Какой главный элемент, составляющий земную кору? Состав земной коры.

В настоящее время земная кора наиболее изучена на глубину до 15-20 км. По результатам анализа многочисленных образцов горных пород и минералов, выходящих на поверхность земли при горообразовательных процессах, а также взятых из горных выработок, глубоких буровых скважин и обнажений, был вычислен средний состав химических элементов земной коры.

ХИМИЧЕСКИЙ СОСТАВ ЗЕМНОЙ КОРЫ

Наибольшее распространение в земной коре имеют 46 элементов, из них 8 составляют 97,2-98,8% ее массы, 2 (кислород й кремний) - 75% от общей массы Земли.
Распределение химических элементов в процентах от массы земном коры (по А. Е. Ферсману) следующее:
Кислород 49,13
Кремний 26,00
Алюминий 7,45
Железо 4,20
Кальций 3,25
Натрий 2,40
Магний 2,35
Цинк 0,020
Бор 0,010
Медь 0,010
Иттрий 0,005
Бериллий 0,003
Цезий 0,0029
Первые 13 элементов (за исключением титана), наиболее часто встречающиеся в земной коре, входят в состав органического вещества растений, участвуют во всех жизненно необходимых процессах и играют важную роль в плодородии почв. Большое количество элементов, участвующих в химических реакциях в недрах Земли, приводит к образованию самых разнообразных соединений.

МИНЕРАЛЫ

Минералом называется всякое встречающееся в земной коре природное (естественное) однородное тело, имеющее более или менее постоянный химический состав и определенные физические свойства.
Минералы и их образование. Минерал в переводе с латинского minera означает руда. В настоящее время известно около 3 тыс. минералов. Минералы, встречающиеся в твердом виде, делятся иа аморфные, или некристаллические (асфальт, лед, опал), и кристаллические (полевой шпат, горный хрусталь, гипс). В аморфных минералах атомы (ионы) или молекулы расположены беспорядочно, в кристаллах - по определенному закону, образующему структуру кристалла, или его кристаллическую решетку. Наиболее часто встречающиеся минералы, входящие в существенных количествах в горные породы, называются породообразующими.
Минералы по условиям происхождения делят на эндогенные и экзогенные. Эндогенные минералы образуются в результате физико-химических процессов, проходящих в магме вблизи поверхности Земли. Примером эндогенных минералов могут быть полевые шпаты, оливин, пироксен, кварц и др. Экзогенные минералы образуются в самых верхних частях земной коры или на поверхности Земли в результате выветривания (разрушения и преобразования) эндогенных минералов. Экзогенные минералы делят на глинистые, образующиеся при выветривании (см. главу III), минералы химических осадков, образующиеся в мелких соленосных водоемах при кристаллизации (гипс, сульфит, сильвинит), и биогенные, образующиеся в результате разложения органических остатков (калиевая селитра, сера, иногда пирит, марказит).
Все минералы классифицируются в зависимости от химического состава и делятся на пять типов, которые приведены ниже (по Е. К. Лазаренко):
1. Тип простых веществ (металлы и неметаллы, группы меди и железа и др.)
2. Тип сульфидов (группы сфалерита, галенита, молибдена и др.)
3. Тип кислородных соединений (окислы, гидроокислы, силикаты, алюмосиликаты, бораты, фосфаты, карбонаты, сульфаты и др.)
4. Тип галоидов (фториды, хлориды)
5. Тип органических соединений
Физические свойства минералов. При подробном изучении минералов исследуют их химический состав, расположение атомов, образование кристаллов, форма и свойства которых зависят от закономерностей расположения атомов и молекул. При этом используют современные химические, физические и оти-ческие методы исследования. Однако минералы часто можно определять в полевых условиях, используя восемь внешних признаков, основанных на физических свойствах: цвет, цвет черты, прозрачность, блеск, твердость, плотность, спайность и излом.
Цвет зависит от химического состава и физического состояния минералов и может быть самым разным. У одного и того же минерала цвет более или менее постоянный.
Цвет черты - цвет минерала в раздробленном состоянии - обычно определяют на шероховатой поверхности фарфоровой чашки. Он может отличаться от цвета самого минерала.
Прозрачность - способность минерала пропускать свет. Различают прозрачные (хрусталь, кальцит), полупрозрачные, просвечивающие (опал) и непрозрачные (авгит, лимонит, боксит) минералы.
Блеск - способность минерала отражать свет. Различают блеск металлический (пирит, железо), стеклянный (кварц, полевой шпат), жирный (графит, тальк), шелковистый (волокнистый гипс, асбест), матовый; землистые минералы не имеют блеска.

