяйства», т. е. предназначенных для внутриклеточного использования и поддержания жизнеспособности собственно клетки.

Уменьшается также ошосительныгй объем структур пластинчатого комплекса Гольджи, который выглядит как совокупность отдельных диктиосом, разбросанных по цитоплазме. Частой находкой при электронномикроскопических наблюдениях являются скопления фибриллярного материала, особенно в некоторых типах долгоживущих клеток, например в нейронах. Одновременно происходит накопление продуктов деградации внутриклеточных структур - остаточных телец. Специфическим признаком старения долго-живущих клеток являются внутрицитоплазматические отложения липофусцина (пигмент изнашивания или старения в терминах классической морфологии). Гранулы липофусцина в цитоплазме гепатоцитов, кардиомиоцитов, нейронов пожилых и старых индивидуумов образуют скопления, приводящие к функционально значимому сокращению рабочего объема клеток. При массивных скоплениях пигмента клетка гибнет. Благодаря тому, что липофус-циновые гранулы имеют желто-коричневую окраску, а их конгломераты объемны, изменяется цвет органов старых людей: бурая атрофия сердца, бурая атрофия печени.

Расположение липофусцина в клетке в основном соответствует очагам внутриклеточного лизиса или локализации аутофагосом. Следовательно, оправдано мнение, что отложения липофусцина - это признак имевших место внутриклеточных альтеративных процессов, протекающих с участием лизосом или непосредственно в цитозоле. Известна точка зрения, согласно которой образование с возрастом внутриклеточных отложений липофусцина следует рассматривать как один из факторов морфогенеза (патоморфоза) клеточного старения. Во всяком случае, эти отложения, как уже отмечалось, существенно сокращают рабочий объем клеток. Липофусцин обычно появляется в тех участках клетки, где имеется непереваренный мембранный материал или липидный детрит, оказавшиеся устойчивыми к ферментативной деградации при воздействии лизосомальных гидролаз. Накопление липофусцина закономерно наблюдается при свободно-радикальных повреждениях клеточных структур. Однако сам по себе пигмент для клеток не токсичен.

Вплоть до настоящего времени нет полной ясности не только относительно происхождения липофусциновых гранул, но и того, не решаются ли с участием липофусцина в специфических условиях, характеризующих стареющие постми-тотические клетки (нейроны, кардиомиоциты), какие-либо позитивные функциональные или цитокомпенсаторные задачи. Замечено, что липофусциногенез усиливается при стрессе и особенно при дистрессе, когда нарушаются корреляции между внутриклеточными, прежде всего окислительно-восстановительными, процессами и образованием аутофагосом. Фокальная аутофагия - частая и типичная реакция клеток на сублетальные повреждения. Предполагается, что она служит одним из механизмов поддержания клеточного гомеостаза в неблагоприятных для жизнедеятельности клеток условиях.
Несколько особняком стоят данные о бесспорно позитивном значении накопления с возрастом (для людей - 50 лет и далее) липофусцина в хрусталике глаза. Известно, что свет, проникающий в глаз, с одной стороны, вызывает формирование зрительных образов и, таким образом, обеспечивает важнейшую функцию - зрение. С другой - он же, особенно в синей и фиолетовой областях спектра, оказывает деструктивное действие на структуры зрительного анализатора. «Возрастное пожелтение» в связи с отложениями в хрусталике липофусцина, выполняющего роль светофильтра, снижает неблагоприятные эффекты света. Отмеченное обстоятельство учитывается в производстве очковой оптики для пожилых.

Выше говорилось, что возрастному процессу присущи явления диспротеиноза, связанного, в частности, с аутоиммунными механизмами. В качестве примера приводился амилоидоз с формированием отложений амилоида внутри клеток. Более частыми находками в цитоплазме стареющих долгоживущих клеток являются отложения липидов.

Высшая степень повреждения клеток, в том числе при старении, - клеточная смерть, в соответствие с современными представлениями, может быть представлена двумя морфологическими вариантами - некрозом и апоптозом. При некрозе наблюдается сочетание дезинтеграционных процессов в ядре и цитоплазме клеток. Одновременно обращают внимание на набухание (онкоз) и дегенерацию плазматической мембраны и внутриклеточных ультраструктур. Если некроз возникает при повреждающих воздействиях, в том числе под влиянием свободных радикалов, то апоптоз типичен для инволютивных процессов. В частности, при старении организма возникают атрофические процессы в органах, функционирование которых регулируется гормонами (предстательная железа, молочная железа).