Вопросы: 1. Химический состав земной коры. Минералы их происхождение и распространение.

2. Горные породы, происхождение и значение в процессе почвообразования.

1. Химический состав земной коры. Минералы их происхождение и распространение.

Земная кора слагается различными по химическому составу, про­исхождению и условиям залегания группами минералов и горных пород. Горные породы представляют собой агрегаты, сложенные из определенного сочетания минералов. Последние в свою очередь состоят из атомов и молекул химических элементов.

Химический состав земной коры.

О химическом составе земной коры существуют самые достоверные сведения, так как она в своей верхней части доступна прямым наблюдениям и исследованиям. Первые сведения о химическом составе этой части земной коры были опубликованы в 1889 г. американским ученым Ф. Кларком как среднеарифметические значения из имевшихся в его распоряжении 6000 химических анализов различных горных пород. В последующие годы эти значения уточнялись. Ф. Кларк данной проблеме посвятил около 40 лет, его вклад в науку был отмечен мировым ученым сообществом. А. Е. Ферсман предложил называть процентное содержание элемента в земной коре кларком этого элемента (например, кларк алюминия, кларк кремния и т.д.). За ру­бежом такие исследования проводили Г.С. Вашингтон, В. М. Гольдшмидт, Ф.Тейлор, В.Мейсон, а в Советском Союзе вопросами химического состава земной коры занимались академики В. И. Вернадский, А.Е.Ферсман, А.П.Виноградов, А.Б.Ронов, а также такие крупнейшие ученые, как В. Г. Хлопин, Г. В. Войткевич, А.А.Ярошевский. Согласно данным А. Б. Ронова и А. А.Ярошевского (1976), в земной коре наибольшее распространение имеют кислород, кремний, алюминий, железо, кальций, магний, натрий, калий. В целом они составляют 98 % земной коры. При этом свыше 80 % приходится на кислород, кремний и алюминий в отличие от среднего состава Земли, где общее количество этих химических элементов резко сокращается. Особенно высоко в земной коре содержание кислорода и кремния. Общее представление о составе земной коры дает табл. 1.

Таблица 1

Распространенность (кларки) главных химических элементов в земной коре до глубины 16 км

по Ф. Кларку

и Г. Вашингтону (1924)

по А.Е. Ферсману (1933-1939)

по А.П. Виноградову

Кислород

Алюминий

Кларк – процентное содержание каждого химического элемента в Земле

Примечание. А.П. Виноградов рассчитал средние содержания для всей земной коры, состоящей из двух частей кислых горных пород и одной части основных.

В распределении химических элементов в земной коре отмечаются определенные закономерности: в поверхностных частях преобладают кислород, кремний и легкие металлы, с глубиной значительно возрастает роль железа и магния и уменьшается роль алюминия, кальция и натрия. При углублении в недра земной коры увеличивается содержание тяжелых элементов, в частности тяжелых металлов.

Химический состав земной коры был определен по результатам анализа много­численных образцов горных пород и минералов, выходящих на поверхность земли при горообразовательных процессах, а также взятых из горных выработок и глубоких буровых скважин.

В настоящее время земная кора изучена на глубину до 15-20 км. Она состоит из химических элементов, которые входят в состав горных пород.

Наибольшее распространение в земной коре имеют 46 элемен­тов, из них 8 составляют 97,2-98,8 % ее массы, 2 (кислород и кремний) -75 % массы Земли.

Первые 13 элементов (за исключением титана), наиболее час­то встречающиеся в земной коре, входят в состав органического вещества растений, участвуют во всех жизненно необходимых процессах и играют важную роль в плодородии почв. Большое количество элементов, участвующих в химических реакциях в нед­рах Земли, приводит к образованию самых разнообразных со­единений. Химические элементы, которых больше всего в лито­сфере, входят в состав многих минералов (из них в основном со­стоят разные породы).

Отдельные химические элементы распределяются в геосферах следующим образом: кислород и водород заполняют гидросферу; кислород, водород и углерод составляют основу биосферы; кисло­род, водород, кремний и алюминий являются основными компо­нентами глин и песчаных пород или продуктов выветривания (они в основном составляют верхнюю часть коры Земли).

Химические элементы в природе находятся в самых различных соединениях, называемых минералами. Это однородные химичес­кие вещества земной коры, которые образовались вследствие сложных физико-химических или биохимических процессов, например каменная соль (NaCl), гипс (CaS04*2H20), ортоклаз (K2Al2Si6016).

В природе химические элементы принимают неодинаковое участие в образовании разных минералов. Например, кремний (Si) входит в состав более 600 минералов, а также очень распро­странен в форме окисей. Сера образует до 600 соединений, каль­ций-300, магний -200, марганец-150, бор - 80, калий - до 75, соединений лития известно только 10, а йода - еще меньше.

Среди наиболее известных минералов в земной коре преобладает большая группа полевых шпатов с тремя основными элементами - К, Na и Са. В почвообразующих породах и продук­тах их выветривания полевые шпаты занимают основное положе­ние. Полевые шпаты постепенно выветриваются (распадаются) и обогащают почву на К, Na, Са, Mg, Fe и другие зольные вещест­ва, а также микроэлементы.

Кла́рковое число́ - числа, выражающие среднее содержание химических элементов в земной коре, гидросфере, Земле, космических телах, геохимических или космохимических системах и др., по отношению к общей массе этой системы. Выражается в % или г/кг.

Виды кларков

Различают весовые (в %, в г/т или в г/г) и атомные (в % от числа атомов) кларки. Обобщение данных по химическому составу различных горных пород, слагающих земную кору, с учётом их распространения до глубин 16 км впервые было сделано американским учёным Ф. У. Кларком (1889). Полученные им числа процентного содержания химических элементов в составе земной коры, впоследствии несколько уточнённые А. Е. Ферсманом, по предложению последнего были названы числами Кларка или кларками.

Строение молекулы . Электрические, оптические, магнитные и другие свойства молекул связаны с волновыми функциями и энергиями различных состояний молекул. Информацию о состояниях молекул и вероятности перехода между ними дают молекулярные спектры.

Частоты колебаний в спектрах определяются массами атомов, их расположением и динамикой межатомных взаимодействий. Частоты в спектрах зависят от моментов инерции молекул, определение которых с спектроскопических данных позволяет получить точные значения межатомных расстояний в молекуле. Общее число линий и полос в колебательном спектре молекулы зависит от её симметрии.

Электронные переходы в молекулах характеризуют структуру их электронных оболочек и состояние химических связей. Спектры молекул, которые имеют большее количество связей, характеризуются длинноволновыми полосами поглощения, попадающими в видимую область. Вещества, которые построены из таких молекул, характеризуются окраской; к таким веществам относятся все органические красители.

Ионы. В результате переходов электронов образуются ионы – атомы или группы атомов, в которых число электронов не равно числу протонов. Если ион содержит отрицательно заряженных частиц больше, чем положительно заряженных, то такой ион называют отрицательным. В противоположном случае ион называют положительным. Ионы очень часто встречаются в веществах, например, они есть во всех без исключения металлах. Причина заключается в том, что один или несколько электронов от каждого атома металла отделяются и движутся внутри металла, образуя так называемый электронный газ. Именно из-за потери электронов, то есть отрицательных частиц, атомы металла становятся положительными ионами. Это справедливо для металлов в любом состоянии – твёрдом, жидком или газообразном.

Кристаллическая решётка моделирует расположение положительных ионов внутри кристалла однородного металлического вещества.

Известно, что в твёрдом состоянии все металлы являются кристаллами. Ионы всех металлов расположены упорядоченно, образуя кристаллическую решётку. В расплавленных и испарённых (газообразных) металлах упорядоченное расположение ионов отсутствует, но электронный газ по-прежнему остаётся между ионами.

Изото́пы - разновидности атомов (и ядер) какого-либо химического элемента, которые имеют одинаковый атомный (порядковый) номер, но при этом разные массовые числа. Название связано с тем, что все изотопы одного атома помещаются в одно и то же место (в одну клетку) таблицы Менделеева. Химические свойства атома зависят от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z (то есть количеством протонов в нём), и почти не зависят от его массового числа A (то есть суммарного числа протонов Z и нейтронов N). Все изотопы одного элемента имеют одинаковый заряд ядра, отличаясь лишь числом нейтронов. Обычно изотоп обозначается символом химического элемента, к которому он относится, с добавлением верхнего левого индекса, означающего массовое число. Можно также написать название элемента с добавлением через дефис массового числа. Некоторые изотопы имеют традиционные собственные названия (например, дейтерий, актинон).