В условиях возрастного ослабления эндокринного стимулирования развивается атрофия органов с характерными признаками апоптоза. Апоптоз начинается, по-видимому, с изменений ядра: происходят конденсация хроматина, фрагментация внутриядерной ДНК, активация или инактивация специфических функций генетического аппарата клетки. Сами клетки уменьшаются в объеме, сморщиваются, образуются выпячивания, содержащие фрагменты цитоплазмы. Далее ядро и цитоплазма фрагментируются, образуются апоптозные тельца. Важным признаком апоптоза является интактность (сохранность) лизосом и других внутриклеточных органелл. Апоптозные тельца захватываются макрофагами, где происходит их переваривание. По-видимому, роль апоптоза в потере клеток при старении не ограничивается его участием только в процессах физиологической атрофии. Иммуногистохимическими методами установлено, что важную роль апоптоз играет в развитии повреждений при умеренной ишемии, а также при действии неблагоприятных физических и химических факторов. Отличительные черты некроза и апоптоза подробно рассмотрены Т.П. Денисовой и Л.И. Малининой.

По-видимому, старение все же не следует отождествлять с программируемой смертью клеток (апоптозом), поскольку значительное число стареющих клеток долго сохраняют жизнеспособность, теряя лишь способность к репродукции ДНК. Важно другое: при старении наряду с пролиферативной активностью снижается и синтетическая функция клеток, что существенно ограничивает процессы самообновления клеток и тканей, репаративные процессы при повреждениях, адекватную реакцию на стресс. Нарушается регуляция содержания макромоле-кулярных соединений в клетке, особенно это относится к быстрому разрушению дефектных макромолекул и их удалению из клетки.

Важная роль в процессе старения принадлежит стволовым клеткам. Стволовые мезенхимальные клетки костного мозга, например, характеризуются плюрипотентностью. В соответствующих случаях они покидают костный мозг и концентрируются в патологически измененных областях организма (зоны воспаления, инсульта), где выполняют заместительную, организационно-индуцирующую, трофическую (в широком смысле) функции. Допускается, что именно стволовые клетки разного продуктивного потенциала и разной локализации в организме составляют основу физиологической и в ряде ситуаций репаративной регенерации тканей и органов. Есть мнение, что с возрастом количество стволовых клеток уменьшается, что может быть важным звеном морфогенеза инволютивных изменений. Сокращение популяции стволовых клеток следует рассматривать как морфологическую основу ослабления регенераторных процессов у лиц пожилого и старческого возраста.В процессе старения существенно изменяются структурная организация и свойства внеклеточного матрикса, в том числе вследствие посттрансляционной модификации белков и накопления деградированных молекул.

Указанные изменения распространяются на соединительную ткань. Так, в коллагене с возрастом происходит образование межмакромолекулярных ковалент-ных сшивок. В связи с этим он становится менее растворимым, менее доступным для действия коллагеназы, приобретает большую термостабильность, а соединительная ткань теряет присущие ей плотность и элластичность. Продукты неферментативного гликозилирования могут стимулировать макрофаги и другие клетки к выработке протеаз и некоторых цитокинов, играющих важную роль в деструкции тканей. В эксперименте показано, что подавление реакций гликозилирования уменьшает возрастные дегенеративные изменения в соединительной ткани, в частности в стенках сосудов. У больных сахарным диабетом подобные изменения особенно выражены и приводят к микроангиопатиям с нарушениями кровоснабжения тканей в микроциркуляторном звене.

Накопление во внеклеточном матриксе протеогликанов связано с нарушениями протеолитических процессов и с ослаблением кровоснабжения в микроциркуляторном русле органов и тканей стареющих людей. Происходит прогрессирующая дегенерация коллагеновых волокон. Деградированные макромолекулы ухудшают метаболическую ситуацию, пластические процессы и качественные характеристики матрикса. Накопление продуктов неферментативного гликозилирования белков хрусталика и деградация белковых молекул его матрикса лежат в основе развития старческой катаракты.

Представленные выше сведения относятся к общепатологическим процессам, выявляемым при старении организма. Их следует дополнить данными о тканевых и органных изменениях. Кроме того, полезно остановиться на некоторых общих вопросах, важных для полноценной прижизненной и посмертной клинико-анатомической оценки старения, состояния старости, болезней и недугов соответствующего возрастного периода у конкретных людей.