Самая верхняя из твёрдых оболочек нашей планеты носит название земной коры; вместе с верхней мантией она образует литосферу. Граница между корой и верхней мантией, называемая поверхностью Мохоровичича, лежит под континентами на глубине в среднем ~ 50 км, тогда как под океанами толщина коры составляет всего 5-10 км. Верхнюю часть континентальной земной коры составляет осадочный чехол (педосфера), а вся остальная её толща разделяется на два слоя - гранитный и базальтовый (поверхность раздела между ними называют поверхностью Конрада).

Состав земной коры образовался, в основном, в результате высвобождения веществ из верхней мантии Земли. Состав этой оболочки эволюционировал во времени, прежде всего, за счет возгонки элементов из мантии в результате частичного плавления на глубине около 100 км. Глубина Земли составляет 6371 км; земной коры ~ 40 км, верхняя мантия ~ 40-70 км, нижняя мантия: 700-2900 км; внешнее ядро ~ 2900-5150 км; внутреннее ядро ~ 5150-6371 км. Более 92 % массы литосферы приходится на долю только 4-х элементов - железа, кислорода, кремния и магния. Земная кора по своему составу оказывается более обогащённой кислородом и кремнием. Эти элементы вместе с алюминием образуют самые распространённые в коре соединения - силикаты и алюмосиликаты. Примерно на 90 % масса земной коры образована силикатами алюминия, железа, кальция, магния, калия и натрия, а также оксидом кремния. Земная оболочка имеет толщину < 0,0001 % от объема планеты. Средний химический состав современной коры имеет следующий вид:

О - 46,6 %; Si - 27,7 %; Аl - 8,1 %; Fе - 5,0%; Са- 3,6 %; Nа - 2,8 %; К - 2,6 %; Мg - 2,1 %; прочие 1,4%.

Для характеристики распространённости химических элементов в земной коре известный геохимик А.Е. Ферсман предложил ввести понятие кларка - среднего значения относительного содержания химического элемента. Эта величина названа в честь американского учёного-химика, который в последние десятилетия XIX века наметил пути статистического изучения распространённости элементов. В более широком понимании кларк относят не только к земной коре, но и к другим глобальным (например, растительность континентов) и космическим системам. Различия в кларках химических элементов очень велики. Условно элементы делят на 2 группы: главные, с содержанием не менее 0,1 %, и рассеянные. К главным элементам (по мере убывания) в земной коре можно отнести следующие 10 химических элементов: О, Si, Al, Fe, К, Са, Na, Mg, Ti, Н. Они образуют самостоятельные химические соединения (минералы), а входящие во вторую группу преимущественно рассеяны в природных минералах. Особенность распределения рассеянных элементов в земной коре заключается в их способности образовывать скопления (месторождения), в которых их содержание в сотни и тысячи раз превышает кларковые. Среднее содержание рассеянного химического элемента в данном регионе формирует его геохимический фон. Участки с повышенной концентрацией элемента (по сравнению с региональной) называют геохимическими аномалиями или геохимическими провинциями.

Важной составляющей литосферы являются подземные воды. Вода присутствует в земной толще как в свободном виде, так и в связанной форме, а также различных агрегатных состояниях: в виде паров, жидкости и льда. Подземные воды представляют собой сложную физико-химическую систему, находящуюся в динамическом равновесии с вмещающими породами.

Свободные воды подземной гидросферы в той или иной степени минерализованы, и наиболее редкими (~ 2 %) оказываются пресные воды. В основном это грунтовые воды, непосредственно связанные с поверхностными источниками (реки, озёра, водохранилища). Общая минерализация их не превышает 1 г/л (1 ‰), а по составу они относятся к гидрокарбонатным. Как правило, грунтовые воды отличаются высоким (до 35 мг/л и более) содержанием растворённого органического вещества. Основной объём подземной гидросферы приходится на долю солёных (до 35 г/л) и рассольных (с минерализацией до 500-600 г/л) вод. Их формирование протекает в глубинных слоях осадочных пород в зонах медленного водообмена в течение сотен тысяч и миллионов лет. По составу они относятся главным образом к хлоридным. Промежуточное положение между пресными (грунтовыми и артезианскими) и солёными обычно занимают солоноватые воды с минерализацией до 10 г/л. Они образуют все основные классы - гидрокарбонатные, хлоридные и сульфатные. В сравнении с пресными грунтовыми, солоноватые воды содержат меньше растворённых газов атмосферного происхождения. По мере увеличения глубины залегания в подземных водах увеличивается концентрация газов глубинного генезиса (СО 2 , Не, СН 4 и др.)

Земная кора постоянно подвергается различного рода воздействиям как внутреннего (эндогенного), так и внешнего (экзогенного) характера. Движущей силой эндогенных процессов является внутренняя энергия Земли. Например, микробиологическое выщелачивание рассеянных элементов происходит не только путём окисления, но и при восстановлении окисленных руд. В нём принимают участие различные микроорганизмы. В частности, восстановление Fe 3+ до Fe 2+ и Мn 4+ до Мn 2+ осуществляется бактериями родов Bacillus и Pseudomonas. Экзогенные процессы протекают на поверхности Земли или на небольшой глубине в земной коре и обусловлены внешними силами: энергией солнечного излучения, силами гравитации, движущихся воды и льда, жизнедеятельностью организмов. Мощным экзогенным фактором, воздействующим на земную кору, стала в настоящее время деятельность человека. Если до 2-ой половины XX в. недра использовались почти исключительно для добычи полезных ископаемых и питьевого водоснабжения, то сейчас в них создают хранилища нефти и газа, ведут захоронение отходы химической и ядерной промышленности. Особенно сильное влияние на геодинамические и гидрологические процессы оказывают подземные ядерные взрывы.

Наиболее достоверные сведения о химическом составе земной коры относятся к ее континентальной части. При расчете химического состава земной коры принимают определенную пропорцию кислого (гранитного) и основного (базальтового) материала. А.П. Виноградов в 1962 г. считал, что, вероятнее всего земная кора представляет собой смесь кислых и основных пород в пропорции 2:1. А.Б. Ронов и А.А. Ярошевский расчетным путем определили это соотношение как примерно 4:1, А.А. Полдерват в 1955 г. допускал это соотношение как 1:1. Из приведенных данных следует, что расчеты состава земной коры носят приближенный характер. Средний химический состав земной коры является ее важной химической характеристикой, необходимой для выяснения ряда глобальных геохимических процессов. Вещество земной коры выделилось из мантии в результате выплавления, дегазации и выноса этих продуктов в верхние горизонты планеты (табл. 1).

Таблица 1. Химический состав земной коры по А.Б. Ронову и А.А. Ярошевскому, 1976 г.(в среднем, %)

Краткая характеристика горных пород

По своему происхождению горные породы разделяют на 3 большие группы:

1. Магматические (изверженные), возникшие при застывании на поверхности или в недрах земной коры магмы - особого силикатного расплава, насыщенного газами.

2. Осадочные, образовавшиеся путем осаждения неорганических и органических веществ на дне различных водоемов и на поверхности континентов.

3. Метаморфические, появившиеся в процессе изменения (перекристаллизации) осадочных и изверженных пород под влиянием повышенных температур и давлений.

Изверженные породы включают в состав (%): гранит (SiO 2 ~ 71, Al 2 O 3 ~ 14-15, Na 2 O ~ 3.3, K 2 O ~ 4.0, Fe 2 O 3 + Fe ~ 3.5, остальное: Н 2 О, СаО, ТiО 2 , МgО);

Базальт (SiO 2 ~ 49, Al 2 O 3 ~ 18, Fe 2 O 3 + Fe ~ 9, СаО ~ 11, МgО ~ 8, остальное: Н 2 О, ТiО 2 , Na 2 O, K 2 O).

Осадочные породы включают (%): а) глина (SiO 2 ~ 62; Al 2 O 3 ~ 17; Н 2 О ~ 5; Fe 2 O 3 + Fe ~ 5, остальное: СаО, ТiО 2 , МgО, K 2 O, Na 2 O, СО 2);

б) песчаник (SiO 2 ~ 94; Al 2 O 3 ~ 1,1; СаО ~ 1,1; остальное: Na 2 O 3 ; K 2 O; Fe 2 O 3 + Fe; Н 2 О, ТiО 2 , МgО).