Бесспорно, все органы и системы определенным образом изменяются с возрастом у всех людей, включая и тех, кто дожил без болезней до старческой дряхлости. Столь же очевидно (и это отмечалось выше), что возрастные атрофические изменения различаются по времени возникновения, темпам развития, выраженности в разных органах одного и того же человка, индивидуальным особенностям (влияние возраста, пола, наследственности на регенераторные и инволютивные процессы). Недоучет этого положения может стать причиной заблуждений или даже ошибок в умах и действиях практикующих врачей. В частности, речь идет о достаточно типичной гипердиагностике болезней у пожилых и старых людей, громоздких клинических диагнозах с перечислением впечатляющего списка нозологических единиц.

С другой стороны, существует тенденция объяснять жалобы пожилых пациентов их возрастом, причем с оттенком неизбежности и, следовательно, неподконтрольности этих жалоб. По мере старения у пожилого человека как бы «ожидается» все большее число хронических расстройств и болезней. В такой ситуации при догматическом отношении специалист может априорно отнестись к любому стареющему человеку как к старому, а к любому старому человеку как к заведомо больному. Как показывают клинико-патологоанатомические разборы, отмеченное действительно нередко дезориентирует врача, вследствие чего больной обследуется недостаточно, а основное заболевание или его серьезные осложнения остаются нераспознанными.Старость действительно сопровождается повышенной частотой болезней, но не является их причиной.

Вместе с тем необходимо учитывать влияние ряда хронических болезней на прогрессирова-ние возрастных изменений у лиц молодого и среднего возраста, что в качестве одной из ведущих причин имеет, по-видимому, длительные гипоксические состояния.

Клинико-патологоанатомический анализ убеждает в необходимости дифференцированного отношения к болезням, которые часто обнаруживаются у лиц пожилого и старческого возраста. Перечень «недугов старости», приведенный, в частности, в известной монографии И.В. Давыдовского и отражающий классические представления, включает в себя расстройства памяти и поведения, слабоумие, атонические, паретические, невротические состояния, старческий катар бронхов и другие нарушения. Автор считает специфическим для старости недугом общего значения одряхление (старческий маразм в классической терминологии) - закономерный финал старения.

Таким старым людям, которые не могут существовать без посторонней помощи, присущи пять «гериатрических гигантов»: спутанное сознание, травмы в связи с падениями, малоподвижность или неподвижность, недержание мочи, пролежни. В наше время однако есть основания оценивать состояние старости более оптимистично. Современная медицина выработала подходы и располагает фармакологическими и иными средствами более или менее эффективной коррекции составляющих комплекса «недугов старости». Перед фундаментальной наукой и практической медициной сегодняшнего дня поставлена задача найти средства снижения скорости (темпов) старения.В экономически развитых странах наиболее частыми причинами смерти старых людей, обусловленными патологией, являются болезни сердца и сосудов, злокачественные новообразования, цереброваскулярная патология, в том числе инсульты, грипп, пневмонии.

В настоящее время осознана проблема риска развития патологических проявлений в связи с приемом пожилыми и старыми пациентами лекарств. Клинико-патологоанатомические сопоставления убеждают в необходимости учитывать все многообразие и вариабильность, прежде всего индивидуальную, морфофункциональных возрастных изменений (возрастной фон) при проведении лекарственной терапии. Задача, которую приходится решать, сложна, поскольку она требует комплексной оценки состояния организма пожилого и старого человека. Одновременно должны быть учтены и возможные «нетипичные» клинические проявления (бессимптомное течение, маски болезней). Прогресс в диагностике и лечении болезней у пожилых и старых людей и в уменьшении числа расхождений клинического и патолого-анатомического диагнозов возможен на основе комплексного анализа морфофункциональных особенностей стареющего и старого организма и клинико-морфологических вариантов течения болезней у пожилых и старых пациентов.

- 26.35 Кб

Министерство здравоохранения Республики Беларусь

Витебский государственный ордена Дружбы народов медицинский университет

Кафедра биологической химии

Реферат на тему:

Изменения соединительной ткани при старении, коллагенозах и заживлении ран

Выполнила:

Студентка 2 курса

лечебного факультета

18 группы

Виноградова Д.А.

Преподаватель:

Козловская С.П.