в) известняк (SiO 2 ~ 5; СаО ~ 43; СО 2 ~ 42; остальное: до 100 %.

Метаморфические породы (%): а) амфиболиты (SiO 2 ~ 50; Al 2 O 3 ~ 17; МgО ~ 7; СаО ~ 9; Fe 2 O 3 + Fe ~ 10; все остальные соединения - до 100 %);

б) сланец (SiO 2 ~ 63; Al 2 O 3 ~ 18; Fe 2 O 3 + Fe ~ 6; СаО ~ 2; Fe 2 O 3 + Fe ~ 6; К 2 О ~ 3; Н 2 О ~ 2,5; все остальные соединения - до 100 %).

Горные породы как естественные ассоциации минералов обладают целым рядом физических свойств, знание которых необходимо для решения многих вопросов: плотность, теплопроводность, естественная радиоактивность*, электрические свойства (удельное электрическое сопротивление, поляризуемость, диэлектрическая проницаемость, электрохимическая активность), магнитные свойства (магнитная восприимчивость, индуцированная намагниченность, остаточная намагниченность, естественная остаточная намагниченность), упругие и физико-механические свойства (скорость распространения продольных и поперечных сейсмических волн, динамическим модулям упругости, модулям деформации и сдвига).

* -естественная радиоактивность горных пород определяется спонтанным распадом (неуправляемым) сосредоточенных в них радиоактивных изотопов. Главными и наиболее распространенными являются: 232 Тh, 235 U, 238 U, 40 К. Радиоактивность проявляется в испускании б-, в-частиц, г-фотонов.

В биосфере нашей планеты существуют различные формы движения материи, взаимосвязанные друг с другом. В ней совершается массовый перенос твердых, жидких и газообразных масс под влиянием энергии солнечных лучей и внутренней энергии планеты, связанной, главным образом, с радиоактивным распадом и выделяемой атомной энергией.

Представление о большом круговороте вещества в верхних горизонтах Земли, как учение о крупных геологических циклах, было разработано в целостном виде В.И. Вернадским и названы эти циклы геохимическими. Наиболее крупный по масштабам круговорот - это процесс формирования магматических горных пород, которые возникают при застывании магмы, поступившей в литосферу из глубин Земли. На поверхности земной коры материал изверженных горных пород подвергается разрушению - выветриванию и естественно переходит в подвижное состояние. Продукты разрушения сносятся геологическими агентами (водой, ветром) в пониженные части рельефа (денудация), а затем в водоемы. Таким образом, осадочные породы в ходе геологического времени погружаются на большие глубины, где подвергаются метаморфизму и переплавлению снова в магму. Последняя в благоприятных геологических условиях может снова попасть в верхние слои литосферы, где застывает в форме различных горных пород. Таким образом, в течение огромных интервалов геологического времени происходит глобальный круговорот вещества: магматическая порода - осадочная порода - метаморфическая порода - магма. Различные участки земной коры, наблюдаемые нами на поверхности земного шара, по существу являются звеньями этого круговорота.

Характерная черта эволюции Земли — дифференциация вещества, выражением которой служит оболочечное строение нашей планеты. Литосфера, гидросфера, атмосфера, биосфера образуют основные оболочки Земли, отличающиеся химическим составом, мощностью и состоянием вещества.

Внутреннее строение Земли

Химический состав Земли (рис. 1) схож с составом других планет земной группы, например Венеры или Марса.

В целом преобладают такие элементы, как железо, кислород, кремний, магний, никель. Содержание легких элементов невелико. Средняя плотность вещества Земли 5,5 г/см 3 .

О внутреннем строении Земли достоверных данных весьма мало. Рассмотрим рис. 2. Он изображает внутреннее строение Земли. Земля состоит из земной коры, мантии и ядра.

Рис. 1. Химический состав Земли

Рис. 2. Внутреннее строение Земли

Ядро

Ядро (рис. 3) расположено в центре Земли, его радиус составляет около 3,5 тыс км. Температура ядра достигает 10 000 К, т. е. она выше, чем температура внешних слоев Солнца, а его плотность составляет 13 г/см 3 (сравните: вода — 1 г/см 3). Ядро предположительно состоит из сплавов железа и никеля.

Внешнее ядро Земли имеет большую мощность, чем внутреннее (радиус 2200 км) и находится в жидком (расплавленном) состоянии. Внутреннее ядро подвержено колоссальному давлению. Вещества, слагающие его, находятся в твердом состоянии.

Мантия

Мантия — геосфера Земли, которая окружает ядро и составляет 83 % от объема нашей планеты (см. рис. 3). Нижняя ееграница располагается на глубине 2900 км. Мантия разделяется на менее плотную и пластичную верхнюю часть (800-900 км), из которой образуется магма (в переводе с греческого означает «густая мазь»; это расплавленное вещество земных недр — смесь химических соединений и элементов, в том числе газов, в особом полужидком состоянии); и кристаллическую нижнюю, тол- шиной около 2000 км.

Рис. 3. Строение Земли: ядро, мантия и земная кора

Земная кора

Земная кора - внешняя оболочка литосферы (см. рис. 3). Ее плотность примерно в два раза меньше, чем средняя плотность Земли, — 3 г/см 3 .

От мантии земную кору отделяет граница Мохоровичича (ее часто называют границей Мохо), характеризующаяся резким нарастанием скоростей сейсмических волн. Она была установлена в 1909 г. хорватским ученым Андреем Мохоровичичем (1857- 1936).

Поскольку процессы, происходящие в самой верхней части мантии, влияют на движения вещества в земной коре, их объединяют под общим названием литосфера (каменная оболочка). Мощность литосферы колеблется от 50 до 200 км.

Ниже литосферы располагается астеносфера — менее твердая и менее вязкая, но более пластичная оболочка с температурой 1200 °С. Она может пересекать границу Мохо, внедряясь в земную кору. Астеносфера — это источник вулканизма. В ней находятся очаги расплавленной магмы, которая внедряется в земную кору или изливается на земную поверхность.

Состав и строение земной коры

По сравнению с мантией и ядром земная кора представляет собой очень тонкий, жесткий и хрупкий слой. Она сложена более легким веществом, в составе которого в настоящее время обнаружено около 90 естественных химических элементов. Эти элементы не одинаково представлены в земной коре. На семь элементов — кислород, алюминий, железо, кальций, натрий, калий и магний — приходится 98 % массы земной коры (см. рис. 5).

Своеобразные сочетания химических элементов образуют различные горные породы и минералы. Возраст самых древних из них насчитывает не менее 4,5 млрд лет.

Рис. 4. Строение земной коры

Рис. 5. Состав земной коры

Минерал — это относительно однородное по своему составу и свойствам природное тело, образующееся как в глубинах, так и на поверхности литосферы. Примерами минералов служат алмаз, кварц, гипс, тальк и др. (Характеристику физических свойств различных минералов вы найдете в приложении 2.) Состав минералов Земли приведен на рис. 6.

Рис. 6. Общий минеральный состав Земли

Горные породы состоят из минералов. Они могут слагаться как из одного, так и из нескольких минералов.

Осадочные горные породы - глина, известняк, мел, песчаник и др. — образовались путем осаждения веществ в водной среде и на суше. Они лежат пластами. Геологи называют их страницами истории Земли, так как но ним можно узнать о природных условиях, существовавших на нашей планете в давние времена.

Среди осадочных горных пород выделяют органогенные и неорганогенные (обломочные и хемогенные).

Органогенные горные породы образуются в результате накопления останков животных и растений.

Обломочные горные породы образуются в результате выветривания, псрсотложсния с помощью воды, льда или ветра продуктов разрушения ранее возникших горных пород (табл. 1).

Таблица 1. Обломочные горные породы в зависимости от размеров обломков

Название породы

Размер облом кон (частиц)

Более 50 см

5 мм — 1 см

1 мм — 5 мм

Песок и песчаники

0,005 мм — 1 мм

Менее 0,005 мм

Хемогенные горные породы формируются в результате осаждения из вод морей и озер растворенных в них веществ.

В толще земной коры из магмы образуются магматические горные породы (рис. 7), например гранит и базальт.

Осадочные и магматические породы при погружении на большие глубины под влиянием давления и высоких температур подвергаются значительным изменениям, превращаясь в метаморфические горные породы. Так, например, известняк превращается в мрамор, кварцевый песчаник — в кварцит.

В строении земной коры выделяют три слоя: осадочный, «гранитный», «базальтовый».