Витебск, 2014

План:

1. Биохимические изменении соединительно ткани при старении Стр.3

2. Диффузные болезни соединительной ткани (коллагенозы) Стр.3
3. Изменение соединительной ткани при заживлении ран Стр.6

4. Заключение Стр.13

5. Список используемой литературы Стр.14

Биохимические изменения соединительной ткани при старении

Общим возрастным изменением, которое свойственно всем видам соединительной ткани, является уменьшение содержания воды и отношения основное вещество/волокна. Показатель этого соотношения уменьшается как за счет нарастания содержания коллагена, так и в результате снижения концентрации гликозаминогликанов. В первую очередь значительно снижается содержание гиалуроновой кислоты. Однако не только уменьшается общее количество кислых гликозаминогликанов, но изменяется и количественное соотношение отдельных гликанов. Одновременно происходит также изменение физико-химических свойств коллагена (увеличение числа и прочности внутри- и межмолекулярных поперечных связей, снижение эластичности и способности к набуханию, развитие резистентности к коллагеназе и т.д.), повышается структурная стабильность коллагеновых волокон (прогрессирование процесса «созревания» фибриллярных структур соединительной ткани). Следует помнить, что старение коллагена in vivo неравнозначно износу. Оно является своеобразным итогом протекающих в организме метаболических процессов, влияющих на молекулярную структуру коллагена.

Диффузные болезни соединительной ткани (коллагенозы)

Основное место в патологии соединительной ткани (далее СТ) занимают системные ее поражения, которые обусловлены нарушениями обмена веществ или иммунного гомеостаза и отражают несостоятельность различных функций СТ. Существуют первичные и вторичные системные поражения СТ. Первичные поражения бывают врожденные и наследственные. Врожденные и наследственные первичные системные поражения СТ обусловлены пороками развития и нарушениями обмена веществ. К ним, в частности относятся мукополисахаридозы, синдром Морфана, несовершенный остеогенез.

Системные первичные поражения СТ приобретенного характера включают большую группу диффузных болезней СТ – коллагеновых болезней (коллагенозы), характеризующиеся генерализованным поражением СТ. Этиологическими факторами могут явиться: лекарственная непереносимость (антибиотиков, сульфанидамидов), охлаждение, инфекция (чаще стрептококковая), чрезмерная инсоляция, вибрация, физическая или психическая травма. Определенное значение имеют нарушения функции гипоталамо-гипофизарно- надпочечниковой системы и наследственная предрасположенность.

Заболевания систем СТ являются классическим примером органоспецифических аутоиммунных болезней. Об этом свидетельствуют:

· наличие аутоантител;

· обнаружение в очаге поражения комплексов антиген-антитело;

· скопление в пораженных тканях плазматических и лимфоидных клеток, имеющих отношение к продукции циркулирующих антител;

· гипергаммаглобулинемия;

· эффективность лечения иммунодепрессантами, в частности, кортикостероидами;

· сочетание с другими аутоиммунными болезнями (тиреоидитом Хасимото и др.).

Инициальным звеном процесса является стимуляция иммунокомпетентной системы каким-либо антигеном с участием аутоантигена, выработкой аутоантител и рядом иммунных нарушений. Появлению аутоантигенов способствует высвобождение кислых гидролаз в очаге дезорганизации СТ, усиление гидролитического расщепления тканей и клеток. Антитела образуются против всех элементов СТ и направлены против антигенов собственных тканей. Могут развиваться аутоиммунные синдромы, связанные с циркулирующими антителами – аутоиммунная гемолитическая анемия, аутоиммунная тромбоцитопения, гломерулонефрит и др.

Возможен и второй механизм развития диффузных болезней – нарушение метаболизма коллагена, в частности, повышенная скорость его биосинтеза, формирование малоустойчивых коллагеновых структур с повышенным распадом, образование избыточного фиброза. Но и в этом случае повреждения коллагена могут быть обусловлены циркулирующими в крови комплексами антиген-антитело.

Несмотря на большое своеобразие отдельных нозологических форм диффузных болезней СТ все они объединены рядом общих признаков, из которых основной – иммунообусловленный системный воспалительный процесс. Кроме того, всем этим заболеваниям свойственны лихорадка, артриты, рецидивирующие полисерозиты, разнообразная висцеральная патология (миоэндокардиты, гломерулонефриты или амилоидоз почек, поражения печени, гепатолиенальные синдромы, генерализованная лимфаденопатия), в большинстве случаев рецидивирующее и прогрессирующее течение.

Иммунное повреждение тканей – основной компонент патогенеза диффузных болезней СТ. При различных нозологических формах оно выражено неодинаково, лишено строгой нозологической специфичности.