Осадочный слой (см. рис. 8) образован в основном осадочными горными породами. Здесь преобладают глины и глинистые сланцы, широко представлены песчаные, карбонатные и вулканогенные породы. В осадочном слое встречаются залежи таких полезных ископаемых, как каменный уголь, газ, нефть. Все они органического происхождения. Например, каменный уголь -это продукт преобразования растений древних времен. Мощность осадочного слоя колеблется в широких пределах — от полного отсутствия в некоторых районах суши до 20-25 км в глубоких впадинах.

Рис. 7. Классификация горных пород по происхождению

«Гранитный» слой состоит из метаморфических и магматических пород, близких по своим свойствам к граниту. Наиболее распространены здесь гнейсы, граниты, кристаллические сланцы и др. Встречается гранитный слой не везде, но на континентах, где он хорошо выражен, его максимальная мощность может достигать нескольких десятков километров.

«Базальтовый» слой образован горными породами, близкими к базальтам. Это метаморфизованные магматические породы, более плотные по сравнению с породами «гранитного» слоя.

Мощность и вертикальная структура земной коры различны. Выделяют несколько типов земной коры (рис. 8). Согласно наиболее простой классификации различают океаническую и материковую земную кору.

Континентальная и океаническая кора различны по толщине. Так, максимальная толщина земной коры наблюдается под горными системами. Она составляет около 70 км. Под равнинами мощность земной коры составляет 30-40 км, а под океанами она наиболее тонкая — всего 5-10 км.

Рис. 8. Типы земной коры: 1 — вода; 2- осадочный слой; 3 — переслаивание осадочных пород и базальтов; 4 — базальты и кристаллические ультраосновные породы; 5 — гранитно-метаморфический слой; 6 — гранулитово-базитовый слой; 7 — нормальная мантия; 8 — разуплотненная мантия

Различие континентальной и океанической земной коры по составу пород проявляется в том, что гранитный слой в океанической коре отсутствует. Да и базальтовый слой океанической коры весьма своеобразен. По составу пород он отличен от аналогичного слоя континентальной коры.

Граница суши и океана (нулевая отметка) не фиксирует перехода континентальной земной коры в океаническую. Замещение континентальной коры океанической происходит в океане примерно на глубине 2450 м.

Рис. 9. Строение материковой и океанической земной коры

Выделяют и переходные типы земной коры — субокеаническую и субконтинентальную.

Субокеаническая кора расположена вдоль континентальных склонов и подножий, может встречаться в окраинных и средиземных морях. Она представляет собой континентальную кору мощностью до 15-20 км.

Субконтинентальная кора расположена, например, на вулканических островных дугах.

По материалам сейсмического зондирования - скорости прохождения сейсмических волн — мы получаем данные о глубинном строении земной коры. Так, Кольская сверхглубокая скважина, впервые позволившая увидеть образцы пород с глубины более 12 км, принесла много неожиданного. Предполагалось, что на глубине 7 км должен начаться «базальтовый» слой. В действительности же он обнаружен не был, а среди горных пород преобладали гнейсы.

Изменение температуры земной коры с глубиной. Приповерхностный слой земной коры имеет температуру, определяемую солнечным теплом. Это гелиометрический слой (от греч. гелио — Солнце), испытывающий сезонные колебания температуры. Средняя его мощность — около 30 м.

Ниже расположен еще более тонкий слой, характерной чертой которого является постоянная температура, соответствующая среднегодовой температуре места наблюдений. Глубина этого слоя увеличивается в условиях континентального климата.

Еще глубже в земной коре выделяется геотермический слой, температура которого определяется внутренним теплом Земли и с глубиной возрастает.

Увеличение температуры происходит главным образом за счет распада радиоактивных элементов, входящих в состав горных пород, прежде всего радия и урана.

Величину нарастания температуры горных пород с глубиной называют геотермическим градиентом. Он колеблется в довольно широких пределах — от 0,1 до 0,01 °С/м — и зависит от состава горных пород, условий их залегания и ряда других факторов. Под океанами температура с глубиной нарастает быстрее, чем на континентах. В среднем с каждыми 100 м глубины становится теплее на 3 °С.

Величина, обратная геотермическому градиенту, называется геотермической ступенью. Она измеряется в м/°С.

Тепло земной коры — важный энергетический источник.

Часть земной коры, простирающаяся ло глубин, доступных для геологического изучения, образует недра Земли. Недра Земли требуют особой охраны и разумного использования.



Похожие публикации