К диффузным болезням СТ относятся:

· ревматизм, характеризующийся преимущественным поражением сердца и сосудов;

· ревматоидный артрит – поражения, главным образом, суставов;

· симметричный полисиновит, приводящий к постепенной деструкции суставов;

· системная склеродермия – прогрессирующее полисиндромное заболевание с характерным изменение кожи, опроно-двигательного аппарата, внутренних органов (легкие, сердце, пищеварительный тракт, почки) и распространенными вазоспастическими нарушениями по типу синдрома Рейно, в основе которых лежат поражения СТ с преобладанием фиброза и сосудистая патология в виде облитерирующего эндартериита;

· системная красная волчанка, проявляющаяся поражением всей СТ, многих органов и систем;

· узелковый периартериит – системное поражение сосудов с вовлечением в процесс всех слоев сосудистой стенки (панартериит);

· синдром Гудпасчера – иммуновоспалительное заболевание мелких сосудов легких и почек, характеризующееся классической триадой – легочные кровотечения, гломерулонефрит, антитела к антигенам основной мембраны капилляров легких и почек (см. выше);

· болезнь Бехтерева – преимущественно поражение составно-связочного аппарата позвоночника, периферических суставов с вовлечением в процесс сердца, почек, аорты;

· синдром Шегрена («сухой синдром») – аутоиммунное поражение экзокринных (прежде всего слезных и слюнных) желез, сопровождающееся их гипофункцией, сочетающееся с системными иммуновоспалительными заболеваниями;

· ряд других болезней.

Смешанные формы диффузных болезней СТ, характеризуются наличием признаков двух или более болезней, как, например, синдром Шарпа. Этот синдром проявляется сочетанием клинических признаков свойственных системной красной волчанке, склеродермии, ревматоидному артриту и дерматомиозиту, а также высоким титром антител к ядерному рибонуклеопротеиду в сыворотке крови; прогноз синдрома относительно благоприятный.

К смешанным болезням СТ относят и саркоидоз – системное заболевание из группы гранулематозов, характеризующееся развитием эпителиоидно-клеточных гранулем, дистрофией, деструкцией, склерозом различных тканей и органов с нарушением функции.

Изменение соединительной ткани при заживлении ран

Фибробласты участвуют в заживлении ран. При заживлении ран эпидермис играет важную роль, которая заключается не только в восстановлении целостности кожных покровов, но и в регуляции роста и созревании грануляционной ткани. Преждевременная или затянувшаяся эпидермизация раневого дефекта вызывает формирование некачественного рубца. В связи с этим метаболические изменения в эпидермисе лежат в основе структурно-функциональных превращений на уровне кожи, возникающие при ликвидации раневого дефекта. Происходящие в эпидермисе перестройки связаны с переходом клеток на измененный, оптимизированный, с точки зрения гомеостаза, уровень функционирования. Наибольшим структурно-метаболическим сдвигам подвергнут ростковый слой Мальпиги, включающий в себя базальный и шиповатый слои, клетки которых определяют формирование вышележащих слоев эпидермиса.

Дефицит витамина С.

Дистрофию соединительной ткани

Цинга́- болезнь, вызываемая острым недостатком витамина C (аскорбиновая кислота), который приводит к нарушению синтеза коллагена, и соединительная ткань теряет свою прочность.

Синдром Элерса-Данлоса

Синдром Элерса-Данло (Ehlers-Danlos) (СЭД; Q79.6) - генетически гетерогенное заболевание, обусловленное разнообразными мутациями в генах коллагена, либо в генах, отвечающих за синтез ферментов, принимающих участие в созревании волокон коллагена. Характеризуется гиперэластичностью кожи, подкожными сферулами, переразгибанием суставов, лёгкой ранимостью тканей и геморрагическим синдромом. Истинная распространённость неизвестна вследствие сложности верификации и большого числа лёгких форм, частота диагностированных случаев - 1 на 5000 новорождённых, тяжёлые формы встречают редко (1:100 000).

Латиризм - эпидемическая болезнь, неоднократно наблюдавшаяся во Франции, Италии, Алжире и Ост-Индии в неурожайные годы, когда жители, из-за дороговизны хлеба, пользовались, как пищевым средством, чиной или гороховником Lathyrus из сем. Papilionaceae. Различают несколько видов Lathyrus, из которых ядовитые семена дают L. cicera и L. clymenum. Болезнь наступает иногда уже после шестинедельного употребления семян чины, иногда же спустя несколько месяцев и поражает не только людей, но также и некоторых животных (лошадей, свиней, уток). Болезнь, во многом напоминающая спинно-мозговую сухотку, обусловлена, по всем вероятиям, поражением спинного мозга и характеризуется преимущественно явлениями паралича, особенно нижних конечностей. Чрезвычайно типична неправильная походка подобных больных. Иногда болезнь заканчивается гангреной нижних конечностей, как при хроническом отравлении спорыньей. Болезнь поражает преимущественно юный возраст; мужчин чаще, чем женщин.

Список используемой литературы

1.http://med-books.info/ veterinariya

2.http://znaiu.ru

3.http://forum.biomedis.ru

Описание работы

Общим возрастным изменением, которое свойственно всем видам соединительной ткани, является уменьшение содержания воды и отношения основное вещество/волокна. Показатель этого соотношения уменьшается как за счет нарастания содержания коллагена, так и в результате снижения концентрации гликозаминогликанов. В первую очередь значительно снижается содержание гиалуроновой кислоты. Однако не только уменьшается общее количество кислых гликозаминогликанов, но изменяется и количественное соотношение отдельных гликанов. Одновременно происходит также изменение физико-химических свойств коллагена (увеличение числа и прочности внутри- и межмолекулярных поперечных связей, снижение эластичности и способности к набуханию, развитие резистентности к коллагеназе и т.д.), повышается структурная стабильность коллагеновых волокон (прогрессирование процесса «созревания» фибриллярных структур соединительной ткани).

Министерство здравоохнанения Республики Беларусь

УО «Витебский государственный ордена Дружбы народов

медицинский университет»

Кафедра Общей и клинической биохимии

Реферат на тему:

Изменение соединительной ткани при старении,коллагенозах и заживлении ран

Выполнила:

Студентка 37 группы 2 курса

Лечебного факультета

Минина Е.Г.

Проверил:

Гребенников И.Н.

Витебск, 2011

    Введение.

    Нарушения обмена веществ и энергии на:

    Молекулярном уровне;

    Клеточном уровне;

    Органном и тканевом уровнях;

    Уровне целостного организма.

    Неравномерными, разнонаправленными изменениями обмена веществ и энергии - характеризуется старение.

    Установление нарушения обмена веществ и энергии.

    Лечение болезней обмена веществ и энергии.

    Заключение.

    Литература.

Введение.

Нарушение обмена веществ и энергии лежат в основе повреждений органов и тканей, ведущих к возникновению болезни . Происходящие при этом изменения в протекании химических реакций сопровождаются большими или меньшими сдвигами в энергообразующих и энергопоглощающих процессах. Различают 4 уровня, на которых могут происходить нарушения обмена веществ и энергии: молекулярный; клеточный; органный и тканевой; целостный организм. Нарушения обмена веществ и энергии на любом из этих уровней могут носить первичный или вторичный характер. Во всех случаях они реализуются на молекулярном уровне, на котором изменения обмена веществ и энергии приводят к патологическим нарушениям функций организма.

Нормальное протекание метаболических реакций на молекулярном уровне обусловлено гармоничным сочетанием процессов катаболизма и анаболизма. При нарушении катаболических процессов прежде всего возникают энергетические трудности, нарушаются регенерация АТФ, а также поступление необходимых для биосинтетических процессов исходных субстратов анаболизма. В свою очередь, первичное или связанное с изменениями процессов катаболизма повреждение анаболических процессов ведет к нарушению воспроизведения функционально важных соединений - ферментов, гормонов и др. Нарушение различных звеньев метаболических цепей неравнозначно по своим последствиям. Наиболее существенные, глубокие патологические изменения катаболизма происходят при повреждении системы биологического окисления при блокаде ферментов тканевого дыхания, гипоксии и др. или повреждении механизмов сопряжения тканевого дыхания и окислительного фосфорилирования (например, разобщение тканевого дыхания и окислительного фосфорилирования при тиреотоксикозе). В этих случаях клетки лишаются основного источника энергии, почти все окислительные реакции катаболизма блокируются или теряют способность аккумулировать освобождающуюся энергию в молекулах АТФ. При ингибировании реакций цикла трикарбоновых кислот выработка энергии в процессе катаболизма сокращается примерно на две трети. При нарушении нормального течения гликолитических процессов (гликолиза, гликогенолиза) организм лишается способностиадаптироваться к гипоксии, что особенно отражается на функционировании мышечной ткани. Нарушение использования углеводов, уникальных метаболических источников энергии в условиях недостатка кислорода, является одной из причин существенного снижения мышечной силы у больных сахарным диабетом. Ослабление гликолитических процессов затрудняет метаболическое использование углеводов, ведет к гипергликемии, переключению биоэнергетики на липидные и белковые субстраты, к угнетению цикла трикарбоновых кислот в результате недостатка щавелево-уксусной кислоты. Возникают условия для накопления недоокисленных метаболитов - кетоновых тел, усиливается распад белков, интенсифицируется глюконеогенез. Развиваются ацетонемия, азотемия, ацидоз .

Как уже говорилось, межклеточный матрикс представляет собой супрамолекулярный комплекс, образованный сложной сетью связанных между собой макромолекул. В организме человека межклеточный матрикс формирует такие высокоспециализированные структуры, как хрящ, сухожилия, базальные мембраны, а также (при вторичном отложении фосфата кальция) кости и зубы. Эти структуры различаются между собой как по молекулярному составу, так и по способам организации основных компонентов (белков и полисахаридов) в различных формах межклеточного матрикса.

Коллагенозы - группа заболеваний, при которых повреждаются все структурные компоненты соединительной ткани: клетки, волокна, основное вещество. К коллагенозам относятся ревматизм, ревматоидный артрит, системная красная волчанка, системная склеродермия, узелковый периартериит, дерматомиозит. Коллагенозы являются следствием не только генетических нарушений, но и могут иметь приобретённый характер.

Общим возрастным изменением, которое свойственно всем видам соединительной ткани, является уменьшение содержания воды и отношения основное вещество/волокна. Показатель этого соотношения уменьшается как за счет нарастания содержания коллагена, так и в результате снижения концентрации гликозаминогликанов. В первую очередь значительно снижается содержание гиалуроновой кислоты. Однако не только уменьшается общее количество кислых гликозаминогликанов, но изменяется и количественное соотношение отдельных гликанов. Одновременно происходит также изменение физико-химических свойств коллагена (увеличение числа и прочности внутри- и межмолекулярных поперечных связей, снижение эластичности и способности к набуханию, развитие резистентности к коллагеназе и т.д.), повышается структурная стабильность коллагеновых волокон (прогрессирование процесса «созревания» фибриллярных структур соединительной ткани). Следует помнить, что старение коллагена in vivo неравнозначно износу. Оно является своеобразным итогом протекающих в организме метаболических процессов, влияющих на молекулярную структуру коллагена.

Известны 2 типа коллагеназ:

Тканевая коллагеназа присутствует у человека в различных органах и тканях. В норме она синтезируется клетками соединительной ткани, прежде всего, фибробластами и макрофагами. Тканевая коллагеназа - металлозависимый фермент, который содержит Zn 2+ в активном центре. Нарушение катаболизма коллагена ведёт к фиброзу органов и тканей (в основном печени и лёгких). А усиление распада коллагена происходит при аутоиммунных заболеваниях (ревматоидном артрите и системной красной волчанке) в результате избыточного синтеза коллагеназы при иммунном ответе. Она способствует восстановлению целостней кожных покровов, образуя на месте ранения рубец...

Бактериальная коллагеназа синтезируется некоторыми микроорганизмами. Например,Clostridium histolyticum (возбудитель газовой гангрены) выделяет коллагеназу, расщепляющую пептидную цепь коллагена более чем в 200 местах. Этот фермент гидролизует следующую связь -X-Гли-Про-У- между звеньями X и Гли. Таким образом разрушаются соединительнотканные барьеры в организме человека, что обеспечивает проникновение (или инвазию) этого микроорганизма и способствует возникновению и развитию газовой гангрены. Сам возбудитель не содержит коллагена и поэтому не подвержен действию коллагеназы.

Оксипролинурия - оксипролин в моче? Как часто об этом знаете? Вообще оксипролин необычная аминокислота и в форме её ОЧЕНЬ мало в крови и моче. Теперь представьте... обнаружили её в моче? Что значит? Значит идут активные дегенеративные процессы в межклеточном матриксе, разрушается коллаген и оксипролин освобождается от работы!

160. Важнейшие белки миофибрилл: миозин, актин, актомиозин, тропомиозин, тропонин, актинин. Молекулярная структура миофибрилл.

Миозин составляет 50–55% от сухой массы миофибрилл. Миозин обладает АТФазной активностью, т.е. способностью катализировать расщепление АТФ на АДФ и Н3РО4. Химическая энергия АТФ, освобождающаяся в ходе данной ферментативной реакции, превращается в механическую энергию сокращающейся мышцы. Молекулярная масса миозина скелетных мышц около 500000 (для миозина кролика 470000). Молекула миозина имеет сильно вытянутую форму, длину 150 нм. Она может быть расщеплена без разрыва ковалентных связей на субъединицы: две тяжелые полипептидные цепи с мол. массой 205000–210000 и несколько коротких легких цепей, мол. масса которых около 20000. Тяжелые цепи образуют длинную закрученную α-спираль («хвост» молекулы), конец каждой тяжелой цепи совместно с легкими цепями создает глобулу («головка» молекулы), способную соединяться с актином. Эти «головки» выдаются из основного стержня молекулы.

Легкие цепи, находящиеся в «головке» миозиновой молекулы и принимающие участие в проявлении АТФазной активности миозина, гетерогенны по своему составу. Количество легких цепей в молекуле миозина у различных видов животных и в разных типах мышц неодинаково.

Толстые нити (толстые миофиламенты) в саркомере надо понимать как образование, полученное путем соединения большого числа определенным образом ориентированных в пространстве молекул миозина.



Актин , составляющий 20% от сухой массы миофибрилл, был открыт Ф. Штраубом в 1942 г. Известны две формы актина: глобулярный актин (G-актин) и фибриллярный актин (F-актин). Молекула G-актина с мол. массой 42000 состоит из одной полипептидной цепочки (глобула), в образовании которой принимают участие 374 аминокислотных остатка. При повышении ионной силы до физиологического уровня G-актин полимеризуется в F-актин (фибриллярная форма). На электронных микрофотографиях волокна F-актина выглядят как две нити бус, закрученных одна вокруг другой (рис. 20.5).

Актомиозин образуется при соединении миозина с F-актином. Актомиозин, как естественный, так и искусственный, т.е. полученный путем соединения in vitro высокоочищенных препаратов миозина и F-актина, обладает АТФазной активностью, которая отличается от таковой миозина, АТФазная активность миозина значительно возрастает в присутствии стехиометрических количеств F-актина. Фермент актомиозин активируется ионами Mg2+ и ингибируется этилендиаминтетраацетатом (ЭДТА) и высокой концентрацией АТФ, тогда как миозиновая АТФаза ингибируется ионами Mg2+, активируется ЭДТА и не ингибируется высокой концентрацией АТФ. Оптимальные значения рН для обоих ферментов также различны.

Как отмечалось, кроме рассмотренных основных белков, в миофибриллах содержатся также тропомиозин, тропонин и некоторые другие регуляторные белки.

Тропомиозин .
Молекула тропомиозина состоит из двух α-спиралей и имеет вид стержня длиной 40 нм; его мол. масса 65000. На долю тропомиозина приходится около 4–7% всех белков миофибрилл.

Тропонин – глобулярный белок; его мол. масса 80000. В скелетных мышцах взрослых животных и человека тропонин (Тн) составляет лишь около 2% от всех миофибриллярных белков. В его состав входят три субъединицы (Тн-I, Тн-С, Тн-Т). Тн-I (ингибирующий) может ингибировать АТФазную активность, ТН-С (кальцийсвязывающий) обладает значительным сродством к ионам кальция, Тн-Т (тропомиозин-связывающий) обеспечивает связь с тропомиозином. Тропонин, соединяясь с тропомиозином, образует комплекс, названный нативным тропомиозином. Этот комплекс прикрепляется к актиновым филаментам и придаетактомиозину скелетных мышц позвоночных чувствительность к ионамСа2+.

Установлено, что тропонин (его субъединицы Тн-Т и Тн-I) способенфосфорилироваться при участии цАМФ-зависимых протеинкиназ. Вопрос о том, имеет ли отношение фосфорилирование тропонина in vitro к регуляции мышечного сокращения, остается пока открытым.

Альфа-актинин - один из мышечных белков.

В клетках поперечнополосатой мышечной ткани (скелетной и сердечной) α-актинин входит в структуру Z-дисков саркомеров миофибрилл (см. рис. миофибрилла: схема). К белковым молекулам α-актинина присоединяются концы тонких нитей саркомера, построенных из F-актина. Z-диски объединяют в виде упорядоченных пучков актиновые нити каждой пары саркомеров.

Этот белок также присутствует в цитоплазме клеток гладкой мышечной ткани. Он образует плотные аморфные тела, скрепляющие вместе актиновые нити, а также актиновые нити и внешнюю мембрану клетки. При взаимодействии актиновых и миозиновых нитей сила сокращения от актиновых нитей через плотные тела передается к внешней мембране клетки.



Похожие публикации